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AI Planning
10. Partial Delete Relaxation

How to (Systematically!) Take Some Delete Effects Into Account

Álvaro Torralba, Cosmina Croitoru

Winter Term 2018/2019

Thanks to Prof. Jörg Hoffmann for slide sources
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Take This, h+! “Star-Shape Logistics”

State variables: vT : {g, a, b, c, d}; vA, vB , vC , vD : {t, g, a, b, c, d}.
Initial state: vT = g, vA = a, vB = b, vC = c, vD = d.

Goal: vA = g, vB = g, vC = g, vD = g.

Actions (unit costs): drive(x, y), load(x, y), unload(x, y).
E.g., load(x, y) has precondition vT = y, vx = y and effect vx = t.

→ Relaxed plan for this task: drive(g, a), drive(g, b), drive(g, c), drive(g, d),
load(A, a), load(B, b), load(C, c), load(D, d), unload(A, g), unload(B, g),
unload(C, g), unload(D, g). Thus: h+ = 12 < 16 = h∗.

→ And with 100 star-leaf locations & packages? h+ = 300� 400 = h∗.
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Quo Vadis, h+?

Major weaknesses of the delete relaxation:

Completely unable to account for “to-and-fro” (cf. previous slide).

Completely unable to account for “harmful side effects” (such as fuel
consumption as a side effect of driving a truck, cf. “fill up on gas once,
keep driving forever . . . ”).

“Taking some deletes into account”:

h+: Extreme case were no deletes are taken into account. (Fast
approximations, but has the weaknesses above.)

h∗: Extreme case were all deletes are taken into account. (Perfect, but
computing it would entail solving the task in the first place.)

Partial delete relaxation interpolates between these extremes, to obtain a
fast and good heuristic.

→ ”Interpolate” = Ability to scale smoothly from h+ all the way to h∗.

Challenge since 2001, first achieved in 2012 (!)
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Our Agenda for This Chapter

2 Red-Black Planning: Introduces the most recent and, arguably,
most natural idea for interpolating between h+ and h∗: Relax only
some of the FDR state variables.

3 (A Brief Glimpse of) The Complexity of Red-Black Planning:
How many state variables do we need to relax for the heuristic
computation to become tractable?

4 Red-Black Plan Heuristics in Practice: Näıve approaches exhibit
severe over-approximation. Here’s how to do better.

5 Other Methods: A brief glimpse at the two other known partial
delete relaxation methods.
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Red-Black Planning

→ Black variables switch between values (“real semantics)”, red variables
accumulate them (“relaxed semantics”).

Definition (Red-Black Planning). A red-black planning task is a tuple
ΠRB = (V B, V R, A, c, I,G) where V B is a set of black variables, V R is a set of
red variables, and everything else is exactly as for FDR tasks. The semantics is:

A state s assigns each v ∈ V B ∪ V R a subset s(v) ⊆ Dv, where |s(v)| = 1
for all v ∈ V B.

Action a is applicable in s if prea(v) ∈ s(v) for all v s.t. prea(v) is defined.

Applying a in s changes the value of black effect variables v to {eff a(v)},
and changes the value of red effect variables v to s(v) ∪ {eff a(v)}.
A state s is a goal state if G[v] ∈ s(v) for all v s.t. G(v) is defined.

Given an FDR task Π = (V,A, c, I,G) and a subset V R ⊆ V of variables, the
red-black relaxation of Π is the red-black task ΠRB = (V \ V R, V R, A, c, I,G).
A plan for ΠRB is a red-black plan for Π.

Notation: h∗RB : S 7→ R+
0 ∪ {∞} is the cost of an optimal red-black plan for s.
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Red-Black Planning in Star-Shape Logistics

Idea: The truck moves to-and-fro, so h+ loses information with respect to
variable vT . Let’s see what happens when we paint vT black.

Black State variables: vT : {g, a, b, c, d}.
Red State variables: vA, vB , vC , vD : {t, g, a, b, c, d}.
Initial state: vT = g, vA = a, vB = b, vC = c, vD = d.

Goal: vA = g, vB = g, vC = g, vD = g.

Actions (unit costs): drive(x, y), load(x, y), unload(x, y).

E.g., load(x, y) has precondition vT = y, vx = y and effect vx = t.
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Red-Black Planning in Star-Shape Logistics, ctd.

Relaxed plan:

1 Initial state: {vT = g, . . . }.
2 Apply drive(g, a):
{vT = g, vT = a, . . . }.

3 Apply drive(g, b):
{vT = g, vT = a, vT = b, . . . }.

4 . . .

Red-black plan:

1 Initial state: {vT = g, . . . }.
2 Apply drive(g, a):
{vT = a, . . . }.

3 Apply drive(g, b):
Not applicable!

→ It’s easy to see that any optimal
red-black plan is a real plan here. In
particular, h∗RB(I) = h∗(I).
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Basic Observations About Red-Black Planning

Reminder: Given an FDR task (V,A, c, I,G) and a subset V R ⊆ V of
variables, the red-black relaxation of Π is (V \ V R, V R, A, c, I,G).

If we set V R := V , then h∗RB = h+.

If we set V R := ∅, then h∗RB = h∗.

→ Red-black planning allows to naturally interpolate between h+ and h∗.

→ So, that’s it? In our planner, we’ll set V R := ∅ and be done? Nope:
Computing h∗RB would just mean to solve the original planning task.

→ Choosing V R = Trading off between accuracy and overhead.

→ How many variables do we have to paint red in order to obtain a
tractable (polynomial-time solvable) red-black planning problem?
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Questionnaire

Question!

What if, in Star-Shape Logistics, instead of the truck we paint the
packages black?

(A): h∗RB = h∗

(C): We can’t paint the
packages black

(B): h∗RB = h+

(D): Honestly, I don’t care what
color the packages have

→ (A): No, because painting the packages black has no effect at all on the relaxed
plan. The packages do not “move to-and-fro” anyway, each just makes two transitions
to its goal value.

→ (B): Yes, see (A).

→ (C): We can paint whatever variable subset we want.

→ (D): In fact, it doesn’t matter (to the heuristic value) what color the packages
have: see (A). And that’s actually the case for any causal graph leaf variables, which
are “pure clients” and don’t need to move to-and-fro (cf. Chapter 5, see [Katz et al.
(2013b)] for details).
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“How Many Variables do We Have to Paint Red” = All??

Theorem (Hardness for a Single Black Variable). The problem of deciding,
given a red-black planning task ΠRB = (V B, V R, A, c, I,G) where |V B| = 1,
whether ΠRB is solvable, is NP-complete.

Proof Sketch. (Membership: Omitted) Hardness: By reduction from SAT.

Red variables: For each variable vi ∈ {v1, . . . , vm} in the CNF, a variable vi with
domain Dv1 = {none, true, false}: Has vi been assigned yet? And to which
value? Initially vi = none.
For each clause cj ∈ {c1, . . . , cn} in the CNF, a Boolean variable satj : Has
clause j been satisfied yet? Initially, satj is false; the goal requires it to be true.

Black variable: v0 with domain Dv0 = {1, . . . , n+ 1}: Whose variable’s turn is it
to be assigned? Initially, v0 = 1.

Actions that allow setting vi from none to either true or false, provided that
v0 = i; apart from setting vi, the actions also set v0 := i+ 1.

Actions that allow to make satj true provided one of its literals has already been
assigned to the correct truth value.

→ We cannot “cheat” because the black “index variable” v0 forces us to assign
each vi exactly once!
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Simple Structure, Part I: The Black Causal Graph

The theorem holds for worst-case structure of the black variables.

→ To the rescue: Choose the red variables so that the structure of the black
variables is “simple”!

Definition (Black Causal Graph). Let ΠRB = (V B, V R, A, c, I,G) be a
red-black planning task. The black causal graph of ΠRB is the directed graph
with vertices V B and an arc (u, v) whenever there exists an action a ∈ A so
that either (i) there exists a ∈ A so that prea(u) and eff a(v) are both defined,
or (ii) there exists a ∈ A so that eff a(u) and eff a(v) are both defined.

→ The subgraph of the causal graph induced by the black variables.

→ The black causal graph in Star-Shape Logistics:

VA VB VC VD

VT

→ Relevant for us here: There are no arcs between black variables.
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Simple Structure, Part II: Invertible Variables

Reminder: → Chapter 5

Let Π = (V,A, c, I,G) be an FDR planning task, and let v ∈ V . The domain
transition graph (DTG) of v is the arc-labeled directed graph with vertices Dv, and,
for every d, d′ ∈ Dv and a ∈ A where either (i) prea(v) = d and eff a(v) = d′ or (ii)
prea(v) is not defined and eff a(v) = d′, an arc d

a−→ d′.
We refer to d

a−→ d′ as a value transition of v. We write d
a−→ϕ d

′ where ϕ = prea\
{v = d} is the outside condition.

Let d→ϕ d
′ be a value transition of v. We say that d→ϕ d

′ is invertible if there
exists a value transition d′ →ϕ′ d where ϕ′ ⊆ ϕ.

Notation: A variable is invertible if all transitions in its DTG are invertible.

→ The DTG of the truck variable vT in Star-Shape Logistics:

a b c d

g

→ Relevant for us here: vT is invertible.
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The SMS Theorem

Theorem (“The SMS Theorem”). Let Π = (V,A, c, I,G) be an FDR
planning task, and let V R ⊆ V be a subset of its state variables. Say that, in
the red-black relaxation of Π, the black causal graph does not contain any arcs,
and all black variables are invertible. Then any relaxed plan for Π can in
polynomial time be transformed into a red-black plan for Π.

Idea: Relaxed Plan Repair. Execute the relaxed plan step-by-step. If a
black precondition (or goal) is not satisfied, we can move each black
variable concerned into its required precondition/goal value separately.

Corollary (a): If a relaxed plan exists, we can easily generate a red-black
plan. Trivial (b): If no relaxed plan exists, then no red-black plan can
exist either. From (a) + (b), we have a complete and efficient red-black
planning procedure.

Usage: On any state s encountered during search, generate a red-black
plan for s and take its cost as the heuristic value. (= “In hFF, replace
relaxed plan by red-black plan.”)
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Relaxed Plan Repair: Idea

By the SMS Theorem’s prerequisites:

(a) Every black variable is invertible. E.g., truck can always move back directly.

(b) Every action moves at most one black variable.

(c) If a moves a black variable v, all outside conditions on v′ 6= v are red.
E.g., drive(x, y) has precondition vT = x and effect vT = y.
E.g., if we paint the truck red and the packages black, load(x, y) has
precondition vT = y, vx = y and effect vx = t.

Relaxed plan repair algorithm: Assume relaxed plan ~a+ = 〈a1, . . . , an〉
s := red-black outcome of a1 in initial state.

For any black v, if s(v) 6= z precondition of a2: Move v to value z.
→ (a) Path exists, as v is invertible: Go back to I(v), then follow ~a+ to z.
→ (b) Moving v does not affect any other black variables.
→ (c) All outside conditions used by the path are red; and have already
been achieved during our execution so far, thus they are true.

s := red-black outcome of a2. Proceed with 〈a3, . . . , an〉 and the goal.
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Relaxed Plan Repair: Pseudo-Code

// Π = (V,A, c, I,G), relaxed plan ~a+ = 〈a1, . . . , an〉, black and red variables V B, V R

~a := 〈a1〉; s := IJa1K // red-black semantics (slide 8)
for i = 2 to n do // Repair black action preconditions

if preai
(V B) 6⊆ s then

~aB := Achieve(s, preai
(V B)); ~a := ~a ◦ ~aB; s := sJ~aBK

endif
~a := ~a ◦ 〈ai〉; s := sJaiK

endfor
if G(V B) 6⊆ s then // Repair black goals
~aB := Achieve(s,G(V B)); ~a := ~a ◦ ~aB

endif
return ~a

Procedure: Achieve(s, g)

~aB := 〈〉
for v ∈ V B s.t. g(v) is defined do // Move black variables into place separately
~aB := ~aB◦ invert path used by ~a from I(v) to s(v)

~aB := ~aB◦ path used by ~a+ from I(v) to g(v)
endfor
return ~aB
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Questionnaire

Theorem (“The SMS Theorem”). Let Π = (V,A, c, I,G) be an FDR
planning task, and let V R ⊆ V be a subset of its state variables. Say that, in
the red-black relaxation of Π, the black causal graph does not contain any arcs,
and all black variables are invertible. Then any relaxed plan for Π can in
polynomial time be transformed into a red-black plan for Π.

Question!

Why is this called “The SMS Theorem”?

→ After spending 3 days examining the red-black tractability borderline during
a visit to Carmel Domshlak in Haifa, Jörg had this particular idea while already
on the train to the airport. Based on the concepts we had already developed at
the time, the proof took 3 SMS to communicate . . .
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Relaxed Plan Repair in Star-Shape Logistics

[Note: In the illustration, the packages move. This is just for simplicity of illustration:
as these variables are red, actually the packages accumulate their positions.]

Relaxed Plan Repair:

Relaxed plan ~a+ = 〈a1, . . . , an〉.
s := red-black outcome of a1 in init.

For any black v, if s(v) 6= z precondition
of a2: Move v to value z.

s := red-black outcome of a2.

Proceed with a3, . . . , an and the goal.

Relaxed Plan Remainder: drive(g, a), drive(g, b), drive(g, c), drive(g, d),

load(A, a), load(B, b), load(C, c), load(D, d), unload(A, g), unload(B, g),

unload(C, g), unload(D, g).

After a1 moving vT to a: vT = a, vx = . . .
a2 = drive(g, b): Move vT back to g. Apply a2, giving vT = b, vx = . . .
a3 = drive(g, c): Move vT back to g. Apply a3, giving vT = c, vx = . . .
. . .
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Relaxed Plan Repair in Star-Shape Logistics

[Note: In the illustration, the packages move. This is just for simplicity of illustration:
as these variables are red, actually the packages accumulate their positions.]
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Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 10: Partial Delete Relaxation 21/52



Introduction Red-Black Complexity Practice Other Methods Conclusion References

Relaxed Plan Repair in Star-Shape Logistics

[Note: In the illustration, the packages move. This is just for simplicity of illustration:
as these variables are red, actually the packages accumulate their positions.]

Relaxed Plan Repair:

Relaxed plan ~a+ = 〈a1, . . . , an〉.
s := red-black outcome of a1 in init.

For any black v, if s(v) 6= z precondition
of a2: Move v to value z.

s := red-black outcome of a2.

Proceed with a3, . . . , an and the goal.

Relaxed Plan Remainder:

After a1 moving vT to a: vT = a, vx = . . .
a2 = drive(g, b): Move vT back to g. Apply a2, giving vT = b, vx = . . .
a3 = drive(g, c): Move vT back to g. Apply a3, giving vT = c, vx = . . .
. . .
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Questionnaire

Question!

Does Relaxed Plan Repair yield an accurate heuristic function?

(A): Yes (B): No

→ Pro: It does “take some deletes into account” and can in this way improve
over standard relaxed plan heuristics.

→ Contra: It may drastically over-estimate! See previous slide: The relaxed
plan schedules all truck moves up front, to the effect that the repaired red-black
plan starts off by moving the truck all over the place uselessly, only to have to
do it all again when the load/unload actions come up . . .
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How to Choose the Red Variables?

Input: A planning task Π = (V,A, I,G)

Output: Partitioning of V into V B and V R

Method:

1 Compute the black causal graph, and the DTG for each v ∈ V
2 Initialize V B := V and V R := ∅
3 For all v ∈ V B: if v is not invertible then V B := V B \ {v},
V R := V R ∪ {v}

4 While black causal graph contains arc (v, v′) between v, v′ ∈ V B do:
(*) choose w ∈ {v, v′}; V B := V B \ {w}, V R := V R ∪ {w}

→ How to make the choice (*)? Prefer w that are “handled Ok by the
delete relexation”. (E.g.: Small number of conflicts in a relaxed plan
when painting w black.)
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Questionnaire

Consider the same relaxed plan: drive(g, a), drive(g, b), drive(g, c),
drive(g, d), load(A, a), load(B, b), load(C, c), load(D, d), unload(A, g),
unload(B, g), unload(C, g), unload(D, g).

Question!

What does Relaxed Plan Repair do if, in Star-Shape Logistics,
instead of the truck we paint the packages black?

(A): Nothing (B): Same as Before

→ The black preconditions now have the form “vX = x” and “vX = t” where X
stands for a package {A,B,C,D}, all of which are satisfied when execution arrives at
the respective “load(X,x)” respectively “unload(X, g)” action. The black goals now
have the form “vx = g” and are satisfied at the end of the execution.

→ So Relaxed Plan Repair never invokes the “Achieve” procedure, effectively doing
nothing, (A).
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The Problem, and a Solution

What is the problem?

Relaxed Plan: drive(g, a), drive(g, b), drive(g, c), drive(g, d),

load(A, a), load(B, b), load(C, c), load(D, d),

unload(A, g), unload(B, g), unload(C, g), unload(D, g).

The relaxed plan can (and will) schedule all truck moves first. We can’t.

In general: Commitments made by relaxed plan throw us off in red-black.

What can we do about it? Let’s rely less on the relaxed plan!

R+ := [G(V R) ∪
⋃

a∈~a+ prea(V R)] \ I where ~a+ is a relaxed plan: The
red precondition/goal values achieved along the relaxed plan.

In the example:
R+ = {vA = t, vA = g, vB = t, vB = g, vC = t, vC = g, vD = t, vD = g}
Idea: Keep selecting actions that achieve one more fact from R+!

→ In the example, these actions will be the loads/unloads, and the truck
moves will simply be inserted as a helper for achieving their preconditions.
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Relaxed Facts Following: Outline

Notation:

R: Red values already true, i.e., true in the outcome state s of the current
red-black plan prefix (under red-black execution semantics).

B: Overall set of black values v = d reachable from I(v) using only
outside conditions from R.

Algorithm sketch:

s := I. If R ⊇ R+ then stop.

Select a from A′ := {a | prea ⊆ R ∪B, eff a ∩ (R+ \R) 6= ∅}.
For any black v, if s(v) 6= z precondition of a: Move v to value z.
→ Path exists, can be executed in s, and does not affect any other black
variables: Similar arguments as for Relaxed Plan Repair.

s := red-black outcome of a. Proceed with the rest of R+.

Move all black goal variables into place.
→ Possible because all of R+, and thus all necessary outside conditions for
these paths, have been achieved.
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Relaxed Facts Following in Star-Shape Logistics

Relaxed Facts Following:

R+ := red values used in ~a+.

{a | prea ⊆ R ∪B, eff a ∩ (R+ \R) 6= ∅}
→ R: red values already true; B: black
values reachable using R.

For any black v, if s(v) 6= z precondition
of a: Move v to value z.

s := red-black outcome of a. Proceed
with rest of R+, and the goal.

R+ = {vA = t, vA = g, vB = t, vB = g, vC = t, vC = g, vD = t, vD = g}.

R =init package positions; B=all truck positions.

→ {load(A, a), load(B, b), load(C, c), load(D, d)}; select load(A, a).

R =init package positions +vA = t; B=all truck positions.

→ {unload(A, g), load(B, b), load(C, c), load(D, d)}; select unload(A, g).

R =init package positions +vA = t, vA = g; B=all truck positions.

→ {load(B, b), load(C, c), load(D, d)}; select load(B, b).

. . .
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Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 10: Partial Delete Relaxation 28/52

Introduction Red-Black Complexity Practice Other Methods Conclusion References

Relaxed Facts Following in Star-Shape Logistics

Relaxed Facts Following:

R+ := red values used in ~a+.

{a | prea ⊆ R ∪B, eff a ∩ (R+ \R) 6= ∅}
→ R: red values already true; B: black
values reachable using R.

For any black v, if s(v) 6= z precondition
of a: Move v to value z.

s := red-black outcome of a. Proceed
with rest of R+, and the goal.

R+ = { vB = t, vB = g, vC = t, vC = g, vD = t, vD = g}.
R =init package positions; B=all truck positions.

→ {load(A, a), load(B, b), load(C, c), load(D, d)}; select load(A, a).

R =init package positions +vA = t; B=all truck positions.

→ {unload(A, g), load(B, b), load(C, c), load(D, d)}; select unload(A, g).

R =init package positions +vA = t, vA = g; B=all truck positions.

→ {load(B, b), load(C, c), load(D, d)}; select load(B, b).

. . .
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Relaxed Facts Following: Pseudo-Code

~a := 〈〉; s := I; UpdateRB()
while R 6⊇ R+ do // Achieve one more R+ fact

A′ := {a | prea ⊆ R ∪B, eff a ∩ (R+ \R) 6= ∅}
Select a ∈ A′

if prea(V B) 6⊆ s then
~aB := Achieve(s, prea(V B)); ~a := ~a ◦ ~aB; s := sJ~aBK // red-black semantics

endif
~a := ~a ◦ 〈a〉; s := sJaK; UpdateRB()

endwhile
if G(V B) 6⊆ s then // Repair black goals
~aB := Achieve(s,G(V B)); ~a := ~a ◦ ~aB

endif
return ~a

Procedure: UpdateRB() // Update content of R and B
R := s(V R); B := ∅
for v ∈ V B do
B := B∪values reachable in v’s DTG from I(v) using only outside conditions from R

endfor

Procedure: Achieve(s, g) // Same as slide 19
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Reduced Over-Estimation

Initial state heuristic values:

 15

 20

 25

 30

 35

 40

1 2 3 11 12 13

nomystery
    FF

    AFS
    ARS
    Plan

[FF: hFF; AFS: Relaxed Plan Repair; ARS: Relaxed Facts Following]
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Improved Performance

Coverage (instances solved), for painting strategies “A” vs. “C”:
# FF AF AR CF CR

barman 20/20 15 16 16 17 2
depot 22/22 15 14 15 14 15
driverlog 20/20 18 16 18 17 18
elevators 20/20 17 14 13 2 11
floortile 20/20 4 6 3 6 3
grid 5/5 4 3 4 4 4
logistics98 35/35 22 5 35 5 35
mprime 35/35 30 31 30 29 30
nomystery 20/20 8 7 14 7 14
parcprinter 13/20 4 6 4 6 4
Pipes-notank 40/50 20 18 18 18 18
Pipes-tank 40/50 14 16 12 16 13
rovers 40/40 23 16 25 17 25
satellite 36/36 23 22 28 22 28
scanalyzer 14/20 10 12 14 10 10
sokoban 20/20 19 19 19 18 19
tidybot 20/20 15 14 13 16 13
tpp 30/30 20 15 20 15 20
transport 20/20 0 0 0 1 0
trucks 30/30 16 15 16 16 14
visitall 20/20 5 3 17 3 17
woodworking 20/20 2 2 3 2 3∑

891/926 644 610 677 601 656

[AF, CF: Relaxed Plan Repair; AR, CR: Relaxed Facts Following]
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Questionnaire

Consider the same relaxed plan: drive(g, a), drive(g, b), drive(g, c),
drive(g, d), load(A, a), load(B, b), load(C, c), load(D, d), unload(A, g),
unload(B, g), unload(C, g), unload(D, g).

Question!

What does Relaxed Facts Following do if, in Star-Shape Logistics,
instead of the truck we paint the packages black?

(A): Nothing (B): Same as Before

→ The R+ facts – red preconditions/goals achieved by ~a+ – are now
{vT = a, vT = b, vT = c, vT = d}. To achieve these, the only actions A′ that can be
used are drive(g, x) so these are selected, and directly executed because they don’t
have any black preconditions. Having thus achieved R+ by driving the truck across the
map, the algorithm proceeds to repair the black goals, namely
{va = g, vb = g, vc = g, vd = g}. For each of these, the Achieve procedure selects the
DTG path induced by load(X,x), unload(X, g).

→ So Relaxed Facts Following re-produces exactly the relaxed plan we started out
with. This is not what one would expect as the meaning of “Nothing” or “Same as
Before”, but both statements could be interpreted with that meaning.
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Before We Begin

Which Other Methods? Apart from red-black relaxation, there are two
other methods that allow to smoothly interpolate between h+ and h∗:

Variable Pre-Merging: Use h+
ΠM where ΠM is obtained from Π by

merging a subset M of variables into a single variable.
Conjuncts Compilation: Use h+

ΠC where ΠC is obtained from Π by
explicitly representing a subset C of fact conjunctions.

Illustrative example we will use here: Buy-A-Car

State variables: C,G : Boolean.

Initial state: C = 0, G = 1.

Goal: C = 1, G = 1.

Action: buy()
Precondition C = 0, G = 1; effect C = 1, G = 0.

So what? Task is unsolvable but has relaxed plan buy().
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Variable Pre-Merging

Method outline:

Before planning starts, select a subset M ⊆ V of FDR variables.

Compute the DTG of a merged variable xM equivalent to the
cross-product of M .

Replace M with xM in the planning task Π to obtain the merged
task ΠM .

Applied to Buy-A-Car:

M := {C,G}; DxM = {C0G0, C0G1, C1G0, C1G1}.
I(xM ) = C0G1; G(xM ) = C1G1.

Value transitions on xM : Only C0G1
buy()−−−→ C1G0.

Relaxed plan for ΠM : None: No path from I(xM ) to G(xM ).

→ So we have h+
Π = 1�∞ = h+

ΠM = h∗Π.
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Variable Pre-Merging: Convergence

Proposition (Variable Pre-Merging is Perfect in the Limit). Let
Π = (V,A, c, I,G) be an FDR planning task. If we set M := V in the
above, then h+

ΠM = h∗Π.

Proof. If we merge all variables, then the merged task has a single
variable whose DTG is the overall state space. A relaxed plan through
that DTG is a solution path in the state space, QED.

→ Problem with that result? The “Limit” case is trivial and involves
building the whole state space in the first place.
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Explicit Conjunctions: Idea

Method outline:

Before planning on FDR task Π = (V,A, c, I,G) starts, select a
subset C of fact conjunctions c to be represented explicitly using
new π-fluents πc.

→ E.g., C = {p ∧ q, g1 ∧ g2} and we introduce new Boolean
variables πp∧q and πg1∧g2 .

Construct a compiled task ΠC , modifying Π to correctly account for
the intended semantics of each πc.

Initial state: Include those πc where c ⊆ I. (We identify
conjunctions with sets of facts.)

Action effects: If eff a intersects c and does not contradict c, then
make a copy of a whose effect includes πc.

Action preconditions and goal: In ΠC , include each πc into every
condition (precondition/goal) that contains c.
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Explicit Conjunctions in Buy-A-Car

State variables: vC , vG : Boolean.

Initial state: vC = 0, vG = 1.

Goal: vC = 1, vG = 1.

Actions (unit costs): buy()
Precondition vC = 0, vG = 1; effect vC = 1, vG = 0.

Now let’s make one conjunction explicit:

C := set of conjunctions containing only c := vC = 1 ∧ vG = 1.

Goal of ΠC : {vC = 1, vG = 1, πc}.
Actions a where eff a intersects c and does not contradict c: None.
buy() achieves vC = 1 but contradicts vG = 1.

Relaxed plan for ΠC : None. No action achieves the goal fact πc.
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The ΠC Compilation

Shorthand notation: For fact set X, XC := X ∪ {πc | c ∈ C, c ⊆ X}.

Definition (The ΠC compilation). Let Π = (V,A, c, I,G) be an FDR
planning task, and let C be a set of conjunctions (fact sets/partial variable
assignments) in Π. Then ΠC is the task (V C , AC , cC , IC , GC) where:

V C = V ∪ {πc | c ∈ C}, each πc being a new Boolean variable.

AC contains an action aC
′

for every pair a ∈ A, C ′ ⊆ C s.t., for all
c′ ∈ C ′, eff a ∩ c′ 6= ∅ and there is no v ∈ V s.t. eff a(v) and c(v) are both
defined and eff a(v) 6= c(v); aC

′
is then given by

preaC′ = [prea ∪
⋃

c′∈C′(c′ \ eff a)]C , and
eff aC′ = eff a ∪ {πc′ | c′ ∈ C ′}.

cC extends c to AC by c(aC
′
) = c(a).

IC and GC are as defined by the shorthand notation.

→ Action a can achieve conjunctions C ′, at the cost of having the “missing
context”

⋃
c′∈C′(c′ \ eff a) beforehand.
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The ΠC Compilation: Why “every pair a ∈ A, C ′ ⊆ C”?

What is the growth of ΠC in |C|? Exponential! We enumerate subsets C ′ ⊆ C.

Why do we need this? Why don’t we only include ac for a ∈ A, c ∈ C that a
can support? Because this would lose admissibility.

Example where h+
ΠC would be > h∗Π: (Notation here STRIPS-like; read as

“FDR with Boolean variables” if you prefer)

Facts: {q1, q2, p, g1, g2}; initial state: ∅; goal: {g1, g2}. Actions:

aq1 : ∅ → q1,¬p aq2 : ∅ → q2,¬p

ap : ∅ → p

ag1 : p, q1 → g1 ag2 : p, q2 → g2

→ Say we use C := {p ∧ q1, p ∧ q2}. Then ag1 has precondition {p, q1, πp∧q1}
and ag2 has precondition {p, q2, πp∧q2}. Say ΠC includes the actions a

{p∧q1}
p

and a
{p∧q2}
p , but does not include a

{p∧q1,p∧q2}
p . Then h+

ΠC (I) = 6 > 5 = h∗(I).
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The ΠC Compilation: Example for h+ < h+
ΠC <∞

Example from previous slide, modified to have conflict between q1 and q2:

Facts: {q1, q2, p, g1, g2}; initial state: ∅; goal: {g1, g2}. Actions:

aq1 : ∅ → q1,¬p,¬q2 aq2 : ∅ → q2,¬p,¬q1

ap : ∅ → p

ag1 : p, q1 → g1 ag2 : p, q2 → g2

→ Plan? aq1 , ap, ag1 , aq2 , ap, ag2 .

→ Relaxed plan? aq1 , aq2 , ap, ag1 , ag2 .

→ Relaxed plan for ΠC when taking C := {p ∧ q1, p ∧ q2, q1 ∧ q2}?

Can we do aq1 , aq2 , a
{p∧q1,p∧q2}
p , ag1 , ag2? No, because a

{p∧q1,p∧q2}
p has

the precondition πq1,q2 , which is unreachable.

So how to do it? aq1 , a
{p∧q1}
p , ag1 , aq2 , a

{p∧q2}
p , ag2 , like real plan above.
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Explicit Conjunctions: Convergence

Theorem (The ΠC Compilation is Perfect in the Limit). Let Π be
an FDR planning task. Then there exists C such that h+

ΠC = h∗Π.

Proof. For sufficiently large m, hmΠ = h∗Π (Chapter 8). If we choose C
to be all size-≤ m conjunctions, then hmΠ = h1

ΠC [see e.g. Keyder et al.
(2012)]. Done with h1

ΠC = hmax
ΠC ≤ h+

ΠC (Chapter 9) ≤ h∗Π.

Problem with that result: The “Limit” case, as proved here, is
hm = h∗ which typically happens only for prohibitively large m.

→ However, the proof argument ignores the advantages of h+(ΠC):
1. We can choose C more freely.
2. we use h+ instead of h1.
So there is hope to obtain h∗ with much smaller C. (See slide 47)
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So Which Method Should We Use?

Short answer: Nobody knows.

Longer answer:

Implemented methods so far have varying strengths and weaknesses,
there is no clear winner, except variable pre-merging performs worse
(so far) than red-black planning and explicit conjunctions.

Theory comparison: Which methods can/cannot be simulated by
which other ones?

[Hoffmann et al. (2014)]: None of h+(ΠC), red-black planning, and variable

pre-merging can simulate any other with polynomial overhead, except that

h+(ΠC) simulates pre-merging variables M when setting C to contain all fact

conjunctions c over M .
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Summary

The delete relaxation is unable to account for to-and-fro, and for harmful
side effects. To counter-act this, we should “take some deletes into
account”. If such a method is able to render h+ perfect in the limit, then
we call it an interpolation method.

Red-black planning is an interpolation method that relaxes only a subset of
the FDR state variables (the red variables), keeping the others (the black
variables) intact.

Red-black planning is NP-hard even with a single black variable, but is
tractable if we demand (“SMS Theorem”) that the black causal graph is
acyclic, and that all black variables are invertible.

Näıve red-black planning by Relaxed Plan Repair is prone to
over-estimation, but we can fix this by relying less on the relaxed plan in
Relaxed Facts Following.

Explicit conjunctions is an alternative interpolation method, expliciting the
semantics of a subset C of conjunctions over the task’s facts.
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Remarks

Beyond the SMS theorem: I’ve treated you to this simple setup for simplicity.

Our actual theorem is more general in requiring only an acyclic black
causal graph, instead of requiring there to be no arcs at all.

Our actual theorem is more general in requiring only “relaxed side-effects
invertibility”, a weaker notion of invertibility.

There’s an alternative tractability theorem, requiring only that the domain
size of the (single) black variable is bounded.

Painting strategies: Which variables to paint red respectively black?

We experimented with lots of methods based on different notions of which
variables are “most important” (to be painted black as much as possible).

The performance differences are, generally speaking, marginal.

In fact, there typically is very little choice if we insist on painting black “as
much as possible”.

Comprehensive results: [Domshlak et al. (2015)]
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Research → FAI BSc/MSc/HiWi

. . . (a few examples) . . .

Theory Understanding:

Identify special cases where polynomial-size C can/cannot render
h+

ΠC perfect.
Deeper complexity analysis of red-black planning.
Generalizations of red-black planning where variables may remember
some of their values.
Etc. . . .

Alternative Uses of Partial Delete Relaxation:

Learning to detect dead-ends [Steinmetz and Hoffmann
(2016)]/learning to refine heuristic values during search.
Incremental red-black.
Plan templates to seed plan-space search.
Plan-template distance heuristics.
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Reading

Who Said we Need to Relax All Variables? [Katz et al. (2013b)].

Available at:
http://fai.cs.uni-saarland.de/hoffmann/papers/icaps13.pdf

Content: Introduces red-black planning and our main complexity
results, along with a brief analysis of when/where h∗RB is perfect.

Red-Black Relaxed Plan Heuristics [Katz et al. (2013a)].

Available at:
http://fai.cs.uni-saarland.de/hoffmann/papers/aaai13.pdf

Content: Simpler tractable fragment (SMS Theorem + relaxed
side-effects invertibility) used to generate red-black plan heuristics.
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Reading

Red-Black Relaxed Plan Heuristics Reloaded [Katz and Hoffmann
(2013)].

Available at:
http://fai.cs.uni-saarland.de/hoffmann/papers/socs13.pdf

Content: As above, but with Relaxed Facts Following for reduced
over-estimation and (much) better performance.

Red-Black Planning: A New Systematic Approach to Partial Delete
Relaxation [Domshlak et al. (2015)].

Available at:
http://fai.cs.uni-saarland.de/hoffmann/papers/ai15.pdf

Content: The whole storyline of the previous three papers,
comprehensively told and underfed with systematic experiments.
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Reading, ctd.

Improving Delete Relaxation Heuristics Through Explicitly Represented
Conjunctions [Keyder et al. (2014)].

Available at:
http://fai.cs.uni-saarland.de/hoffmann/papers/jair14.pdf

Content: Uses the ΠC compilation as well as another compilation ΠC
ce

which employs conditional effects to avoid the exponential blow-up in |C|.
This comes at the prize of a loss in informedness, however ΠC

ce is still
perfect in the limit.

Combining the Delete Relaxation with Critical-Path Heuristics: A Direct
Characterization [Fickert et al. (2016)].

Available at:
http://fai.cs.uni-saarland.de/hoffmann/papers/jair16.pdf

Content: Avoids the compilation altogether. Achieves the same complexity
reduction as ΠC

ce , but without the information loss.
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