

Introduction ●000	Landmarks 0000000	Landmark Heuristics	Detecting Landmarks	Conclusion 000000000	References
We Need	d Heuris	tic Functions!			

 \rightarrow Landmarks (LMs) are a method to relax planning tasks, and thus automatically compute heuristic functions h.

We cover the 4 different methods currently known:

- Critical path heuristics: Done. -> Chapter 8
- Delete relaxation: Basically done. \rightarrow Chapters 9 and 10
- Abstractions: Done. \rightarrow Chapters 11–13
- \bullet Landmarks. \rightarrow This Chapter

 \rightarrow Each of these have advantages and disadvantages. (We will do a formal comparison in Chapter 17.)

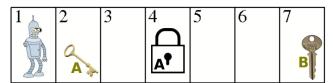
 \rightarrow LM heuristics research yielded lots of exciting results since 2009. They boost the performance of satisficing planning when combined with delete relaxation heuristics, *and* they are among the most successful methods for computing lower-bound estimators.

Álvaro To	rralba, Cosmina	Croitoru	AI Planning	Chapter 14: Landmark Heuristics	4/56
-----------	-----------------	----------	-------------	---------------------------------	------

Introduction 0000	Landmarks 0000000	Landmark Heuristics	Detecting Landmarks	Conclusion 000000000	References
Agenda					
1 Introd	uction				
2 Landr	narks				
3 Landn	nark Heuris	tics			
4 Detect	ting Landm	narks			
5 Conclu	usion				
Álvaro Torralba	a, Cosmina Croito	ru Al Planning	Chapter 14: Land	mark Heuristics	2/56

Introduction ○●○○	Landmarks 0000000	Landmark Heuristics	Detecting Landmarks	Conclusion 000000000	References
Landma	rks in a	Nutshell			

Problem: Bring key B to position 1.



Landmarks:

- robot-at-2, robot-at-3, robot-at-4, robot-at-5, robot-at-6, robot-at-7.
- lock-open, have-key-A, have-key-B, ...

 \rightarrow A landmark is something that every plan for the task must satisfy at some point.

- Find landmarks in a pre-process to planning.
- Heuristic value(state) := number of yet un-achieved landmarks.
 ("Number of open items on the to-do list")

AI Planning

Introduction Landmarks Conclusion References

- Landmarks were originally introduced as a method for problem decomposition [Hoffmann *et al.* (2004)].
- They traditionally come with a colorful variety of concepts defining orderings between them.
- Here we only discuss the generation of heuristic functions.
- We consider only the two most canonical forms of landmarks, and we do not cover LM orderings at all.
- Traditionally, LMs are mostly formulated in STRIPS; we'll do FDR (it doesn't really make a difference here). Remember that "facts" *p* in FDR are variable/value pairs.

Álvaro Torralba, Cosmina Croitoru		AI Planning	Chapter 14: Landmark Heuristics		6/56
Introduction 0000	Landmarks ●000000	Landmark Heuristics 000000000000	Detecting Landmarks 000000000000000	Conclusion 000000000	References
Fact La	ndmarks				

"Something that every plan must satisfy at some point." Take 1:

Definition (Fact Landmark). Let $\Pi = (V, A, c, I, G)$ be an FDR planning task, and let s be a state. A fact p is a fact landmark for s if $p \notin s$, and for every plan $\langle a_1, \ldots, a_n \rangle$ for s, there exists t so that $p \in s[\![\langle a_1, \ldots, a_t \rangle]\!]$.

 \rightarrow A fact landmark is a variable value that is currently false, but that must become true at some point along every plan.

 \rightarrow We'll often use "LM" for "Landmark".

 \rightarrow Any spontaneous ideas for facts that will always be landmarks? E.g., every goal fact that is not currently true.

AI Planning

Introduction 000●	Landmarks 0000000	Landmark Heuristics 000000000000	Detecting Landmarks	Conclusion 000000000	References
Our Ag	enda for	This Chapter			

- 2 Landmarks: We start by defining the two forms of landmarks we will consider, and we discuss their connections and differences.
- Summark Heuristics: We specify how to turn landmarks (assuming they are provided as input) into heuristic functions. We introduce a notion of orthogonality which implies additivity.
- Oetecting Landmarks: We state that, in general, detecting landmarks is computationally hard, and we introduce and discuss the most commonly used approximation methods.

Introduction 0000	Landmarks ○●○○○○○	Landmark Heuristics	Detecting Landmarks	Conclusion 000000000	References
Bartenc	der Fact I	Landmarks			

AI Planning

Álvaro Torralba. Cosmina Croitoru

V: Glass₁, Glass₂ : {Table, Hand}; Empty₁, Empty₂ : {0, 1}; Wodka, Tomato : {Bottle, Glass₁, Glass₂, Shaker}; BloodyMary : {0, 1}.
Initial state I: Glass₁ = Table, Glass₂ = Table, Empty₁ = 1, Empty₂ = 1, Wodka = Bottle, Tomato = Bottle, BloodyMary = 0.
Goal G: BloodyMary = 1.
Actions A: (unit costs) Take(x): pre Glass_x = Table; eff Glass_x = Hand Drop(x): pre Glass_x = Hand; eff Glass_x = Table Fill(x, y): pre Glass_x = Hand, Empty_x = 1, y = Bottle; eff y = Glass_x Pour(x, y): pre Glass_x = Hand, y = Glass_x; eff y = Shaker, Empty_x = 1 Shake(): pre Wodka = Shaker, Tomato = Shaker; eff BloodyMary = 1

Chapter 14: Landmark Heuristics

 \rightarrow What are the fact landmarks for the initial state? BloodyMary = 1, Wodka = Shaker, Tomato = Shaker. Everything else is not a landmark because we can use either glass 1 or glass 2.

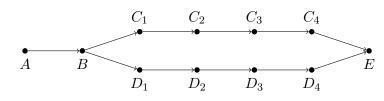
9/56

AI Planning Chapter 14: Landmark Heuristics

7/56

0000000 Where Fact Landmarks Fail

FindPath example: Actions move(X, Y) pre X eff Y; init A, goal E.



 \rightarrow Fact LMs for I? B, E.

To the rescue: disjunctive landmarks!

Álvaro Torralba	a, Cosmina Croitoru	AI Planning	Chapter 14: Landma	ark Heuristics	11/56
Introduction 0000	Landmarks 0000●00	Landmark Heuristics	Detecting Landmarks	Conclusion 000000000	References
Question	nnaire				
			b 5 6 7	B	

Fact landmarks *p*: robot-at-2, robot-at-3, robot-at-4, robot-at-5, robot-at-6, robot-at-7, lock-open, have-key-A, have-key-B.

Actions: MoveXY (pre robot-at-X[, lock-open for Y = 4]; eff robot-at-Y); PickXY (pre robot-at-X, key-Y-at-X; eff have-key-Y); DropXY (pre robot-at-X, have-key-Y; eff key-Y-at-X); OpenLockX for $X \in \{3,5\}$ (pre robot-at-X, have-key-A; eff lock-open).

Question!

How many of the 9 fact landmarks p induce disjunctive action LMs $L(p)$ of size						
L(p) > 1? (And how many of the $L(p)$ with $ L(p) > 1$ are minimal?)						
(A): 0	(B): 7					
(C): 8	(D): 9					

 \rightarrow All these p, except robot-at-7, have more than one possible achieving action a (where $p \in eff_{a}$). Thus (C) is correct. None of the L(p) with |L(p)| > 1 are minimal.

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 14: Landmark Heuristics	13/56
-----------------------------------	-------------	---------------------------------	-------

Introduction 0000	Landmarks 000€000	Landmark Heuristics	Detecting Landmarks	Conclusion 000000000	References

Disjunctive Action Landmarks

"Something that every plan must satisfy at some point." Take 2:

Definition (Disjunctive Action Landmark). Let $\Pi = (V, A, c, I, G)$ be an FDR planning task, and let s be a state. A set $L \subseteq A$ is a disjunctive action landmark for s if every plan for s contains an action $a \in L$. L is minimal if there exists no $L' \subseteq L$ that is a disjunctive action landmark for s.

 \rightarrow A disjunctive action LM is a set of actions at least one of which must occur in every plan. The LM is minimal if it contains no unnecessary actions.

Terminology: The action set induced by a fact p is $L(p) := \{a \in A \mid p \in eff_a\}$.

Proposition (Fact LMs Induce Disjunctive Action LMs). Let Π be an FDR planning task, let s be a state, and let p be a fact landmark for s. Then L(p) is a disjunctive action landmark for s.

Proof. Since p must become true at some point, it must be in an action effect.

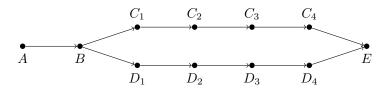
 \rightarrow Is L(p) always minimal? No (e.g., 100 actions achieve p, but the preconditions of all but one of these actions are unreachable).

Álvaro Torralba. Cosmina Croitoru

AI Planning Chapter 14: Landmark Heuristics 12/56

0000000 Induced vs. All Disjunctive Action Landmarks

FindPath example: Actions move(X, Y) pre X eff Y; init A, goal E.



 \rightarrow Fact LMs for I: B, E.

 \rightarrow Disjunctive action LMs for I induced by these: {move(A, B)}, $\{move(C_4, E), move(D_4, E)\}.$

 \rightarrow Minimal disjunctive action LMs for I **not** induced by these? $\{a_C, a_D\}$ for all $a_C \in \{move(B, C_1), move(C_i, C_{i+1}), move(C_4, E)\}$ and $a_D \in \{move(B, D_1), move(C_4, E)\}$ $move(D_i, D_{i+1}), move(D_4, E)\}, except \{a_C, a_D\} = \{move(C_4, E), \}$ $move(D_4, E)$.

 \rightarrow Some disjunctive action LMs are induced by fact LMs; most of them aren't.

 \rightarrow Note the difference in the possible numbers of fact/disjunctive action LMs.

AI Planning

Álvaro Torralba. Cosmina Croitoru

Bartender Disjunctive Action Landmarks

- V: Glass1, Glass2: {Table, Hand}; Empty1, Empty2: {0,1};
 Wodka, Tomato: {Bottle, Glass1, Glass2, Shaker}; BloodyMary: {0,1}
- Initial state I: Glass₁ = Table, Glass₂ = Table, Empty₁ = 1, Empty₂ = 1, Wodka = Bottle, Tomato = Bottle, BloodyMary = 0.
- Goal $\overline{G:}$ BloodyMary = 1.
- Actions A: (unit costs) Take(x): pre Glass_x = Table; eff Glass_x = Hand Drop(x): pre Glass_x = Hand; eff Glass_x = Table Fill(x, y): pre Glass_x = Hand, Empty_x = 1, y = Bottle; eff y = Glass_x Pour(x, y): pre Glass_x = Hand, y = Glass_x; eff y = Shaker, Empty_x = 1

Shake(): pre Wodka = Shaker, Tomato = Shaker; eff BloodyMary = 1

Fact landmarks p for I: BloodyMary = 1, Wodka = Shaker, Tomato = Shaker.

→ Disjunctive action landmarks L(p) induced by these? {Shake()}, {Pour(1, Wodka), Pour(2, Wodka)}, {Pour(1, Tomato), Pour(2, Tomato)}.

 \rightarrow Are these *all* disjunctive action landmarks for *I*? No. For example: {*Fill*(1, *Wodka*), *Fill*(2, *Wodka*)}, {*Fill*(1, *Tomato*), *Fill*(2, *Tomato*)}, and {*Take*(1), *Take*(2)}.

Álvaro Torralba, Cosmina Croitoru Al Planning Chapter 14: Landmark Heuristics 15/56

Theorem (h^{LM} is Admissible). Let $\Pi = (V, A, c, I, G)$ be an FDR planning task, and let $L \subseteq A$. Then h_L^{LM} is consistent and goal-aware, and thus also admissible and safe.

Proof. Goal-awareness: If s is a goal state, then L is not a landmark for s (the empty plan does not use any action from L), hence $h_L^{\text{LM}}(s) = 0$. Consistency: Say $s[\![a]\!] = s'$; we need to prove that $h_L^{\text{LM}}(s) \le h_L^{\text{LM}}(s') + c(a)$.

If $h_L^{\text{LM}}(s) = 0$, that is trivial. Else, L is a landmark for s and $h_L^{\text{LM}}(s) = \min \{c(a) \mid a \in L\} =: c_{min}$, so we need to show that $c_{min} \leq h_L^{\text{LM}}(s') + c(a)$.

Say $a \notin L$. Then L is a landmark for s' so $h_L^{LM}(s') = c_{min} = h_L^{LM}(s)$ and we are done.

Say $a \in L$. Then, by the definition of c_{min} , we have $c_{min} \leq c(a)$. So $c_{min} \leq h_L^{\text{LM}}(s') + c(a)$ holds simply because $0 \leq h_L^{\text{LM}}(s')$.

AI Planning

Reference

Introduction	Landmarks	Landmark Heuristics	Detecting Landmarks	Conclusion	References
		00000000000			

Elementary Landmark Heuristics

Definition (Elementary Landmark Heuristic). Let $\Pi = (V, A, c, I, G)$ be an FDR planning task with state space $\Theta_{\Pi} = (S, A, T, I, G)$, and let $L \subseteq A$. The elementary landmark heuristic h_L^{LM} for Π given L is the function $h_L^{\text{LM}} : S \mapsto \mathbb{R}_0^+$ where $h_L^{\text{LM}}(s) = \min \{c(a) \mid a \in L\}$ if L is a disjunctive action landmark for s, and $h_L^{\text{LM}}(s) = 0$ otherwise.

 \rightarrow If L is indeed a landmark, the elementary landmark heuristic given L returns the cost of the cheapest action in L; otherwise, it returns 0.

Remarks:

- h_L^{LM} is just a formal vehicle to elegantly express the goal distance estimates derived from LMs in terms of the heuristic functions framework.
- It has to be "min" over L, not "max" or "sum": intended meaning of L is that the planner may choose which action to use. Neither sum'ing nor max'ing would be admissible.
- If L is induced by a fact landmark p, this just means to "account for the cheapest action that achieves p".

Álvaro Torralba, Cosmina Croitoru Al Planning Chapter 14: Landmark Heuristics 17/56

Introduction 0000	Landmarks 0000000	Landmark Heuristics 00●000000000	Detecting Landmarks	Conclusion 000000000	References
Questic	nnaire				

Questionnaire

Question!

Say s is a dead-end state. What are the (a) fact landmarks and (b) disjunctive action landmarks for s?

 \rightarrow (a) All facts except those true in s, (b) all action subsets $L \subseteq A$. The reason for both is that, in our definitions, "every plan" quantifies over the empty set.

 \rightarrow A "to-do list" does not make sense for unsolvable problems.

Question!

Say s is a dead-end state. Can $h_L^{LM}(s)$ return ∞ ?

 \rightarrow Only for $L = \emptyset$, where $\min \{c(a) \mid a \in L\} = \infty$ by convention. For $L \neq \emptyset$, h_L^{LM} returns either 0 or $\min \{c(a) \mid a \in L\}$, both of which are finite.

 \rightarrow Practical LM heuristics don't find empty LMs. Hence (in difference to all other heuristic functions we consider) they cannot detect dead ends.

Introduction 0000	Landmarks 0000000	Landmark Heuristics	Detecting Landmarks	Conclusion 000000000	References
Bartenc	ler h^{LM}				

- V: Glass₁, Glass₂: {Table, Hand}; Empty₁, Empty₂: {0,1}; Wodha, Tamata : [Battle, Class, Class, Chabra]: Plada Marris [
- $$\label{eq:works} \begin{split} &Wodka, Tomato: \{Bottle, Glass_1, Glass_2, Shaker\}; \ BloodyMary: \{0,1\}. \\ \bullet \ \mbox{Initial state } I: \ Glass_1 = Table, \ Glass_2 = Table, \ Empty_1 = 1, \end{split}$$
- $Empty_2 = 1$, Wodka = Bottle, Tomato = Bottle, BloodyMary = 0. • Goal G: BloodyMary = 1.
- Actions A: (unit costs) Take(x): pre Glass_x = Table; eff Glass_x = Hand Drop(x): pre Glass_x = Hand; eff Glass_x = Table Fill(x,y): pre Glass_x = Hand, Empty_x = 1, y = Bottle; eff y = Glass_x Pour(x,y): pre Glass_x = Hand, y = Glass_x; eff y = Shaker, Empty_x = 1 Shake(): pre Wodka = Shaker, Tomato = Shaker; eff BloodyMary = 1

Induced by fact LMs: $\{Shake()\}$, $\{Pour(1, Wodka), Pour(2, Wodka)\}$, $\{Pour(1, Tomato), Pour(2, Tomato)\}$.

 $\rightarrow h_L^{\text{LM}}$ from this: h = 1; h = 1; h = 1.

Additional disjunctive action landmarks: ${Fill(1, Wodka), Fill(2, Wodka)}, {Fill(1, Tomato), Fill(2, Tomato)}, and {Take(1), Take(2)}.$

 $\rightarrow h_L^{\text{LM}}$ from this: h = 1; h = 1; h = 1.

Álvaro Torralba, Cosmina Croitoru

Chapter 14: Landmark Heuristics

s 20/56

 Introduction
 Landmarks
 Landmark Heuristics
 Detecting Landmarks
 Conclusion
 Reference

 When LM Summing (and Counting) is Not Admissble

AI Planning

Planning task:

- Goals G: A and B both true.
- Initial state I: A and B both false.
- Actions: carA effect $A \cos 1$; carB effect $B \cos 1$; fancyCar effect A and $B \cos 1.5$.
- Fact landmarks: A and B.
- Induced disjunctive action landmarks: {*carA*, *fancyCar*} and {*carB*, *fancyCar*}.

AI Planning

• Summed-up heuristic value: $2 > h^*(I) = 1.5$.

Álvaro Torralba, Cosmina Croitoru

Chapter 14: Landmark Heuristics

s 22/56

Introduction 0000	Landmarks 0000000	Landmark Heuristics 00000000000	Detecting Landmarks	Conclusion 000000000	Ref
And No	w?				

Question!

Is h_L^{LM} a high-quality heuristic function?

(A): Yes.

(B): No.

 \rightarrow Its value is bounded by the cost of the most expensive action in the task! For unit costs: $h_L^{\text{LM}}(s) \in \{0, 1\} \dots$!

 \rightarrow For $h_L^{\rm LM}$ to be useful, we need to combine several of them!

How to admissibly combine $h_{L_1}^{LM}, \ldots, h_{L_k}^{LM}$?

- \bullet max: Works trivially. Also trivially, problem above not solved.
- \sum : Can solve above problem, and is a sine-qua-non for LM heuristics (corresponds to "LM counting" in the case of fact LMs).

 \rightarrow Admissible in general? No, because the same action may be part of more than one disjunctive action LM. See next slide.

Álvaro Torralba, Cosmina Croitoru

Chapter 14: Landmark Heuristics

21/56

Introduction 0000	Landmarks 0000000	Landmark Heuristics 000000000000	Detecting Landmarks	Conclusion 000000000	References
Orthogo	onal Land	dmarks			

Terminology. $L_1, \ldots, L_k \subseteq A$ are orthogonal if $L_i \cap L_j = \emptyset$ for $i \neq j$.

AI Planning

Theorem (The Sum of Orthogonal h^{LM} is Admissible). Let $\Pi = (V, A, c, I, G)$ be an FDR planning task, and let $L_1, \ldots, L_k \subseteq A$ be orthogonal. Then $\sum_{i=1}^k h_{L_i}^{\text{LM}}$ is consistent and goal-aware, and thus also admissible and safe.

Proof. Goal-awareness: Trivial because all component heuristics are goal-aware.

Consistency: Say s[a] = s'; we need to prove that $\sum_{k=0}^{k} b^{LM}(s) \leq \sum_{k=0}^{k} b^{LM}(s') + c(a)$. If any *L* is not a law

 $\sum_{i=1}^{k} h_{L_{i}}^{\text{LM}}(s) \leq \sum_{i=1}^{\bar{k}} h_{L_{i}}^{\text{LM}}(s') + c(a). \text{ If any } L_{i} \text{ is not a landmark for } s \text{, then } L_{i} \text{ cannot contribute to disvalidating this inequality, so we can ignore that case.}$

Say a is not a member of any L_i . Then all L_i still are landmarks for s' so $\sum_{i=1}^k h_{L_i}^{\text{LM}}(s) = \sum_{i=1}^k h_{L_i}^{\text{LM}}(s')$ and we are done.

AI Planning

Else, a is a member of *exactly one* action set, say of L_j . For all $i \neq j$, L_i still is a landmark in s' so $h_{L_i}^{\text{LM}}(s) = h_{L_i}^{\text{LM}}(s')$.

It remains to show that $h_{L_j}^{\text{LM}}(s) \leq h_{L_j}^{\text{LM}}(s') + c(a)$, which we have by consistency of $h_{L_j}^{\text{LM}}$ (cf. slide 18).

Álvaro Torralba, Cosmina Croitoru

The Canonical Landmark Heuristic

Terminology. The compatibility graph for $C = \{L_1, \ldots, L_n\}$ has vertices L_i and an arc (L_i, L_j) iff $L_i \cap L_j = \emptyset$.

Definition (Canonical Heuristic). Let Π be an FDR planning task, let $C = \{L_1, \ldots, L_n\}$ be a collection of action subsets, and let cliques(C) be the set of all maximal cliques in the compatibility graph for C. Then the canonical heuristic $h^{\mathcal{C}}$ for C is defined as $h^{\mathcal{C}}(s) = \max_{\mathcal{D} \in cliques(C)} \sum_{L_i \in \mathcal{D}} h_{L_i}^{\mathsf{LM}}(s)$.

 \rightarrow The canonical heuristic maximizes over all largest orthogonal subsets of our landmarks collection.

Remarks:

- To reduce overlaps, minimal disjunctive action LMs are desirable.
- h^C is the best possible admissible heuristic we can derive from C using the orthogonality criterion. Despite this, on slide 22, we get h^C = 1.
- Better heuristics can be obtained using cost partitioning or hitting sets $(\rightarrow \text{Chapter 15})$.

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 14: Landmark Heuristics	24/56
-----------------------------------	-------------	---------------------------------	-------

Introduction 0000	Landmarks 0000000	Landmark Heuristics	Detecting Landmarks	Conclusion 000000000	References
Questic	onnaire				

- Variables: $at : \{Sy, Ad, Br, Pe, Da\};$ $v(x) : \{T, F\}$ for $x \in \{Sy, Ad, Br, Pe, Da\}$
- Actions: drive(x, y) where x, y have a road.
- Costs: $Sy \leftrightarrow Br : 1$, $Sy \leftrightarrow Ad : 1.5$, $Ad \leftrightarrow Pe : 3.5$, $Ad \leftrightarrow Da : 4$.
- Initial state: at = Sy, v(Sy) = T, v(x) = F for $x \neq Sy$.
- Goal: at = Sy, v(x) = T for all x.

Induced by fact LMs: $\{drive(Ad, Pe)\}$, $\{drive(Ad, Da)\}$, $\{drive(Sy, Br)\}$, $\{drive(Pe, Ad), drive(Da, Ad), drive(Sy, Ad)\}$.

Additional disjunctive action LMs: $\{drive(Ad, Sy), drive(Br, Sy)\};$ $\{drive(Pe, Ad)\}, \{drive(Da, Ad)\}, \{drive(Sy, Ad)\}.$

Question!

Canonical heuristic $h^{\mathcal{C}}(I)$ from these?

→ The non-minimal LM {drive(Pe, Ad), drive(Da, Ad), drive(Sy, Ad)} is subsumed by the three orthogonal LMs {drive(Pe, Ad)}, {drive(Da, Ad)}, {drive(Sy, Ad)}. We get $h^{\mathcal{C}}(I) = 3.5[Ad \rightarrow Pe] + 4[Ad \rightarrow Da] + 1[Sy \rightarrow Br] + 1[Br \rightarrow Sy] + 3.5[Pe \rightarrow Ad] + 4[Da \rightarrow Ad] + 1.5[Sy \rightarrow Ad] = 18.5.$

Álvaro Torralba. Cosmina Croitoru

s 26/56

Bartender Orthogonal Landmarks

V: Glass₁, Glass₂ : {Table, Hand}; Empty₁, Empty₂ : {0,1}; Wodka, Tomato : {Bottle, Glass₁, Glass₂, Shaker}; BloodyMary : {0,1}.
Initial state I: Glass₁ = Table, Glass₂ = Table, Empty₁ = 1, Empty₂ = 1, Wodka = Bottle, Tomato = Bottle, BloodyMary = 0.

- Goal G: BloodyMary = 1.
- Actions A: (unit costs)
 - Take(x): pre $Glass_x = Table$; eff $Glass_x = Hand$
 - Drop(x): pre $Glass_x = Hand$; eff $Glass_x = Table$
- Fill(x, y): pre $Glass_x = Hand$, $Empty_x = 1$, y = Bottle; eff $y = Glass_x$ Pour(x, y): pre $Glass_x = Hand$, $y = Glass_x$; eff y = Shaker, $Empty_x = 1$ Shake(): pre Wodka = Shaker, Tomato = Shaker; eff BloodyMary = 1

Induced by fact LMs: {Shake()}, {Pour(1, Wodka), Pour(2, Wodka)}, {Pour(1, Tomato), Pour(2, Tomato)}. Additional disjunctive action LMs: {Fill(1, Wodka), Fill(2, Wodka)},

 ${Fill(1, Tomato), Fill(2, Tomato)}, {Take(1), Take(2)}.$

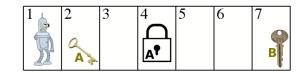
 \rightarrow Canonical heuristic $h^{\mathcal{C}}(I)$ from these: These L_i are all orthogonal, hence $h^{\mathcal{C}}(I) = 6 = h^*(I)$.

AI Planning

Álvaro Torralba, Cosmina Croitoru

Chapter 14: Landmark Heuristics 25/56

Introduction 0000	Landmarks 0000000	Landmark Heuristics 0000000000€0	Detecting Landmarks	Conclusion 000000000	References
Questic	onnaire, c	td			



Fact landmarks *p*: robot-at-2, robot-at-3, robot-at-4, robot-at-5, robot-at-6, robot-at-7, lock-open, have-key-A, have-key-B. (Unit-cost actions)

Actions: MoveXY (*pre* robot-at-X[, lock-open for Y = 4]; *eff* robot-at-Y); PickXY (*pre* robot-at-X, key-Y-at-X; *eff* have-key-Y); DropXY (*pre* robot-at-X, have-key-Y; *eff* key-Y-at-X); OpenLockX for $X \in \{3, 5\}$ (*pre* robot-at-X, have-key-A; *eff* lock-open).

Question!

Considering the collection of disjunctive action LMs L(p) induced by these p, what is the value of the canonical heuristic h^{C} ?

AI Planning

(A): 6	(B): 7
(C): 8	(D): 9

 \rightarrow All of these L(p) are orthogonal, so (D) is correct.

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References October Octo

 ${}^{`}h_{L}^{\mathsf{LM}}(s) = \min \{c(a) \mid a \in L\} \text{ if } L \text{ is a disjunctive action landmark for } s, and <math>h_{L}^{\mathsf{LM}}(s) = 0 \text{ otherwise.''}$

 \rightarrow So will we keep L fixed, and check for every search state s whether or not it's a LM? No, because checking LMs is expensive. Instead, we design "landmark generation" algorithms, which guarantee to produce only LMs, but which do not guarantee to produce all LMs.

And then:

- Offline generation, online update: Generate LMs L₁, ..., L_n for the initial state once before planning begins. Maintain flags throughout search to remember which ones have not been achieved yet.
- **Online generation**: Generate LMs L_1, \ldots, L_n individually for each s.

Álvaro Torralba	a, Cosmina Croitoru	AI Planning	Chapter 14: Landma	ark Heuristics	28/56
Introduction 0000	Landmarks 0000000	Landmark Heuristics	Detecting Landmarks ○●000000000000000	Conclusion 000000000	References
So is all	lost?				

\rightarrow How to obtain a collection of disjunctive action landmarks?

Answer: "It is **PSPACE**-complete to decide whether or not a fact p is a fact landmark for s, and it is **PSPACE**-complete to decide whether or not an action set $L \subseteq A$ is a disjunctive action landmark for s."

Question!So is all lost?(A): Yes.(B): No.

 \rightarrow We approximate ... (business as usual). More precisely, we devise sound but incomplete methods, detecting *a subset of the actual landmarks*.

 \rightarrow Ideas? Goals and necessary subgoals are landmarks.

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 14: Landmark Heuristics

Introduction	Landmarks	Landmark Heuristics	Detecting Landmarks	Conclusion	Reference
			•00000000000000		

But How to Detect those Landmarks in the First Place?

\rightarrow How to obtain a collection of disjunctive action landmarks?

Theorem (Checking Landmarks is Hard). Let $\Pi = (V, A, c, I, G)$ be an FDR planning task, and let s be a state. It is **PSPACE**-complete to decide whether or not a fact p is a fact landmark for s, and it is **PSPACE**-complete to decide whether or not an action set $L \subseteq A$ is a disjunctive action landmark for s. **Proof.** By a reduction from PlanEx. Given the task $\Pi = (V, A, c, I, G)$ for which we need to decide PlanEx, we construct $\Pi' := (V \cup \{x\}, A \cup \{a_1, a_2\}, c', I \cup \{x = 0\}, G)$ by introducing a new variable x with domain $\{0, 1\}$ as well as two new actions a_1, a_2 of which a_1 sets x from 0 to 1, and a_2 has precondition x = 1 and effect G. (We obtain c' from c by assigning arbitrary costs to a_1, a_2 .) Then x = 1 is a fact landmark for I iff Π is unsolvable, and $\{a_1\}$ is a disjunctive action landmark for I iff Π is unsolvable.

 \rightarrow Something is a landmark if and only if disallowing it renders the task unsolvable. Thus, checking landmarks is as hard as deciding solvability.

Note: This theorem can be proved more easily using the situation where "every plan" quantifies over the empty set, cf. slide 19. I find the present proof more illustrative.

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 14: Landmark Heuristics	30/56
-----------------------------------	-------------	---------------------------------	-------

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References Detecting Some LMs, Take 1: Necessary Subgoals

Definition (Necessary Subgoals). Let Π be an FDR planning task, and let s be a state. A fact p is a necessary subgoal in Π for s if $p \notin s$ and either:

 $\bigcirc p \in G; \text{ or }$

- **(**) there exists a necessary subgoal q in Π for s so that $p \in \bigcap_{a \in A, a \in eff_a} pre_a$.
- \rightarrow Necessary subgoals are top-level goals plus shared preconditions.

("subgoal" here=singleton fact, not fact subset as for critical path heuristics.)

Proposition (Necessary Subgoals are Landmarks). Let Π be an FDR planning task, and let s be a state. If p is a necessary subgoal in Π for s, then p is a fact landmark for s.

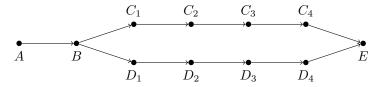
Proof. By structural induction. The claim holds trivially for necessary subgoals of kind (i). For (ii), if q is a fact landmark for s, then q must be achieved at some point which by construction involves achieving p first.

Strategy: Given state s, detect necessary subgoals p_i for s by simple backchaining from the goal: start at $p \in G \setminus s$, then iteratively apply (ii) until no more new necessary subgoals are found.

Álvaro Torralba, Cosmina Croitoru Al Planning Chapter 14: Landmark Heuristics 32/56

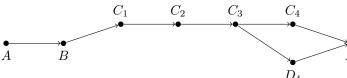
Detecting Landmarks Necessary Subgoals vs. Fact Landmarks

FindPath example: Actions move(X, Y) pre X eff Y; init A, goal E.



 \rightarrow Fact landmarks for I? B. E.

 \rightarrow Necessary subgoals for *I*? *E*.



AI Planning

- \rightarrow Fact landmarks for *I*? *B*, *C*₁, *C*₂, *C*₃, *E*.
- \rightarrow Necessary subgoals for *I*? *E*.

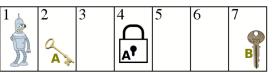
Álvaro Torralba, C	osmina Croitoru
--------------------	-----------------

Chapter 14: Landmark Heuristics

33/56

Introduction 0000	Landmarks 0000000	Landmark Heuristics	Detecting Landmarks	Conclusion 000000000	References
Question	nnaire				

Problem: Bring key B to position 1.



Actions: MoveXY (*pre* robot-at-X[, lock-open for Y = 4]; *eff* robot-at-Y); PickXY (pre robot-at-X, key-Y-at-X; eff have-key-Y); DropXY (pre robot-at-X, have-key-Y; *eff* key-Y-at-X); OpenLockX for $X \in \{3, 5\}$ (*pre* robot-at-X, have-key-A; eff lock-open).

Question!

What are the necessary subgoals for I in this planning task?

 \rightarrow Just key-B-at-1 and have-key-B: The only action that achieves the goal key-B-at-1 is to drop key-B at 1, which has preconditions robot-at-1 and have-key-B. The former is true in I so is not a necessary subgoal. The actions achieving have-key-B (all PickXB actions) do not share any precondition.

	C_1	C_2	C_3	C_4		
_		→●		$\rightarrow \bullet$		
•					>•	
B					E	
				D_A		

Bartender Necessary Subgoals



Actions A: (unit costs) CleanHand(): pre empty; eff HandClean = 1Take(x): pre HandClean = 1, $Glass_x = Table$; eff $Glass_x = Hand$ Drop(x): pre $Glass_x = Hand$; eff $Glass_x = Table$ Fill(x, y): pre $Glass_x = Hand$, $Empty_x = 1$, y = Bottle; eff $y = Glass_x$ Pour(x, y): pre $Glass_x = Hand$, $y = Glass_x$; eff y = Shaker, $Empty_x = 1$ Shake(): pre Wodka = Shaker, Tomato = Shaker; eff BloodyMary = 1

Detecting Landmarks

 \rightarrow Fact landmarks p for I: BloodyMary = 1, Wodka = Shaker, Tomato = Shaker. HandClean = 1.

 \rightarrow Necessary subgoals for *I*? BloodyMary = 1: goal; Wodka = Shaker and Tomato = Shaker: precondition for Shake(). The landmark HandClean = 1 is not detected as the backchaining stops at Wodka = Shaker and Tomato = Shaker which do not yield shared preconditions.

Álvaro Torralba, Cosmina Croitoru AI Planning

34/56 Chapter 14: Landmark Heuristics

Detecting Landmarks Detecting Some LMs, Take 2: Delete Relaxation LMs

Definition (Delete Relaxation LM). Let $\Pi = (V, A, c, I, G)$ be an FDR planning task, and let s be a state. A fact p [respectively an action set $L \subseteq A$] is a delete relaxation landmark for s if $p \notin s$, and for every relaxed plan $\langle a_1^+, \ldots, a_n^+ \rangle$ for s, there exists t so that $p \in s[\![\langle a_1^+, \ldots, a_t^+ \rangle]\!]$ [respectively so that $a_t \in L$].

Proposition (Checking Delete Relaxation LMs is Easy). Let

 $\Pi = (V, A, c, I, G)$ be an FDR planning task, and let s be a state. It can be decided in polynomial time whether or not a fact p, respectively an action set L, is a delete relaxation landmark for s.

Proof. To decide whether L is a delete relaxation landmark, simply test whether $(V, A \setminus L, c, I, G)$ does not have a relaxed plan.

To decide whether p is a fact landmark, simply test whether $p \notin s$ and Π does not have a relaxed plan when excluding all actions whose effect contains p.

 \rightarrow Something is a landmark if and only if disallowing it renders the task unsolvable. For the delete relaxation, this can be checked in polynomial time.

Introduction Landmarks Conclusion Conclusion References

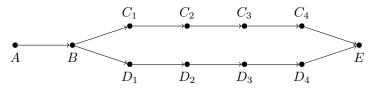
How to detect delete relaxation fact LMs?

- How to find all? For every fact, run test on previous slide.
- Not such a good idea in practice: Relaxed planning is polynomial time but not dirt-cheap, and there may be 100s-1000s of facts.
- A direct method computes all "causal" delete relaxation fact landmarks by a fixed point computation [Keyder *et al.* (2010)].

How to detect delete relaxation disjunctive action LMs?

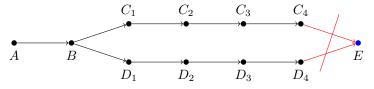
- How to find all? For every $L \subseteq A$, run test on previous slide.
- Completely useless idea in practice: Exponentially many L.
- Vanilla solution: Use L(p) induced by delete relaxation fact LM p.
- Advanced solution LM-cut: [Helmert and Domshlak (2009)]
 Get L as a cut between the initial state and the "0-cost goal zone"; reduce the cost of each action in L by min_{a∈L} c(a); iterate.
 We'll give details in Chapter 17; illustration see next slide.

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 14: Landmark Heuristics 37/50	Álvaro Torralba, Cosmina Croitoru	Heuristics 37/56
---	-----------------------------------	------------------



Fact-induced LMs: Fact LMs B and E yield $\{move(A, B)\}$ and $\{move(C_4, E), move(D_4, E)\}$. Thus $h^{\mathcal{C}}(I) = 2$.

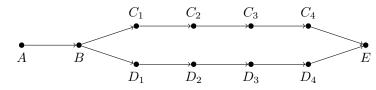
LM-cut: (blue edges = cost reduced to 0, blue nodes = "0-cost goal zone")



AI Planning

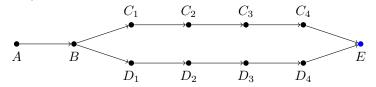
Introduction 0000	Landmarks 0000000	Landmark Heuristics	Detecting Landmarks	Conclusion 000000000	References
_					

Detecting Action LMs: Fact-Induced vs. LM-cut



Fact-induced LMs: Fact LMs *B* and *E* yield $\{move(A, B)\}$ and $\{move(C_4, E), move(D_4, E)\}$. Thus $h^{\mathcal{C}}(I) = 2$.

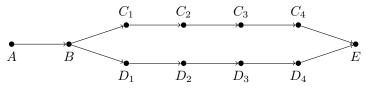
LM-cut: (blue edges = cost reduced to 0, blue nodes = "0-cost goal zone")



LM-cut LMs:

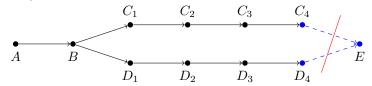
Álvaro Torralba, Co	osmina Croitoru	AI Planning	Chapter 14: Landma	rk Heuristics	38/56
	andmarks	Landmark Heuristics 00000000000	Detecting Landmarks 000000000000000000000000000000000000	Conclusion 000000000	References

Detecting Action LMs: Fact-Induced vs. LM-cut



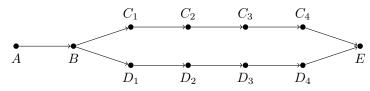
Fact-induced LMs: Fact LMs B and E yield $\{move(A, B)\}$ and $\{move(C_4, E), move(D_4, E)\}$. Thus $h^{\mathcal{C}}(I) = 2$.

LM-cut: (blue edges = cost reduced to 0, blue nodes = "0-cost goal zone")



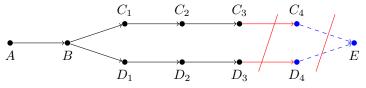
LM-cut LMs: $\{move(C_4, E), move(D_4, E)\}$

LM-cut LMs: $\{move(C_4, E), move(D_4, E)\}$

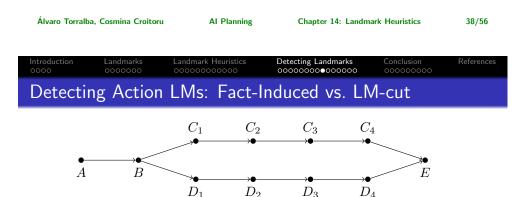


Fact-induced LMs: Fact LMs B and E yield $\{move(A, B)\}$ and $\{move(C_4, E), move(D_4, E)\}$. Thus $h^{\mathcal{C}}(I) = 2$.

LM-cut: (blue edges = cost reduced to 0, blue nodes = "0-cost goal zone")

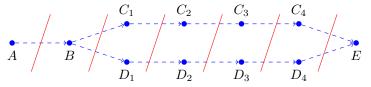


LM-cut LMs: $\{move(C_4, E), move(D_4, E)\}, \{move(C_3, C_4), move(D_3, D_4)\}$



Fact-induced LMs: Fact LMs B and E yield $\{move(A, B)\}$ and $\{move(C_4, E), move(D_4, E)\}$. Thus $h^{\mathcal{C}}(I) = 2$.

LM-cut: (blue edges = cost reduced to 0, blue nodes = "0-cost goal zone")

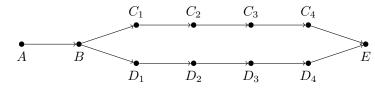


LM-cut LMs: { $move(C_4, E), move(D_4, E)$ }, { $move(C_3, C_4), move(D_3, D_4)$ }, { $move(C_2, C_3), move(D_2, D_3)$ }, { $move(C_1, C_2), move(D_1, D_2)$ }, { $move(B, C_1), move(B, D_1)$ }, {move(A, B)}. Thus $h^{\mathcal{C}}(I) = 6 = h^*(I)$.

AI Planning

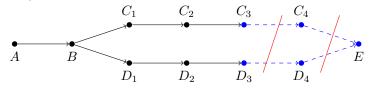
Introduction 0000	Landmarks 0000000	Landmark Heuristics	Detecting Landmarks	Conclusion References
D	A			

Detecting Action LMs: Fact-Induced vs. LM-cut



Fact-induced LMs: Fact LMs *B* and *E* yield $\{move(A, B)\}$ and $\{move(C_4, E), move(D_4, E)\}$. Thus $h^{\mathcal{C}}(I) = 2$.

LM-cut: (blue edges = cost reduced to 0, blue nodes = "0-cost goal zone")



LM-cut LMs: $\{move(C_4, E), move(D_4, E)\}, \{move(C_3, C_4), move(D_3, D_4)\}$

Álvaro Torralba, Cosmina Croitoru		AI Planning	Chapter 14: Landmark Heuristics		38/56	
Introduction 0000	Landmarks 0000000	Landmark Heuristics 00000000000	Detecting Landmarks	Conclusion 000000000	References	
Propagating Landmarks						

Remember? "Heuristic value(state) := number of yet un-achieved landmarks (number of open items on the to-do list)."

\rightarrow Here's how to "maintain the to-do list":

Proposition (Propagating Landmarks). Let Π be an FDR planning task, let L be a disjunctive action LM for I, and let s be a state. If $s = I[\![\vec{a}]\!]$ where \vec{a} does not use any action from L, then L is a disjunctive action LM for s.

Strategy: Before search, detect disjunctive action landmarks for I. During forward search, maintain a flag for each L saying whether or not it was used yet. (For fact LMs p, the flag says whether p has already been true at some point.)

 \rightarrow This is option (A) on slide 28. Re-computation for each s is option (B) on slide 28.

- \rightarrow Necessary subgoals \subseteq delete relaxation landmarks \subseteq real landmarks.
- \rightarrow Delete relaxation landmarks lower-bound $h^+.$

Precisely:

Proposition (Delete Relaxation LM Properties). Let Π be an FDR planning task, and let *s* be a state. Then all of the following hold:

- **(**) If p is a necessary subgoal for s, then p is a delete relaxation LM for s.
- **(**) If p respectively L is a delete relaxation LM for s, then it is a LM for s.
- If L is a delete relaxation LM for s, then $h_L^{\text{LM}}(s) \leq h^+(s)$.

Proof. (i): Same argument as in the proof that p is a LM. (ii): Every real plan for s is also a relaxed plan for s, so must use p respectively L. (iii): Trivial.

Álvaro Torralba, Cosmina Croitoru		AI Planning	Chapter 14: Landmark Heuristics		40/56
Introduction	Landmarks	Landmark Houristics	Detecting Landmarks	Conclusion	Poforoncoc

Introduction	Landmarks	Landmark Heuristics	Detecting Landmarks	Conclusion	Referer
0000	0000000	000000000000	000000000000000000000000000000000000	000000000	
Questionnaire					

- $P = \{alive, have Tiger, tamed Tiger, have Jump\}.$ Short: $P = \{A, hT, tT, J\}.$
- Initial state I: alive. Goal G: alive, haveJump.
- Actions A: getTiger: pre alive; add haveTiger tameTiger: pre alive, haveTiger; add tamedTiger jumpTamedTiger: pre alive, tamedTiger; add haveJump jumpTiger: pre alive, haveTiger; add haveJump; del alive

Question!

What are, for the initial state in this example, the delete-relaxation fact landmarks? Are all fact landmarks delete-relaxation fact landmarks?

 \rightarrow The fact landmarks for the initial state are *haveTiger*, *tamedTiger*, and *haveJump*: all except *alive*, because while this is a goal, it is already true in *I*.

 \rightarrow The delete-relaxation fact landmarks are only haveTiger and haveJump: tamedTiger is not a delete-relaxation fact landmark because there exists a delete-relaxed (but not real) plan which does not tame the Tiger.

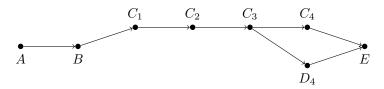
AI Planning

 \rightarrow There are more delete-relaxed plans than real plans. Hence there are less things (landmarks) shared across all of them.

42/56

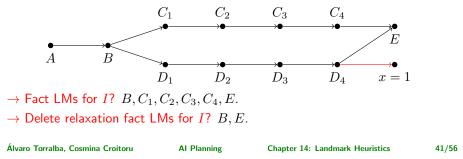
oduction Landmarks Landmark Heuristics **Detecting Landmarks** Conclusion Refere

Necessary Subgoals vs. Delete Relaxation LMs vs. LMs



Fact LMs for *I*: B, C_1, C_2, C_3, E . Necessary subgoals for *I*: E. \rightarrow Delete relaxation fact LMs for *I*? B, C_1, C_2, C_3, E .

And now: Say init A, (x = 1); goal E, (x = 1); move (D_4, E) sets x := 0.



Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Bartender Delete Relaxation Landmarks

- V: $Glass_1$, $Glass_2$: { Table, Hand}; $Empty_1$, $Empty_2$: {0, 1}; Wodka, Tomato: { Bottle, $Glass_1$, $Glass_2$, Shaker}; BloodyMary: {0, 1}; CustomerHappy: {0, 1}.
- Initial state I: $Glass_1 = Table$, $Glass_2 = Table$, $Empty_1 = 1$, $Empty_2 = 1$, Wodka = Bottle, Tomato = Bottle, BloodyMary = 0, CustomerHappy = 1.
- Goal G: BloodyMary = 1, CustomerHappy = 1.
- Actions *A*: (unit costs)

Take(x): pre $Glass_x = Table$; eff $Glass_x = Hand$

Drop(x): pre $Glass_x = Hand$; eff $Glass_x = Table$ Fill(x, y): pre $Glass_x = Hand$, $Empty_x = 1$, y = Bottle; eff $y = Glass_x$ Pour(x, y): pre $Glass_x = Hand$, $y = Glass_x$; eff y = Shaker, $Empty_x = 1$ Shake(): pre Wodka = Shaker, Tomato = Shaker; eff BloodyMary = 1TakePreMix(): pre empty; eff BloodyMary = 1, CustomerHappy = 0

 \rightarrow Fact landmarks p for I: BloodyMary = 1, Wodka = Shaker, Tomato = Shaker.

AI Planning

 \rightarrow Delete relaxation fact LMs for *I*? Only BloodyMary = 1. While the alternative plan TakePreMix() does not work and hence does not affect the real fact landmarks, it does constitute an alternative relaxed plan and hence no more facts are shared across plans.

Álvaro Torralba, Cosmina Croitoru

Chapter 14: Landmark Heuristics 43/56

Introduction 0000	Landmarks 0000000	Landmark Heuristics 000000000000	Detecting Landmarks 000000000000000	Conclusion 000000000	References
Questic	onnaire				
Dat	Br	• Costs: $Sy \leftrightarrow Br$: $Ad \leftrightarrow Da : 4.$	<i>i</i>) where x, y have a root $1, Sy \leftrightarrow Ad : 1.5, Ad =$ Su, y(Sy) = T, y(x) =	$\leftrightarrow Pe: 3.5,$	

- Initial state: at = Sy, v(Sy) = T, v(x) = F for $x \neq Sy$.
- Goal: at = Sy, v(x) = T for all x.

Question!

Minimal disjunctive action LMs for I, and $h^{\mathcal{C}}(I)$?

 $\rightarrow \{ drive(x,y) \}$ for every road (x,y) on the map, so $h^{\mathcal{C}}(I) = 20 = h^*(I)$.

Question!

Minimal delete relaxation disjunctive action LMs for I, and $h^{\mathcal{C}}(I)$?

 $\rightarrow \{ drive(x,y) \} \text{ for } (x,y) \in \{ (Sy,Br), (Sy,Ad), (Ad,Pe), (Ad,Da) \}; \text{ we do } not \text{ get any of the "driving-back" actions. So } h^{\mathcal{C}}(I) = 10 = h^+(I).$

Note: In both cases here, $h^{\mathcal{C}}(I)$ is "perfect". This is *not* in general so, even if we detect all disjunctive action LMs. E.g., on slide 22, the disjunctive action LMs are $\{carA, fancyCar\}, \{carB, fancyCar\}, \{carA, carB, fancyCar\}$; and $h^{\mathcal{C}}(I) = 1 < 1.5 = h^+(I) = h^*(I)$. We get back to this in the Next Chapter.

AI Planning

Álvaro Torralba, Cosmina Croitoru

```
Chapter 14: Landmark Heuristics
```

44/56

Historical:

• Landmarks were originally just fact landmarks, and were introduced as a means to *decompose* the task: Find LMs for *I* in a pre-process, feed them one-by-one to the planner [Hoffmann *et al.* (2004)].

Technical:

- Various kinds of *orderings* between landmarks are in use: "A must be achieved (directly) before B", "A should be achieved before B or else we would need to delete B and re-achieve it after A", ...
- Instead of just facts, we can use arbitrary propositional formulas ϕ over the facts (or even quantification over PDDL objects).
- If ϕ is a disjunction of facts, then that corresponds very closely to disjunctive action landmarks.
- I've chosen the two particular notions as presented because the "vanilla method" to compute landmark heuristics is by considering the disjunctive action landmarks induced by the fact landmarks.

Introduction 0000	Landmarks 0000000	Landmark Heuristics 000000000000	Detecting Landmarks	Conclusion ●00000000	References
Summa	ıry				

- A landmark (LM) is something that every plan must satisfy. A fact LM must hold at some point on every plan, a disjunctive action LM is a set of actions one of which must be used by every plan.
- Fact LMs induce disjunctive action LMs; however, most disjunctive action LMs are not induced in this way.
- The elementary LM heuristic returns the cost of the cheapest action in a disjunctive action LM.
- Disjunctive action LMs are orthogonal if they are disjoint. Orthogonal elementary LM heuristics are summed admissibly in the canonical heuristic.

 \rightarrow Stronger methods are cost partitioning and (even stronger) hitting sets, to be considered in the Next Chapter.

- Checking LMs is hard. Practical methods are sound but incomplete, detecting some LMs, namely necessary subgoals or delete relaxation LMs.
- Vanilla method: Detect (some) fact LMs and use the induced disjunctive action LMs. Much stronger method LM-cut: Iteratively cut between the initial state and the "0-cost goal zone".

Álvaro Torralba, Cosmina Croitoru Al Planning Chapter 14: Landmark Heuristics

Introduction 0000	Landmarks 0000000	Landmark Heuristics 000000000000	Detecting Landmarks	Conclusion 00●000000	References			
Remark	Remarks: IM Heuristics							

Historical:

- The idea to generate heuristics based on landmarks was first conceived by [Zhu and Givan (2003)], never properly published and forgotten all about.
- The (basic) idea was re-discovered by the authors of LAMA [Richter *et al.* (2008); Richter and Westphal (2010)]. Which subsequently won two IPCs.
- Both the initial attempt and LAMA use non-admissible landmarks heuristics, basically counting the number of non-achieved fact landmarks (= summing up elementary landmark heuristics induced by fact landmarks, without ensuring independence).

Technical: (We will consider this in detail in the Next Chapter)

AI Planning

- The best admissible landmark heuristics in practice use cost partitioning [Karpas and Domshlak (2009); Helmert and Domshlak (2009)].
- One can use hitting sets over landmarks to obtain even better heuristics, but these tend to be too costly computationally [Bonet and Helmert (2010)].

46/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References Remarks: Detecting LMS <td

- The original LMs detection method found delete relaxation fact LMs, mostly the necessary subgoals [Hoffmann *et al.* (2004)].
- LAMA does that, plus additional methods based on domain transition graphs (cf. Chapter 5); it propagates LMs for *I* to avoid having to re-detect [Richter and Westphal (2010)].
- The first admissible LM heuristic uses the disjunctive action LMs induced by LAMA's fact LMs [Karpas and Domshlak (2009)].
- The first technique using disjunctive action LMs *not* induced by fact LMs was LM-cut [Helmert and Domshlak (2009)]. The iterated cut algorithm is done anew for every search state. Despite this, LM-cut is the most successful admissible LM heuristic in practice, to date.

Álvaro Torralba, Cosmina Croitoru		AI Planning	Chapter 14: Landmark Heuristics		49/56
Introduction 0000	Landmarks 0000000	Landmark Heuristics 00000000000	Detecting Landmarks	Conclusion 00000●000	References
Reading					

• Ordered Landmarks in Planning [Hoffmann et al. (2004)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/jair04.pdf

Content: The first paper on landmarks. Focusses mostly on ordering relations and problem decomposition; not directly relevant to the content of this chapter, but useful as a background read.

• Sound and Complete Landmarks for And/Or Graphs [Keyder et al. (2010)].

Available at:

http://www.dtic.upf.edu/~ekeyder/ECAI10_Landmarks.pdf

Content: A nice and clean "modern" paper on landmarks. Contains, among other things, the fixed point algorithm computing all (causal) delete relaxation fact landmarks.

AI Planning

51/56

Remarks: Planning Tools and Performance Using LMs

- Original use for probem decomposition gave reasonable speed-ups for FF and another satisficing heuristic search planner [Hoffmann *et al.* (2004)].
- LAMA [Richter and Westphal (2010)] introduced the idea to use both, a delete relaxation heuristic and a LM heuristic, in Fast Downward's dual-queue greedy best-first search framework. The LM heuristic improves performance significantly in some domains. LAMA won the 1st prizes for satisficing planners at IPC'08 and IPC'11.
- BJOLP [Karpas and Domshlak (2009); Domshlak *et al.* (2011)] uses admissible combination of disjunctive action LMs induced by fact LMs. It was part of the 1st-prize winning portfolio in the optimal track of IPC'11.
- LM-cut [Helmert and Domshlak (2009)] also uses admissible combination of disjunctive action LMs, but of more general such LMs not induced by fact LMs (cf. slide 38). It was part of the 1st-prize winning portfolio, and of the 2nd-prize winning portfolio, in the optimal track of IPC'11. It was the strongest single-heuristic optimal planner in IPC'11.

Álvaro Torralba, Cosmina Croitoru Al Planning Chapter 14: Landmark Heuristics 50/56

Reading, ctd.

• Cost-Optimal Planning with Landmarks [Karpas and Domshlak (2009)].

Available at:

http://iew3.technion.ac.il/~dcarmel/Papers/Sources/ijcai09a.pdf

Content: The "alarm clock" waking LMs up to the modern age of cost-optimal planning! Admissible combination by going from fact LMs to disjunctive action LMs, optimal cost partitioning by compilation to linear programming (\rightarrow Chapters 15–16), LM-A* to handle this path-dependent heuristic.

Recapitulates LAMA's heuristic along the way so may be used to get an idea of that one as well.

Introduction 0000	Landmarks 0000000	Landmark Heuristics	Detecting Landmarks	Conclusion 0000000●0	References
Reading	, ctd.				

Introduction 0000	Landmarks 0000000	Landmark Heuristics	Detecting Landmarks	Conclusion 00000000	References
Reading	g, ctd.				

• Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? [Helmert and Domshlak (2009)].

Available at:

http://ai.cs.unibas.ch/papers/helmert-domshlak-icaps2009.pdf

Content: The LM-cut paper. As if LM-cut wasn't enough, it also introduces the comparison framework for admissible heuristics (\rightarrow Chapter 17).

Álvaro Torralba, Cosmina Croitoru		AI Planning	Chapter 14: Landmark Heuristics		53/56	
Introduction 0000	Landmarks 0000000	Landmark Heuristics 000000000000	Detecting Landmarks	Conclusion 00000000	References	
References I						

- Blai Bonet and Malte Helmert. Strengthening landmark heuristics via hitting sets. In Helder Coelho, Rudi Studer, and Michael Wooldridge, editors, *Proceedings of the 19th European Conference on Artificial Intelligence (ECAI'10)*, pages 329–334, Lisbon, Portugal, August 2010. IOS Press.
- Carmel Domshlak, Malte Helmert, Erez Karpas, Emil Keyder, Silvia Richter, Gabriele Röger, Jendrik Seipp, and Matthias Westphal. BJOLP: The big joint optimal landmarks planner. In *IPC 2011 planner abstracts*, pages 91–95, 2011.
- Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions: What's the difference anyway? In Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioannis Refanidis, editors, *Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS'09)*, pages 162–169. AAAI Press, 2009.
- Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in planning. Journal of Artificial Intelligence Research, 22:215–278, 2004.

• Strengthening Landmark Heuristics via Hitting Sets [Bonet and Helmert (2010)].

Available at:

http://ai.cs.unibas.ch/papers/bonet-helmert-ecai2010.pdf

Content: Introduces the idea to use minimum-cost hitting sets over disjunctive action landmarks, instead of combining elementary landmark heuristics. Shows that the minimum-cost hitting set over sufficiently large collections of delete relaxation disjunctive action landmarks is equal to h^+ .

Álvaro Torralba, Cosmina Croitoru		AI Planning	Chapter 14: Landmark Heuristics		54/56
Introduction 0000	Landmarks 0000000	Landmark Heuristics 00000000000	Detecting Landmarks	Conclusion 000000000	References
Referen	ices II				

- Erez Karpas and Carmel Domshlak. Cost-optimal planning with landmarks. In Craig Boutilier, editor, *Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI'09)*, pages 1728–1733, Pasadena, California, USA, July 2009. Morgan Kaufmann.
- Emil Keyder, Silvia Richter, and Malte Helmert. Sound and complete landmarks for and/or graphs. In Helder Coelho, Rudi Studer, and Michael Wooldridge, editors, *Proceedings of the 19th European Conference on Artificial Intelligence (ECAI'10)*, pages 335–340, Lisbon, Portugal, August 2010. IOS Press.
- Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based anytime planning with landmarks. *Journal of Artificial Intelligence Research*, 39:127–177, 2010.
- Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks revisited. In Dieter Fox and Carla Gomes, editors, *Proceedings of the 23rd National Conference of the American Association for Artificial Intelligence (AAAI'08)*, pages 975–982, Chicago, Illinois, USA, July 2008. AAAI Press.
- Lin Zhu and Robert Givan. Landmark extraction via planning graph propagation. In *ICAPS 2003 Doctoral Consortium*, pages 156–160, 2003.