
Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

AI Planning
12. Pattern Database Heuristics

It’s a Long Way to the Goal, But How Long Exactly?
Part III, How-To (A): Willfully Ignoring Some of Those Variables

Álvaro Torralba, Cosmina Croitoru

Winter Term 2018/2019

Thanks to Prof. Jörg Hoffmann for slide sources

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 1/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Agenda

1 Introduction

2 Pattern Database Basics

3 Pattern Database Implementation

4 Orthogonal Patterns, and How to Exploit Them

5 Redundant Patterns, and How to Recognize Them

6 Pattern Selection

7 Conclusion

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 2/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Reminder: Our Program for Abstraction Heuristics

We take a look at abstractions and their use for generating
admissible heuristic functions:

In Chapter 11, we formally introduced abstractions and abstraction
heuristics and studied some of their most important properties.

In This Chapter, we discuss a particular class of abstraction
heuristics and its practical handling in detail, namely pattern
database heuristics.

In Chapter 13, we will discuss another particular class of
abstraction heuristics and its practical handling in detail, namely
merge-and-shrink abstractions.

→ We handle all these methods in FDR, where they are most natural.
We do not mention STRIPS at all (which is a special case anyway).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 4/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Motivation for Pattern Database Heuristics

→ Pattern databases are a concrete method for designing abstraction
functions α, and for computing the associated heuristic functions.

There’s many good reasons to be considering PDBs:

Pattern database (PDB) heuristics are the most commonly used
class of abstraction heuristics outside planning (Games, mostly).

PDBs are one of the two most commonly used classes of abstraction
heuristics in planning (we discuss the other class in Chapter 13).

PDBs have been a very active research area from their inception,
and still are a very active research area today. (Theoretical
properties, how to implement and use PDBs effectively, how to find
good patterns, . . .)

For many search problems, pattern databases are the most effective
admissible heuristics currently known.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 5/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Pattern Databases in a Nutshell

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

2 6

5 7

3 4 1

“Abstract the planning task by choosing a subset P of variables (the
pattern), and ignoring the values of all other variables.”

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 6/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Our Agenda for This Chapter

2 Pattern Database Basics: Formal definition; illustration.

3 Pattern Database Implementation: How to implement PDB heuristics
(namely, via a “pattern database”).

4 Orthogonal Patterns, and How to Exploit Them: How to admissibly
sum-up multiple PDB heuristics. Important because PDB heuristics are a
very restricted class of abstractions, and any single individual PDB is not
typically very useful. Much of their power lies in summing up their values,
where admissibly possible.

5 Redundant Patterns, and How to Recognize Them: A redundant
pattern is one that wastes time and memory, incurring a larger than
necessary PDB without any benefits. We introduce three easily
recognizable cases where that happens.

6 Pattern Selection: How to find good pattern collections. There are many
possible choices and it is important to identify good ones (no redundant
patterns of course, but there’s much more to it than that).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 7/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Pattern Database Heuristics

“Pattern database heuristics” = Heuristics induced by a particular class of
abstraction mappings, namely projections:

Definition (Projection, PDB Heuristic). Let Π = (V,A, c, I,G) be an FDR
planning task with state space ΘΠ = (S,L, c, T, I, SG), and let P ⊆ V . For a
partial assignment ϕ to V , by ϕ|P we denote the restriction of ϕ to P .
Let SP be the set of variable assignments to P . The projection πP : S 7→ SP is
defined by πP (s) := s|P . We say that πP is atomic if |P | = 1.

→ πP maps two states s1 and s2 to the same abstract state iff they agree on all
variables in the pattern.

We refer to P as the pattern of πP . The abstraction heuristic induced by πP on
ΘΠ is called a pattern database heuristic, short PDB heuristic. We write hP as
a short-hand for hπP , and we write ΘP

Π or ΘP as short-hands for ΘπP

Π .

hP is usually stored in a lookup table called a pattern database (PDB).

Atomic projections will be heavily used in Chapter 13.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 9/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

“Logistics mal anders”: State Space

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Logistics task with one package, two trucks, two locations:

State variable package: {L,R,A,B}.
State variable truck A: {L,R}.
State variable truck B: {L,R}.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 10/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

“Logistics mal anders”: Projection 1

Abstraction induced by π{package}:

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

h{package}(LRR) = 2

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 11/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

“Logistics mal anders”: Projection 2

Abstraction induced by π{package,truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

h{package,truck A}(LRR) = 2

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 12/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Larger Pattern = Refinement

Reminder: → Chapter 11

Say α is an abstraction of Θ, and α′ is an abstraction of Θα. Then α is
called a refinement of α′ ◦ α.

Proposition (Larger Patterns are Refinements). Let Π be an FDR
planning task, and let P ′ ⊆ P ⊆ V . Then πP is a refinement of πP ′ .

Proof. πP ′ can be viewed as an abstraction of ΘP , i.e., in the above set
Θα := ΘP , and set α′ to be the projection of P onto P ′.

Corollary (Larger Patterns Yield Better Heuristics). Let Π be an
FDR planning task, and let P ′ ⊆ P ⊆ V . Then hP dominates hP

′
, i.e.,

hP
′ ≤ hP . (From previous proposition and Chapter 11)

And, of course, hV = h∗.

Pattern size controls the trade-off between accuracy and
computational cost.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 13/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Questionnaire

Remember (Chapter 11): Optimal abstract plans are not necessarily
just abstractions of optimal real plans: Given an optimal real plan ~a,
skipping the non-α-affecting actions does not necessarily result in an
optimal abstract plan. Spurious transitions may lead to “shortcuts” with
no real correspondence.

(E.g., if we do not distinguish between the initial state and a state where
we have a teleport machine.)

Question!

Can this happen for a projection of “Logistics mal anders”?

→ Yes! Example: In the abstraction induced by π{truck A,truck B}, the
initial state is an abstract goal state. Hence the only optimal abstract
plan is the empty one. (Similar for any pattern that does not include at
least one goal variable; cf. slide 40.)

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 14/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

I Give You Pattern, You Give Me Database!

Asssume: You are given a pattern P .

How do you compute hP ?

More precisely: How do you compute a data structure that
efficiently represents the function hP (s), for all states s?

Here’s how:

(I) In a precomputation step, we compute an explicit graph
representation for the abstract state space ΘπP

Π , and compute the
abstract remaining cost for every abstract state.

(II) During search, we use the precomputed abstract remaining costs in
a lookup step.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 16/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

(I) Precomputation Step: It’s Not That Easy

Let Π be a planning task and P a pattern. Let Θ = ΘΠ and Θ′ = ΘπP
Π .

We want to compute a graph representation of Θ′.

So, what’s the issue?

Θ′ is defined through a function on Θ:

Each concrete transition induces an abstract transition, each concrete
goal state induces an abstract goal state.

In principle, we can we compute Θ′ by iterating over all
transitions/goal states of Θ. BUT:

This would take time Ω(‖Θ‖).
Which comes down to solving the original (concrete, not abstract)
planning task in the first place, using blind search.

→ We need a way of computing Θ′ in time polynomial in ‖Π‖ and ‖Θ′‖.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 17/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

(I) Precomputation Step: Here’s How To

Definition (Syntactic Projection). Let Π = (V,A, c, I,G) be an FDR
planning task, and let P ⊆ V . The syntactic projection of Π to P is the
FDR planning task Π|P = (P,A|P , c, I|P , G|P) where
A|P := {a|P | a ∈ A} with prea|P := (prea)|P and eff a|P := (eff a)|P .

→ Π|P removes the variables outside P from all constructs in the
planning task description Π.

Theorem (Syntactic Projection is Equivalent to Projection). Let Π
be an FDR planning task, and let P ⊆ V . Then Θ(Π|P) is identical to
ΘπP

Π except that labels a in the latter become labels a|P in the former.

Proof. Easy from definition.

→ The state space of the syntactic projection is (modulo label renaming)
the same as the abstract state space of the projection.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 18/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

(I) Precomputation Step: Here’s How To, ctd.

Using the Theorem on the previous slide, we can compute pattern
databases for FDR tasks Π and patterns P :

Computing Pattern Databases

def compute-PDB(Π, P):
Π′ := Π|P .
Compute Θ′ := ΘΠ′ by a complete forward search (e.g., breadth-first).
In the explicit graph Θ′, add a new node x with a 0-cost incoming edge

from every goal node
Run Dijkstra starting from x and traversing edges backwards, to compute

all cheapest paths to x and thus the remaining costs h∗Θ′ in Θ′

PDB := a table containing all remaining costs in Θ′

return PDB

→ This algorithm runs in time and space polynomial in ‖Π‖+ ‖Θ′‖.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 19/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

(II) Lookup Step: Overview

Basic observations and method:

During search, we do not need the actual abstract state space
(transitions etc): The PDB is the only piece of information
necessary to represent hP .

→ We can throw away the abstract state space Θ′ once the PDB is
computed.

→ Space requirement for the PDB heuristic during search is linear in
number of abstract states S′: PDB has one table entry for each
abstract state.

Design a perfect hash function mapping projected states s|P to
numbers in the range {0, . . . , |S′| − 1}.
→ Index PDB by these hash values. Given a state s during search,
to compute hP (s), map πP (s) = s|P to its hash value and lookup
the table entry of PDB.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 20/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

(II) Lookup Step: Here’s How To

Perfect hash function ≈ numeral system over variable domains:

Let P = {v1, . . . , vk} be the pattern.

Assume wlog that all variable domains are natural numbers counted
from 0, i.e., Dv = {0, 1, . . . , |Dv| − 1}.
For all i ∈ {1, . . . , k}, we precompute Ni :=

∏i−1
j=1 |Dvj |.

Looking Up a Pattern Database Heuristic Value

def PDB-heuristic(s):

index :=
∑k
i=1Nis(vi)

return PDB[index]

Note: This lookup runs in time and space O(k). This is very fast. For
comparison, delete-relaxation heuristics need time O(‖Π‖) per state.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 21/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

(II) Lookup Step: “Logistics mal anders”

Abstraction induced by π{package,truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 22/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

(II) Lookup Step: “Logistics mal anders”, ctd.

Pattern variables and domains:

P = {v1, v2} with v1 = package, v2 = truck A.

Dv1 = {L,R,A,B} ≈ {0, 1, 2, 3}
Dv2 = {L,R} ≈ {0, 1}

→ N1 =
∏0
j=1 |Dvj | = 1.

→ N2 =
∏1
j=1 |Dvj | = 4.

→ index(s) = 1 ∗ s(package) + 4 ∗ s(truck A).

→ Pattern database:

abstract state LL RL AL BL LR RR AR BR
index 0 1 2 3 4 5 6 7
value 2 0 2 1 2 0 1 1

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 23/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

And Now: The Australia Example

Variables: at : {Sy,Ad ,Br ,Pe,Ad};
v(x) : {T, F} for x ∈ {Sy,Ad ,Br ,Pe,Ad}.
Actions: drive(x, y) where x, y have a road.
Costs: Sy ↔ Br : 1, Sy ↔ Ad : 1.5, Ad ↔ Pe : 3.5,
Ad ↔ Da : 4.
Initial state: at = Sy, v(Sy) = T, v(x) = F for x 6= Sy.
Goal: at = Sy, v(x) = T for all x.

Question: Say our pattern P is {v1 = v(Br), v2 = v(Pe), v3 = v(Da)}.
What is the PDB?

→ Dv(Br) = {F, T} ≈ {0, 1}, N1 = 1; Dv(Pe) = {F, T} ≈ {0, 1}, N2 = 2;
Dv(Da) = {F, T} ≈ {0, 1}, N3 = 4.

abstract state FFF TFF FTF TTF FFT TFT FTT TTT
index 0 1 2 3 4 5 6 7
value 8.5 7.5 5 4 4.5 3.5 1 0

Note: “Value = sum over the Fs”, i.e. hP = sum of the corresponding
single-variable heuristics. P is “causally disconnected”, cf. slides 44–46.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 24/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Pattern Collections

Pattern Collections? Why and How?

The space requirements for a pattern database grow exponentially
with the number of state variables in the pattern.

→ Hence P must be small, severely limiting the usefulness of
single-PDB heuristics hP for large planning tasks.

To overcome this limitation, planners using pattern databases can
work with collections of multiple patterns.

Given heuristics hP1 and hP2 , we can always get an admissible
heuristic dominating each of hP1 and hP2 by max {hP1 , hP2}.

Combination of hP1 and hP2 that would be much preferable because
it dominates the previous one: hP1 + hP2 . . . !

→ But, for this to be admissible, hP1 and hP2 must be additive.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 26/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

When Does a Label Affect a PDB?

Reminder: → Chapter 11

Let α be an abstraction of Θ, and let l be a label in Θ. We say that l
affects α if Θα has at least one non-self-loop transition labeled by l.

Let α1 and α2 be abstractions of Θ. We say that α1 and α2 are
orthogonal if no label of Θ affects both α1 and α2.

Lemma (Labels Affecting PDBs). Let P be a pattern for an FDR
planning task Π, and let a be an action in Π. Then a affects πP if and
only if there exists a variable v ∈ P on which eff a is defined.

Proof. Consider the syntactic projection Π|P .
→ Only if: If a has no effect on P then its effect in Π|P is empty so it
can label only self-loops.
→ If: Design a state s in Π|P by projecting prea onto P and filling up
the remaining P -values arbitrarily but different from eff a. Then a labels
the non-self-loop transition (s, a, sJaK) in Π|P .

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 27/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Orthogonal Patterns

Lemma (Orthogonal Patterns). Let P1 and P2 be patterns for an FDR
planning task Π. Then πP1 and πP2 are orthogonal if and only if there
exists no action a in Π such that eff a is defined for variables v, v′ where
v ∈ P1 and v′ ∈ P2. (Direct from Lemma on previous slide)

Terminology: In this situation, we also call the patterns P1 and P2

themselves (as opposed to πP1 and πP2) orthogonal.

On orthogonality and (non)-intersecting patterns:

If P1 ∩ P2 6= ∅, can P1 and P2 be orthogonal? No, except if all
v ∈ P1 ∩ P2 are not affected by any action, which is pathological.

If P1 ∩P2 = ∅, are P1 and P2 necessarily orthogonal? No, there may
be an action with a “cross-effect”, on one variable from each.

Note: Disjoint P1 and P2 are orthogonal iff there is no causal graph (ii)
arc between them (effect-effect arcs, cf. Chapter 5 or slide 41).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 28/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

The Australia Example (Strikes Again)

Variables: at : {Sy,Ad ,Br ,Pe,Ad};
v(x) : {T, F} for x ∈ {Sy,Ad ,Br ,Pe,Ad}.
Actions: drive(x, y) where x, y have a road.
Costs: Sy ↔ Br : 1, Sy ↔ Ad : 1.5, Ad ↔ Pe : 3.5,
Ad ↔ Da : 4.
Initial state: at = Sy, v(Sy) = T, v(x) = F for x 6= Sy.
Goal: at = Sy, v(x) = T for all x.

Observe: Are the patterns P1 = {v(Br)} and P2 = {v(Pe), v(Da)}
orthogonal?

→ Yes: Every action affects at most one of them.

Observe: Are the patterns P ′1 = {v(Br), at}, P2 = {v(Pe), v(Da)}
orthogonal?

→ No: E.g., driving to Perth affects both of them.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 29/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Questionnaire

Variables, for boxes bi and cells ci: robotPos : {ci},
boxPos(x) : {ci} for each bi, free(ci) : {T, F} for each ci.
Actions: move(c, c′) where c, c′ adjacent:
pre robotPos = c, free(c′) = T ; eff robotPos = c′.
push(b, c, c′, c′′) where c, c′, c′′ arranged in a line:
pre robotPos = c, boxPos(b) = c′; free(c′′) = T
eff robotPos = c′, boxPos(b) = c′′, free(c′′) = F , free(c′) = T .
Goal: free(c) = F for the goal cells c.

Question!

What are orthogonal patterns Pi in this Sokoban task?

(A): robotPos ∈ Pi for ≤ one Pi
(C): free(c) ∈ Pi ⇒ f.a. j 6= i, c′

adjacent to c: free(c′) 6∈ Pj

(B): For all bj : boxPos(bj) ∈ Pi
for ≤ one Pi

(D): Other (choose freely)

→ (C) is needed: Every cell is member of at least one line of 3 cells, so for every pair of
adjacent cells c and c′, there is a push action affecting both free(c) and free(c′).

→ (A) and (B) are needed (else, the patterns intersect). But they are not enough! push
actions affect robotPos and boxPos(bj). So if robotPos ∈ Pi then no other pattern can
contain any boxPos(bj)! → The effectiveness of orthogonality depends on the domain . . .

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 30/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Orthogonal Patterns and Additivity

Terminology: Instead of “collection of pairwise orthogonal patterns”, we
also say orthogonal pattern collection or orthogonal collection.

Theorem (Orthogonal Patterns are Additive). Let {P1, . . . , Pk} be
an orthogonal pattern collection for an FDR planning task Π. Then∑k

i=1 h
Pi is consistent and goal-aware, and thus also admissible and safe.

Proof. By the slide 28 Lemma, the abstractions πP1 , . . . , πPk
are

pairwise orthogonal. The claim follows with the Theorem “Orthogonal
Abstractions are Additive” from Chapter 11.

Observation: A single large pattern is more expensive, but is better
informativity-wise.

→ At least as good: For orthogonal Pi each of which is contained in P ,
we have

∑k
i=1 h

Pi ≤ hP . (See next slide)

→ Potentially better: Orthogonal Pi with P = P1 ∪ · · · ∪ Pk does NOT
imply

∑k
i=1 h

Pi = hP . (Details see slide 59.)

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 31/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Large Patterns Dominate Orthogonal Smaller Ones

Theorem. Let {P1, . . . , Pk} be an orthogonal pattern collection for an
FDR planning task, and let P be a pattern with Pi ⊆ P for all
i ∈ {1, . . . , k}. Then

∑k
i=1 h

Pi ≤ hP .

Proof. Consider the syntactic projection onto P i.e., the FDR planning
task Π|P .

Because Pi ⊆ P , we can perceive each πPi as a projection of Π|P , and
hence perceive the corresponding heuristics hPi as abstraction heuristics
on Π|P .

Clearly, {P1, . . . , Pk} on Π|P is still an orthogonal pattern collection.
Hence, as hP is defined as h∗ on Π|P , the claim follows with the theorem
on the previous slide.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 32/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

How to Exploit Orthogonal Patterns?

Given pattern collection C: How to get the best possible lower bound?
1. Build the compatibility graph for C.

The vertices are the patterns P ∈ C.
Arcs between pairs of orthogonal patterns.

2. Compute all maximal cliques (maximal orthogonal sub-collections).
(This is actually NP-hard, but this graph will be small in practice)

Abstract Example

FDR task with variables V = {v1, v2, v3}, and pattern collection
C = {P1, . . . , P4} with P1 = {v1, v2}, P2 = {v1}, P3 = {v2} and
P4 = {v3}.
There are actions affecting each individual variable, and the only actions
affecting several variables affect v1 and v3.

→ Maximal cliques in the compatibility graph for C? {P1}, {P2, P3},
{P3, P4}.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 33/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

The Canonical Heuristic Function

Definition (Canonical Heuristic). Let Π be an FDR planning task, let
C be a pattern collection for Π, and let cliques(C) be the set of all
maximal cliques in the compatibility graph for C. Then the canonical
heuristic hC for C is defined as

hC(s) = max
D∈cliques(C)

∑
P∈D

hP (s)

→ The canonical heuristic maximizes over all largest orthogonal subsets
of our pattern collection. It is admissible and consistent.

Same Abstract Example

Maximal cliques in the compatibility graph: {P1}, {P2, P3}, {P3, P4}.
→ Canonical heuristic function hC :

hC = max {hP1 , hP2 + hP3 , hP3 + hP4}
= max {h{v1,v2}, h{v1} + h{v2}, h{v2} + h{v3}}

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 34/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

The Australia Example (Yet Again)
Variables: at : {Sy,Ad ,Br ,Pe,Ad};
v(x) : {T, F} for x ∈ {Sy,Ad ,Br ,Pe,Ad}.
Actions: drive(x, y) where x, y have a road.

Costs: Sy ↔ Br : 1, Sy ↔ Ad : 1.5, Ad ↔ Pe : 3.5,
Ad ↔ Da : 4.

Initial state: at = Sy, v(Sy) = T, v(x) = F for x 6= Sy.

Goal: at = Sy, v(x) = T for all x.
Observations:

Say P1 = {v(Br)} and P2 = {v(Pe), v(Da)}. What are the values of
hP1(I) and hP2(I)? hP1(I) = 1, hP2(I) = 4 + 3.5 = 7.5 (cf. slide 24).

Say C = {P1, P2}. What is the value of hC(I)? P1 and P2 are orthogonal
(slide 29), so hC = hP1(I) + hP2(I) = 1 + 7.5 = 8.5.

Say P ′1 = {v(Br), at}. What is the value of hP
′
1(I)? hP

′
1(I) = 2 because

now we have to satisfy also the truck goal.

Say C = {P ′1, P2}. What is the value of hC(I)? P ′1 and P2 are not
orthogonal (slide 29), so hC = max {hP ′

1(I), hP2(I)} = 7.5.

Note: Even though P ′1 itself yields a better lower bound than P1, replacing P1

with P ′1 is detrimental for the overall lower bound hC(I).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 35/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Questionnaire (The Attack of the Zombie Tomatoes)

Goal: A and B both true.

Initial state: A and B both false.

Actions: carA effect A cost 1; carB effect B
cost 1; fancyCar effect A and B cost 1.5.

Patterns P1 = {A} and P2 = {B}.

Question!

Are P1 and P2 orthogonal? What is the value of hP1(I) and hP2(I)?

→ They are not orthogonal as fancyCar affects both patterns. hP1(I) = hP2(I) = 1
due to carA respectively carB .

Question!

So hC(I) =

→ As P1 and P2 not orthogonal, hC(I) = max(hP1(I), hP2(I)) = 1.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 36/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

ps. On the Power of the Canonical Heuristic

→ The canonical heuristic hC is the best possible admissible heuristic we
can derive from C based on exploiting only orthogonality.

In The Attack of the Zombie Tomatoes, that is not enough:

Goal: A and B both true.

Initial state: A and B both false.

Actions: carA effect A cost 1; carB effect B
cost 1; fancyCar effect A and B cost 1.5.

Patterns P1 = {A} and P2 = {B}.

→ hC(I) = 1 < 1.5 = h∗(I).

→ In Chapter 16 we introduce cost partitioning, a more general
technique for combining heuristics, which always dominates hC , and
which yields the perfect lower bound 1.5 in this particular example.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 37/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Redundant Patterns

A pattern P is redundant if there exist patterns
P ′1, . . . , P

′
k (P so that

∑k
i=1 h

P ′
i = hP .

We can use P ′1, . . . , P
′
k instead of P .

The sum of PDB sizes for P ′1, . . . , P
′
k will (typically) be much

smaller than that of the PDB for P , so building a PDB for P is a
waste of time and memory.

We identify three “redundant cases” where P as above occurs:
I. Non-Goal Patterns.
II. Causally Irrelevant Variables.
III. Causally Disconnected Patterns.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 39/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Redundant Case I: Non-Goal Patterns

Proposition (Non-Goal Patterns are Redundant). Let
Π = (V,A, c, I,G) be an FDR planning task, and let P be a pattern for
Π such that G is not defined for any variable in P . Then hP (s) = 0 for
all states s.

Proof. Any PDB heuristic hP is equivalent to optimal planning in the
syntactic projection Π|P onto the pattern (cf. slide 18). As P here
contains no goal variable, the goal in Π|P is empty, from which the claim
follows trivially.

→ If a pattern contains no goal variable, then the heuristic returned is
constant 0.

→ There is no point in making a pattern without a goal.

→ Which P ′ (P yields the same heuristic function as P? P ′ = ∅.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 40/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Redundant Case II: Causally Irrelevant Variables

Reminder: → Chapter 5

Let Π = (V,A, c, I,G) be an FDR planning task. The causal graph of Π
is the directed graph CG(Π) with vertices V and an arc (u, v) whenever
there exists an action a ∈ A so that either (i) there exists a ∈ A so that
prea(u) and eff a(v) are both defined, or (ii) there exists a ∈ A so that
eff a(u) and eff a(v) are both defined.

Definition (Causally Relevant Variables). Let Π = (V,A, c, I,G) be
an FDR planning task, and let P be a pattern for Π. We say that v ∈ P
is causally relevant for P if the sub-graph of CG(Π) induced by P
contains a directed path from v to a variable v′ ∈ P for which G is
defined.

→ Note that any goal variable v is causally relevant for P , due to the
empty path in CG(Π)).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 41/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Causally Irrelevant Variables: Examples

Example 1: “Logistics mal anders” (P := all variables)

Is the package causally relevant? Yes: It’s a
goal variable.
Are the trucks causally relevant? Yes: Via (i)
arcs because loading/unloading the package
has a precondition on the truck.
If I added a dog, would that be causally
relevant? No.

Example 2: “Logistics mal ganz anders”

The truck loads/unloads the package, and the
ADAC Abschleppwagen loads/unloads either
the truck or the red car. The package and red
car need to be moved.
In P = {redcar, truck,ADAC}, is the truck
causally relevant? No: Moving it cannot
contribute to the red-car goal.
And in P = {truck, package}? Yes. Causal
relevance depends on the pattern.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 42/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Causally Irrelevant Variables are Useless

Theorem (Causally Irrelevant Variables are Useless). Let P ⊆ V be a
pattern for an FDR planning task Π, and let PG ⊆ P consist of all variables
that are causally relevant for P . Then hPG(s) = hP (s) for all states s.

→ If a variable v has no influence on any goal variable in P , then v does not
affect remaining cost in ΘP .

→ There is no point in growing a pattern by adding a variable that is causally
irrelevant in the resulting pattern.

Proof. Any PDB heuristic hP is equivalent to optimal planning in the syntactic
projection Π|P onto the pattern (cf. slide 18).

In the FDR task Π|P , the variables P \ PG have no path in the causal graph to
any goal variable.

As we showed in Chapter 5, if v is a causal graph leaf without an own goal,
then v can be removed without affecting h∗. Iterating such removal, all of
P \ PG will be removed, from which the claim follows.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 43/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Redundant Case III: Causally Disconnected Patterns

Definition (Causally Connected Patterns). Let Π be an FDR planning task,
and let P be a pattern for Π. We say that P is causally connected if the
subgraph of CG(Π) induced by P is weakly connected, i.e., contains a path
from every vertex to every other vertex when ignoring arc directions.

Example 1: In “Logistics mal anders” (2 trucks 1 package), is
{Truck A,Truck B} causally connected? No: The trucks are connected only via
the package, which is not in the pattern.

Example 2: “Logistics mal ganz anders”

The truck loads/unloads the package, and the
ADAC Abschleppwagen loads/unloads either
the truck or the red car. The package and red
car need to be moved.

→ Is P = {package, redcar,ADAC} causally
connected? No: The package is connected to
red car and ADAC only via the truck.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 44/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Causally Disconnected Patterns are Decomposable

Theorem (Causally Disconnected Patterns are Decomposable). Let
Π be an FDR planning task, and let P be a pattern that is not causally
connected. Let P1, P2 be a partition of P such that CG(Π) contains no
arc between the two sets. Then hP1(s) + hP2(s) = hP (s) for all states s.

→ If P1 and P2 don’t influence each other at all, then their contributions
to remaining cost are independent.

→ There is no point in including a causally disconnected pattern: Using
the connected components instead requires less space and gives identical
results.

Note: “Causally disconnected” is strictly stronger than “orthogonal”.
(Basically, “causally disconnected” refers to both (i) and (ii) causal graph
arcs, while “orthogonal” refers only to (ii) arcs. For details, see slide 59.)

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 45/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Why Are Causally Disconnected Patterns Decomposable?

Reminder: Let P be a pattern that is not causally connected. Let P1,
P2 be a partition of P such that CG(Π) contains no arc between the two
sets. Then hP1(s) + hP2(s) = hP (s) for all states s.

Proof. Any PDB heuristic hP is equivalent to optimal planning in the
syntactic projection Π|P onto the pattern (cf. slide 18).

The FDR task Π|P falls apart into two separate components with
underlying variable subsets P1 and P2.

As we showed in Chapter 5, if two parts of a planning task are
completely separate in the causal graph, then optimal plans for the
overall task can be obtained simply by sequencing optimal plans for each
of the parts.

Hence, for any state s, we have hP (s) = hP1(s) + hP2(s) as desired.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 46/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

. . . and Australia Again

Variables: at : {Sy,Ad ,Br ,Pe,Ad};
v(x) : {T, F} for x ∈ {Sy,Ad ,Br ,Pe,Ad}.
Actions: drive(x, y) where x, y have a road.
Costs: Sy ↔ Br : 1, Sy ↔ Ad : 1.5, Ad ↔ Pe : 3.5,
Ad ↔ Da : 4.
Initial state: at = Sy, v(Sy) = T, v(x) = F for x 6= Sy.
Goal: at = Sy, v(x) = T for all x.

Question: Is the pattern P = {v(Br), v(Pe), v(Da)} causally
connected?

→ No. The causal graph CG(Π) arcs in this example are (at , v(x)) and
(v(x), at) for x ∈ {Sy ,Ad ,Br ,Pe,Ad}. The sub-graph of CG(Π)
induced by P has no arcs at all.

→ Therefore, by the theorem on causally disconnected patterns, hP =
h{v(Br)}+ h{v(Pe)}+ h{v(Da)}. In other words, “Value = sum over the
Fs”, cf. slide 24.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 47/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Questionnaire

Variables, for boxes bi and cells ci: robotPos : {ci},
boxPos(x) : {ci} for each bi, free(ci) : {T, F} for each ci.
Actions: move(c, c′) where c, c′ adjacent:
pre robotPos = c, free(c′) = T ; eff robotPos = c′.
push(b, c, c′, c′′) where c, c′, c′′ arranged in a line:
pre robotPos = c, boxPos(b) = c′; free(c′′) = T
eff robotPos = c′, boxPos(b) = c′′, free(c′′) = F , free(c′) = T .
Goal: free(c) = F for the goal cells c.

Question!

What are the non-redundant patterns P in this Sokoban task?

(A): robotPos ∈ P
(C): free(c) ∈ P for a goal cell c

(B): boxPos(b) ∈ P for some b

(D): Other (choose freely)

→ We definitely need (C), otherwise P is non-goal.

→ If we have (A) or (B), then all variables in P are causally relevant, and P is causally
connected: Every cell is member of at least one line of 3 cells, so due to push(b, c, c′, c′′) we
have causal graph (ii) arcs between every free(c) and robotPos/every boxPos(b).

→ If we have neither (A) nor (B), consider the set C of cells c where free(c) ∈ P . Every
connected component in C must contain a goal cell, else P has causally irrelevant variables.
In fact, C must be connected, because otherwise P is not causally connected.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 48/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

How to Find a Pattern Collection?

Pattern Selection as an Optimization Problem

Within: A large set of candidate solutions.
(= pattern collections whose summed-up PDB size is ≤ size bound)

Find: A best possible solution, or an approximation thereof.
(= pattern collection yielding the most informative heuristic)

→ Number of pattern collections for an FDR task with variables V :
22|V |

. We can’t possibly hope to solve this optimally.

→ We try to find good solutions (pattern collections yielding informative
heuristics) by local search in the space of candidate solutions.

→ Done by [Edelkamp (2006)] (evolutionary algorithm) and [Haslum et
al. (2007)] (hill-climbing). We focus on the latter here.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 50/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Pattern Selection as Hill-Climbing

function Hill-Climbing returns a solution
node ← a node n with n.content=Start
loop do

if TerminationCondition(n) then stop
N ← the set of all ChildNodes of n
n ← an element of N minimizing H /* (random tie breaking) */

→ For use in pattern selection, which questions do we need to answer?

(I) Start: What is the initial pattern collection?

(II) TerminationCondition: When do we terminate?

(III) ChildNodes: Which collections are neighbors of the current
collection?

(IV) H: How do we rank the quality of pattern collections?

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 51/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Pattern Selection as Hill-Climbing

function Hill-Climbing returns a solution
node ← a node n with n.content=Start
loop do

if TerminationCondition(n) then stop
N ← the set of all ChildNodes of n
n ← an element of N minimizing H /* (random tie breaking) */

→ Overview:

(I) Start: Start from small patterns of only a single variable each.

(II) TerminationCondition: Stop when collection quality can no longer
be improved.

(III) ChildNodes: Select a pattern and add one more variable to it, unless
the resulting PDB breaks the size bound.

(IV) H: Use sample states to estimate pattern collection quality.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 51/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

(Our Simplistic Answers to) Questions (I) and (II)

(I) What is the initial pattern collection?

The initial pattern collection is {{v} | v ∈ V,G is defined for v}.

→ We start with goal variables because non-goal patterns are redundant.

(II) When do we terminate?

We terminate as soon as the current pattern collection has no
ChildNodes of better quality H.

(Note that the current pattern collection may have no better-quality
successors simply because all successors break the size bound.)

→ We stop at the first local minimum. Can you guess the motivation?

Our search in the space of pattern collections consumes a lot of runtime,
and doing several iterations of Hill-Climbing wouldn’t be cost-effective
(often, even a single iteration isn’t).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 52/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Question (III), ChildNodes

(III) Which collections are neighbors of the current collection?

The neighbors of C are all pattern collections C′ where:

(i) C′ = C ∪ {P ′}.
(ii) P ′ = P ∪ {v} for some P ∈ C, and P ′ /∈ C.

(iii) All variables of P ′ are causally relevant in P ′, and P ′ is causally connected.

(iv) All PDBs in C ∪ {P ′} can be represented within the size bound.

Notes:

(i) We add P ′ to C without removing P from C: P is not necessarily useless
in C′ because it may be orthogonal with some patterns Q ∈ C′ that are not
orthogonal with P ′ (cf. slide 35).

(iii) We can easily select those v adding which to P preserves causal relevance
and connectivity: Either v is a predecessor of some u ∈ P in the causal
graph; or v is a successor of some u ∈ P in the causal graph, and G is
defined for v.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 53/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Question (IV), H: What is a Good Pattern Collection?

Without a good ranking criterion, pattern collections are chosen blindly!

Given two pattern collections, which one is better?

The one that “typically” gives the better lower bound, i.e., on the
majority of states in the original state space.
We cannot, of course, actually check this.
Way out: sample the original state space: [Haslum et al. (2007)]

(IV) How do we rank the quality of pattern collections?

Generate M concrete states s1, . . . , sM through random walks from
the concrete initial state.

Given a pattern collection C′, generated as a successor of collection
C, the degree of improvement is the number of sample states si for
which hC

′
(si) > hC(si).

H(C′) := its degree of improvement.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 54/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Ok. But How to Compute hC
′
(s)?

What is the problem?

We have PDBs for all patterns in C, but not for the new pattern
P ′ ∈ C′ (of the form P ∪ {v} for some P ∈ C).

We need to compute hC
′
(s) for all candidate successors C′ and all

sample states s.

We would rather not compute the complete PDB for every
candidate new pattern P ′.

But how to compute hP
′
(s) effectively? There’s a nice trick:

hP
′
(s) is identical to the optimal solution cost for s in the syntactic

projection, i.e., the FDR task Π|P ′ .

We can use any optimal planning algorithm for this.

In particular, we can use A∗ with hP as the heuristic.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 55/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Summary

Pattern database (PDB) heuristics are abstraction heuristics based on
projection to a subset of variables: the pattern. For FDR tasks, they can
easily be implemented via syntactic projection on the task representation.

Pattern databases are lookup tables that store heuristic values, indexed by
perfect hash values for projected states.

Two patterns are orthogonal if no action affects variables from both. The
heuristics are then additive, i.e., their sum is admissible (cf. Chapter 7).

Given a pattern collection, the canonical heuristic function sums heuristic
values from all orthogonal pattern subsets, and maximizes over these sums.

This is the best one can do based on exploiting only orthogonality (but we
will see more powerful methods in Chapter 16).

A pattern makes sense only if it is causally connected, and all its variables
are causally relevant. Both can be identified easily using the causal graph.

One way to automatically find a good pattern collection is by hill-climbing
in the space of pattern collections.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 57/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Historical Remarks

PDB heuristics were originally introduced for the 15-puzzle
[Culberson and Schaeffer (1998)] and for Rubic’s Cube [Korf
(1997)].

The first use of PDBs in planning is due to [Edelkamp (2001)]. This
spawned various follow-up works [Edelkamp (2002); Haslum et al.
(2005); Helmert et al. (2007); Haslum et al. (2007)]. Much of this
chapter is based on [Haslum et al. (2007)].

Manually designed PDB heuristics are currently the state of the art
admissible heuristics for several search problems (e.g., 15-puzzle &
Rubic’s Cube).

Automatically designed PDB heuristics are also very competitive
with other admissible heuristics for planning. A major obstacle is the
runtime overhead for automatically selecting the pattern collection.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 58/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

A Technical Remark

→ “Causally disconnected” implies “orthogonal”:

Say P is causally disconnected. For disjoint P1, P2 ⊆ P s.t. CG(Π)
contains no arc between the two sets, P1 and P2 are orthogonal: otherwise,
there would be a CG(Π) (ii) arc between them (cf. note on slide 28).

→ “Causally disconnected” can be strictly stronger than “orthogonal”:

E.g., in “Logistics mal anders”, P1 = {package, truck A} and
P2 = {truckB} are orthogonal, but not causally disconnected because
truckB has a CG(Π) (i) arc to package (cf. note on slide 45).

While being causally disconnected implies that hP1(s) + hP2(s) = hP (s),
the same is not true if we require only orthogonality.

E.g., in “Logistics mal anders” as above, we have hP1(LRR) = 2 via
load/unload using truckB, and we have hP2(LRR) = 0.

However, hP1∪P2(LRR) = 4: The package depends on truckB, so when we
combine the two patterns, the previous abstract plan “load/unload using
truckB” (without actually driving truckB) does not work anymore.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 59/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Reading

Planning with Pattern Databases [Edelkamp (2001)].

Available at:

http://www.tzi.de/~edelkamp/publications/drafts/patternPlan.pdf

Content: The first paper introducing pattern database heuristics to
planning. Formulated in the STRIPS setting, where a PDB is
defined as a subset of facts. Contains the corresponding version of
orthogonality, and empirical results on the benchmarks at the time.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 60/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

Reading, ctd.

Domain-Independent Construction of Pattern Database Heuristics
for Cost-Optimal Planning [Haslum et al. (2007)].

Available at:

http://users.cecs.anu.edu.au/~patrik/publik/patterns3.pdf

Content: State of the art method for automatically constructing and
using collections of patterns, formulated in FDR (well, in STRIPS as
well as its correspondence to “multi-valued state variables”). Main
basis of this chapter. Introduces the canonical heuristic, and briefly
describes the notions of dominance and causal relevance /
connectedness that we elaborate here. Describes in a lot of detail
the heuristic evaluation of pattern collection quality, that we only
summarized briefly here. Empirical results in 15-puzzle, Sokoban,
and Logistics.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 61/63

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

References I

Joseph C. Culberson and Jonathan Schaeffer. Pattern databases. Computational
Intelligence, 14(3):318–334, 1998.

Stefan Edelkamp. Planning with pattern databases. In A. Cesta and D. Borrajo,
editors, Proceedings of the 6th European Conference on Planning (ECP’01), pages
13–24. Springer-Verlag, 2001.

Stefan Edelkamp. Symbolic pattern databases in heuristic search planning. In
M. Ghallab, J. Hertzberg, and P. Traverso, editors, Proceedings of the 6th
International Conference on Artificial Intelligence Planning and Scheduling
(AIPS’02), pages 274–283, Toulouse, France, April 2002. Morgan Kaufmann.

Stefan Edelkamp. Automated creation of pattern database search heuristics. In
Proceedings of the 4th Workshop on Model Checking and Artificial Intelligence
(MoChArt 2006), pages 35–50, 2006.

Patrik Haslum, Blai Bonet, and Héctor Geffner. New admissible heuristics for
domain-independent planning. In Manuela M. Veloso and Subbarao Kambhampati,
editors, Proceedings of the 20th National Conference of the American Association
for Artificial Intelligence (AAAI’05), pages 1163–1168, Pittsburgh, Pennsylvania,
USA, July 2005. AAAI Press.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 62/63

http://www.tzi.de/~edelkamp/publications/drafts/patternPlan.pdf
http://users.cecs.anu.edu.au/~patrik/publik/patterns3.pdf

Introduction PDB Basics Implementation Orthogonal PDBs Redundant PDBs Pattern Selection Conclusion References

References II

Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig.
Domain-independent construction of pattern database heuristics for cost-optimal
planning. In Adele Howe and Robert C. Holte, editors, Proceedings of the 22nd
National Conference of the American Association for Artificial Intelligence
(AAAI’07), pages 1007–1012, Vancouver, BC, Canada, July 2007. AAAI Press.

Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flexible abstraction heuristics for
optimal sequential planning. In Mark Boddy, Maria Fox, and Sylvie Thiebaux,
editors, Proceedings of the 17th International Conference on Automated Planning
and Scheduling (ICAPS’07), pages 176–183, Providence, Rhode Island, USA, 2007.
Morgan Kaufmann.

Richard E. Korf. Finding optimal solutions to Rubik’s Cube using pattern databases.
In Benjamin J. Kuipers and Bonnie Webber, editors, Proceedings of the 14th
National Conference of the American Association for Artificial Intelligence
(AAAI’97), pages 700–705, Portland, OR, July 1997. MIT Press.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 12: Pattern Database Heuristics 63/63

	Introduction
	

	Pattern Database Basics
	

	Pattern Database Implementation
	

	Orthogonal Patterns, and How to Exploit Them
	

	Redundant Patterns, and How to Recognize Them
	

	Pattern Selection
	

	Conclusion
	

	
	References

