
Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

AI Planning
20. Symmetry Reduction

How to Not Try “the Same Thing” Over and Over Again

Álvaro Torralba, Cosmina Croitoru

Winter Term 2018/2019

Thanks to Prof. Jörg Hoffmann for slide sources

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 1/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Agenda

1 Introduction

2 Symmetry Basics

3 Finding Symmetries

4 Exploiting Symmetries

5 Conclusion

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 2/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Motivation

→ Optimal Planning: Admissible heuristics estimate distance to goal
h(s) and avoid the expansion of nodes whose g(s) + h(s) > f∗(I)

→ They are a very effective technique but not the only one!

→ Sometimes, even almost perfect heuristics are not good enough![Helmert and
Röger (2008)]

Definition (Almost Perfect Heuristic). A heuristic is almost perfect if it
differs from the perfect heuristic h∗ only by an additive constant:
(h∗ − c)(s) = max(h∗(s)− c, 0).

Definition (Search effort N c(Π)). Let Π be a planning task. We denote
N c(Π) to the number of states s with g(s) + (h∗ − c)(s) < h∗(Π).

→A∗with h∗ − c will expand at least N c(Π) nodes.

Theorem. There exist families of planning tasks {T1, . . . , Tn} where Ti is a
planning task of size i and N c(Ti) grows exponentially in i even for small c.

Proof. Gripper (see next slide), Miconic, Blocksworld, . . .
Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 4/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Motivation: Example Gripper

Gripper:
Tn carry n balls from L to R.

Empirical results:
Balls h∗(I) N1(Π)

04 11 125
06 17 925
08 23 5885
10 29 34301
12 35 188413
14 41 991229
16 47 5046269

Reachable states: Sn = 2(2n + 2n2n−1 + n(n− 1)2n−2)

Theorem. Let n ∈ N0 with n ≥ 3. If n is even, then N1(Tn) = Sn
2 − 3.

If n is odd then N1(Tn) = Sn − 3.
Proof sketch. If n is even: basically all states with an even number of balls

in each room are part of an optimal plan. If n is odd, all states are part of an

optimal plan.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 5/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Pruning Methods

→ To the rescue: pruning methods

1 State Pruning: Reduces the search effort by not checking parts of
the search space. Particular nodes are pruned.

2 Action Pruning: Reduces the search effort by considering only some
of the applicable actions. Particular edges are pruned.

We cover 3 different methods for pruning:

(State) Symmetry reduction: → This Chapter

(State) Dominance pruning: → Chapter 19

(Action) Partial-order reduction.→ Chapter 18

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 6/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Symmetries in a Nutshell: Example

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 7/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Symmetries in a Nutshell: Wrap-Up

Basic Algorithm

1 Pre-search: Find Symmetries

Find (some) generators of the automorphism group that fixes goal
Plug them into an effective symmetry detection black box

2 Search: Use Symmetries
Run A∗. When a successor node s′ is generated, check if a
symmetrical node s was already found. If yes, then

(a) Update g(s) := min{g(s), g(s′)}
(b) Prune s′

3 Post-search:

Extract plan going backwards from the goal using symmetries

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 8/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Our Agenda for This Chapter

1 Symmetry Basics: Formal definition of symmetries and their
associated structures; proving their basic properties.

2 Finding Symmetries: We take a look at algorithms that detect
symmetric states from the definition of the planning task.

3 Exploiting Symmetries: We discuss how symmetries can be used
during the search and how the solution plan can be extracted
afterwards.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 9/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

What Is A Symmetry?

What is a symmetry? In abstract terms, an object is symmetric with
respect to an operation if the operation preserves some property of the
object. Here, we will consider automorphisms of the state space.

Definition (Automorphism). An automorphism of a graph (S,E) is a
permutation σ : S → S of the vertices of the graph that preserves the
structure of the graph, i.e., for every two vertices s1, s2 ∈ S, we have
that (s1, s2) ∈ E iff (σ(s1), σ(s2)) ∈ E.

→ Since transitions in our state space have a cost, we require the action
costs to be the same.

Definition (Automorphism in Θ). An automorphism of a state space
Θ is a permutation σ : S → S of the states that preserves the structure
of Θ, i.e., for every two states s1, s2 ∈ S, we have that s1

a−→ s2 ∈ T iff

σ(s1)
a′−→ σ(s2) ∈ T with c(a) = c(a’).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 11/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Example of Automorphisms

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Question!

Which of the following
permutations are automorphisms?

(A): ARR-BRR

(C): XYZ-XZY

(B): A-B

(D): L-R

→ (A): No, because then σ(ALR)→ σ(ARR) = ALR→ BRR 6∈ T
→ (B): No, because ARL→ RRL but BRL 6→ RRL

→ (C): No, because ARL→ RRL but ALR 6→ RLR

→ (D): Yes! It corresponds to a vertical symmetry.

→ Horizontal Symmetry: Corresponds to (B) and (C) together.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 12/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Definitions: Symmetry Group and Orbit

Definition (Symmetry Group). A set of automorphisms
Σ = {σ1, . . . , σn} generates a group G, where G is the set of all
permutations that can be obtained by composing elements of Σ.

Definition (Orbit). The orbit of a vertex s with respect to a group G,
denoted by G(s), is the set of vertices to which elements in G map s.

G(s) = {σ(s) | σ ∈ G}

Definition (Symmetric states).
Let G be a symmetry group of the state space of a planning task. Then,
we say that s, t are symmetric, s ∼G t iff they belong to the same orbit
G(s) = G(t).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 13/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Example: Orbits

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL
σ1

σ2

Question!

How many orbits are in the group generated by {σ1, σ2}?
(A): 4

(C): 8

(B): 5

(D): 10

→ (5): LRR-RLL, LLL-RRR, BLL-ALL-ARR-BRR, LRL-LLR-RRL-RLR,

BRL-ALR-ARL-BRLÁlvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 14/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

What do we want to preserve?

Automorphisms characterize the transitions of our state space. However,
they do not take into account the initial state and goals of the problem.

What we want is to consider symmetric states equivalent so that if we
have considered a state in the search, we can skip all its symmetric
states. In forward search we need to preserve goal distance: 1

s ∼G t =⇒ h∗(s) = h∗(t)

→ Symmetry methods guarantee that for every plan valid for s, π, there
exists an equivalent plan for t, σ(π) and vice versa.

1In domains with 0-cost actions we also need to take into account the optimal
number of 0-cost actions.
Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 15/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Stabilizing the symmetries

Definition (Stabilizer).
Let G be a symmetry group. The point-stabilizer of a vertex s with
respect to G, denoted Gs is a subgroup of G that contains all the
permutations that fix s. Gs = {σ | σ ∈ G, σ(s) = s}.

The set-stabilizer of a set of vertices S with respect to G, denoted GS is
a subgroup of G that contains all the permutations that fix S.
GS = {σ | σ ∈ G s.t. σ(s) = t for all s, t ∈ S}.

→We are interested in stabilizing the goal! We call GG a goal-stabilizer
group if is the subgroup that stabilizes the set of goal states.

→ Goal-stabilizer groups preserve h∗.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 16/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Goal Stabilizer preserves h∗

Proposition (Goal Stabilizer preserves h∗). Let Π be an FDR
planning task and G a goal-stabilizer group of ΘΠ. Then,
s ∼G t =⇒ h∗(s) = h∗(t).

Proof. Let s, t be symmetric states, i.e., s ∼G t. We show that for every
plan for s (t), π, exists a symmetric plan for t (s) of the same cost.

By induction on the length of the plan, |π|. Base case, |π| = 0. Then s
is a goal state and since G is goal-stabilizer, t is a goal state.

Inductive case. |π| = n > 0. Let a be the first action in π. Then,
s′ = a(s) is the next state in the plan for s. Since s and t are symmetric,

there exists σ(a) such that t
σ(a)−−→ t′ where t′ ∼ s′. By induction,

h∗(s′) = h∗(t′). Since a and σ(a) are symmetric, c(a) = c(σ(a)).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 17/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

And Now for Something Completely Different

V : D1, D2, D3 : {Hand ,Thrown}; T1, T2 : {0 , 1 , 2 , 3}.
Initial state I: D1 = D2 = D3 = Hand , T1 = T2 = 0
Goal G: T1 = 3 or T2 = 3.
Actions A:

throwFirst(x, y): pre Dx = H and, T1 = 0, T2 = 0;
eff: Ty = 1, Dx = Thrown

throwNext(x, y): pre Dx = H and, Ty > 0;
eff Ty = Ty + 1, Dx = Thrown

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 18/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

And Now for Something Completely Different

Question!

Find a symmetry goal-stabilizer group: G = {σ1, . . . , σk}.
How many orbits are in the group?

HHH00

THH10

HTH10

HHT10

THH01

HTH01

HHT01

TTH20

THT20

HTT20

TTH02

THT02

HTT02

TTT30

TTT03

G = {σ1, σ2, σ3}
σ1 = T1 ↔ T2,
σ2 = D1 ↔ D2 and
σ3 = D2 ↔ D3.

This induces 4 or-
bits, one for each goal
distance. For ex-
ample, THH10 =
σ1(σ2(σ3(HHT01))).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 19/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

How to Find Symmetries?

Symmetry groups are characterized as automorphisms (i.e., permutations
of states in our state space). However:

1 How to find a set of automorphisms?
→ look for structural symmetries in the problem description.

2 How to succinctly represent them?
→ permutations of facts (like in the example of slide 19).

Procedure:

1 Define Problem Description Graph, a graph that represents the
problem.

2 Use state-of-the-art algorithms to find automorphisms in that graph.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 21/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Structural Symmetry

Definition (Structural Symmetry). Let Π = (V,A, I,G) be an FDR
planning task. A permutation σ on V ∪A ∪ (∪v∈VDv) is a structural
symmetry if

σ(V) = V

σ(A) = A, and for all a ∈ A:
pre(σ(a)) = σ(pre(a))
eff (σ(a)) = σ(eff (a))
c(σ(a)) = c(a)

σ(G) = G

Theorem (Structural symmetries are goal-stabilizer). Let Π be an
FDR planning task and σ1, . . . , σk structural symmetries of Π. Then
{σ1, . . . , σk} is a goal-stabilizer group of ΘΠ.

Proof Intuition Since σ(V) = V ; σ is a permutation (σ(s) is a state).
Since σ(A) = A (and pre, eff, c); σ is an automorphism of Π
Since σ(G) = G; σ is a goal-stabilizer subgroup.
Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 22/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Problem Description Graph

Definition (Problem Description Graph). Let Π = (V,A, I,G) be an
FDR planning task. The problem description graph of Π is the
undirected colored graph PDG(Π) with four types of vertices colored of
different colors:

1 one for each variable Nv, v ∈ V ,

2 one for each value of a variable Nd, d ∈ Dv, and

3 two for each action corresponding to its preconditions and effects:
Nprea

and Neff a
, a ∈ A.

There is an arc between:

1 Nv and Nd iff d ∈ Dv,

2 Nprea
and Neff a

for every a ∈ A, and

3 d and prea or eff a iff d ∈ prea or d ∈ eff a.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 23/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Problem Description Graph: Example

P

L R A B

T1

L R

T2

L R

pre1 eff1

a1 = load(T1, L)

pre2 eff2

a2 = move(T1, L, R)

pre3 eff3

a3 = move(T2, L, R)

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 24/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Using the PDG

Definition (State-permutation induced by PDG-permutation). Let
Π = (V,A, I,G) be an FDR planning task. Let π be a permutation of
PDG(Π). The induced permutation on the state space of the planning
task, π′ : S → S is defined as π′(s) = {π(v), π(d) | 〈v, d〉 ∈ s}.

Theorem (PDG automorphisms to state space automorphisms).
Let Π be an FDR planning task. Let σ be an automorphism of PDG(Π)
and let σ′ be the state-permutation induced by σ. Then σ′ is a
goal-stabilizer automorphism of the state space of ΘΠ.

Proof Intuition The PDG-permutation renames operators, variables
and values in a way that preserves the semantics.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 25/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Finding automorphisms in the PDG

On the bad side – “Is the graph automorphism problem in P, or NP,
or neither?” Is an open problem in CS. It is harder than graph
isomorphism which is also not known to be in P.

On the good side We compute the automorphisms only once before
starting the search – We already in PSPACE, so how bad can it
be?

Open-source software tools that are available for this task:
1 SAUCY – H. Katebi, K. A. Sakallah & I. L. Markov (2012)
2 BLISS2 – T. Junttila & P. Kaski (2011)
3 NAUTY2 – B. D. McKay & A. Piperno (2013)

2Also produce Canonical Labeling
Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 26/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Exploiting Symmetries: Basic Idea

Basic Idea

1 Pre-search: Find Symmetries
Find (some) generators of the automorphism group that fixes goal

2 Search: Use Symmetries
Run heuristic search. When a successor node s′ is generated, check
if a symmetrical node s was already found. If yes, then

(a) If g(s) > g(s′), then update g, parent, and achieving action of s to
those of s′ and reopen (s)

(b) Prune s′

3 Post-search:
Non-standard plan extraction

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 28/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Finding Symmetric States

Given state s, is s symmetric to another previously known state?
Problem 1. Finding symmetric states is intractable. Given a pair of
states s, t and a symmetry group Σ = {σ1, . . . , σk} decide whether
G(s) = G(t) is NP-hard.

Problem 2. Comparing s against all previously known states may be
very expensive.

→ Each orbit is implicitly represented by one of its states, called the
canonical state, e.g., the lexicographically smallest state in the orbit.
Whenever we generate s, replace it for the representative of its orbit.
Duplicate elimination takes care of the rest.

→ Given s, finding the canonical state of G(s) is still NP-hard (see
Problem 1)!
→ We approximate! Use a greedy algorithm to find a lexicographically
smaller state, but not necessarily the smallest.
Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 29/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Representative states

function FindRepresentativeGreedy (G = σ1, . . . , σk, state s)
while ∃σ ∈ G, s.t., σ(s) < s do

s← σ(s)
return s

FindRepresentativeGreedy induces GC , a new subgroup of G.

The orbit GC(s) is formed by all states s′ s.t.
FindRepresentativeGreedy(G, s′) = s.

The equivalence relation is defined as s ∼GC
t iff GC(s) = GC(t).

→ s ∼GC
t =⇒ s ∼G t so the approximation is still safe.

→ s ∼GC
t 6=⇒ s ∼C t so the approximation is less powerful.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 30/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

A∗with Symmetries

1 Search: Run A∗. When a successor node s′ is generated, check if a
symmetrical node s was already found (by checking if
FindRepresentativeGreedy(s′) is a duplicate). If yes, then

(a) If g(s) > g(s′), then update g, parent, and achieving action of s to
those of s′ and reopen (s)

(b) Prune s′

2 Post-search: Non-standard plan extraction

s and s′ are symmetric. Should we prune s or s′?

→ We prune s′ because s might have already been expanded so we cannot
easily prune it anymore.

Is it possible that g(s) > g(s′)? → Yes, h∗(s) = h∗(s′) but g∗(s) and
g∗(s′) may differ as well as h(s) and h(s′).

The new values of g, parent and achieving action of s are not “true”, but
we know that they are for some symmetric state s′ and that suffices for
plan extraction (see next slides)

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 31/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

A∗with Symmetries: Example

s0

s1

s2

s3 s4

s5s5

s4

s5

s6

s7

s8 s9

s10s10

s9

s10

s∗

s7

s∗

x y z

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 32/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Solution Reconstruction with Symmetries

The plan returned by A∗with symmetries is not valid, but a valid plan
can be reconstructed by “undoing” the symmetries.

function Trace-forward (π = 〈(ε, s0), (a1, s1), . . . , (am, am)〉)
let σi ∈ ΓS? be such that σi(si) = si−1[ai] for 0 < i ≤ m
σ := σid

ρ := 〈ε〉
for i := 1 to m do:

s := σ(si−1), σ := σ ◦ σi, s
′ := σ(si)

append to ρ a cheapest action a such that s[a] = s′

endfor
return ρ

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 33/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Solution Reconstruction with Symmetries: Example

π = (ε,HHH00), (throw(D1, T1), HTH10), σ1 = {D1 ↔ D2}
(throw(D1, T1), THT02), σ2 = {D2 ↔ D3, T1 ↔ T2}
(throw(D2, T2), TTT30) σ3 = {T1 ↔ T2}

HHH00 HTH10 THT02 TTT30

HHT01 HTT20

HHT10

t3,1

t2,1

t3,2
t1,2

t2,1

t1,1
t2,2

t1,1

t1,1 t2,2

THH10 TTH20 TTT30

σ1 σ1 ◦ σ2 σ1 ◦ σ2 ◦ σ3
t1,1

t2,1 t3,1

Parent pointer
Symm substitution
Sol recovered
Sol reconstruction

→ The figure shows a search tree after the goal has been found. All nodes that were pruned

due to symmetries are omitted. Dashed edges represent the transitions that were substituted

because a better path was found to a symmetric state. For example, HHH00
t2,1−−−→ HTH10

is substituted by HHH00
t1,1−−−→ THH10 because HTH10 and THH10 are detected as

symmetric and the second has lower cost3.
3

In the example, g(HTH10) = g(THH10) but we assume that the substitution has occurred anyway in order to
show how the solution reconstruction works.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 34/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Summary

A symmetry σ is an automorphism, i.e., a permutation of the states that
preserves the structure (goal-distance) of the state space.

A set of permutations Σ = {σ1, . . . , σk} defines a group G, as is the set of
all permutations that can be obtained by composing elements in Σ. The
orbit of an state s, G(s) is the set of states s′ such that exists
σ ∈ G, σ(s) = s′.

A group G defines an equivalence class. s and t are symmetric according
to G, s ∼G t, iff G(s) = G(t).

In forward search we are interested in groups that stabilize the goal, i.e.,
goal states are only symmetric to other goal states.

Symmetries can be obtained by computing the automorphisms of the
Problem Description Graph (PDG). Those are structural symmetries of the
domain and can be succinctly represented.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 36/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Remarks

Symmetries are also useful for satisficing planning.[Domshlak et al.
(2013)]

Relation between symmetries and heuristics.[Shleyfman et al. (2015)]

Definition (Invariant Under Structural Symmetries). A heuristic h is
invariant under structural symmetries if h(s) = h(t) for every s ∼ t.

If a heuristic is invariant under symmetries we do not need to
evaluate more than one state in the same orbit.

If a heuristic is not invariant under symmetries, it is admissible to
evaluate several states from the same orbit and take the maximum.

The coarsest bisimulation captures all symmetries.[Sievers et al. (2015)]
Therefore, we can use bisimulation in M&S to capture all local
symmetries to the variables that have been already merged.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 37/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Heuristics Invariant Under Structural Symmetries

Classification of heuristics (E stands for “with a tie-breaking invariant
under symmetries”):

Non-symmetric Symmetric

h+ Hoffmann & Nebel

hmax Bonet & Geffner

hadd Bonet & Geffner

hFF Hoffmann & Nebel EhFF Hoffmann & Nebel

hFF/hadd, hFF/hmax Keyder & Geffner

hPDB Culberson & Schaeffer, Edelkamp

hM &S Helmert, Haslum & Hoffmann

hm Haslum & Geffner

hLM-cut Helmert & Domshlak EhLM-cut Helmert & Domshlak

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 38/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Remarks: Relation to Dominance

Dominance pruning is strictly more general than symmetry pruning.

Define � such that s ∼ t iff s � t and t � s.

The coarsest bisimulation on Θ finds all the symmetries. The coarsest
simulation on Θ is coarser than bisimulation.

So, does symmetry pruning make sense?
Yes! it allows specific ideas that do not work in the general case:

1 Unlike the dominance compositional approach in Chapter 19, the
method to compute symmetries finds symmetries over all variables.

2 Orbit search efficiently performs an approximate check. that is not
possible in the case of dominance.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 39/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Remarks: Orbit Search

In practice, one can just substitute each state by its canonical
representative. Then, the pruning is just performed by standard duplicate
elimination. We call this orbit search because each search node
corresponds to a symmetry orbit.

Orbit Search Algorithm

1 Pre-search: Find Symmetries

Find (some) generators of the automorphism group that fixes goal

2 Search: Use Symmetries

Run heuristic search. When a successor node s′ is generated replace
s′ by FindRepresentativeGreedy(G, s′). If a duplicate its found
update g, parent, and achieving action as usual.

3 Post-search:

Non-standard plan extraction

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 40/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

Reading

Exploiting Problem Symmetries in State-Based Planners [Pochter et al.
(2011)].

Available at:
http://www.cs.hujcdi.ac.il/~avivz/pubs/12/PlanningSymmetries_AAAI11.pdf

Content: Introduces of symmetries as automorphisms of the state space in
planning and the method based on the problem description graph.

Enhanced Symmetry Breaking in Cost-Optimal Planning as Forward Search
[Domshlak et al. (2012)].

Available at:
http://iew3.technion.ac.il/~dcarmel/Papers/Sources/icaps12b.pdf

Content: Improvement over the work by Pochter et al.. Prove that it is not
necessary to stabilize the symmetries with respect to the initial state if the
Trace-Forward algorithm is used for solution reconstruction.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 41/43

http://www.cs.hujcdi.ac.il/~avivz/pubs/12/PlanningSymmetries_AAAI11.pdf
http://iew3.technion.ac.il/~dcarmel/Papers/Sources/icaps12b.pdf

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

References I

Carmel Domshlak, Michael Katz, and Alexander Shleyfman. Enhanced symmetry
breaking in cost-optimal planning as forward search. In Blai Bonet, Lee McCluskey,
José Reinaldo Silva, and Brian Williams, editors, Proceedings of the 22nd
International Conference on Automated Planning and Scheduling (ICAPS’12). AAAI
Press, 2012.

Carmel Domshlak, Michael Katz, and Alexander Shleyfman. Symmetry breaking:
Satisficing planning and landmark heuristics. In Daniel Borrajo, Simone Fratini,
Subbarao Kambhampati, and Angelo Oddi, editors, Proceedings of the 23rd
International Conference on Automated Planning and Scheduling (ICAPS’13),
Rome, Italy, 2013. AAAI Press.

Malte Helmert and Gabriele Röger. How good is almost perfect? In Dieter Fox and
Carla Gomes, editors, Proceedings of the 23rd National Conference of the American
Association for Artificial Intelligence (AAAI’08), pages 944–949, Chicago, Illinois,
USA, July 2008. AAAI Press.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 42/43

Introduction Symm Basics Finding Symm Exploiting Symm Conclusion References

References II

Nir Pochter, Aviv Zohar, and Jeffrey S. Rosenschein. Exploiting problem symmetries in
state-based planners. In Wolfram Burgard and Dan Roth, editors, Proceedings of
the 25th National Conference of the American Association for Artificial Intelligence
(AAAI’11), San Francisco, CA, USA, July 2011. AAAI Press.

Alexander Shleyfman, Michael Katz, Malte Helmert, Silvan Sievers, and Martin
Wehrle. Heuristics and symmetries in classical planning. In Blai Bonet and Sven
Koenig, editors, Proceedings of the 29th AAAI Conference on Artificial Intelligence
(AAAI’15), pages 3371–3377. AAAI Press, January 2015.

Silvan Sievers, Martin Wehrle, Malte Helmert, Alexander Shleyfman, and Michael
Katz. Factored symmetries for merge-and-shrink abstractions. In Blai Bonet and
Sven Koenig, editors, Proceedings of the 29th AAAI Conference on Artificial
Intelligence (AAAI’15), pages 3378–3385. AAAI Press, January 2015.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 20: Symmetry Reduction 43/43

	Introduction
	

	Symmetry Basics
	

	Finding Symmetries
	

	Exploiting Symmetries
	

	Conclusion
	

	
	References

