
Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

AI Planning
9. Delete Relaxation Heuristics

It’s a Long Way to the Goal, But How Long Exactly?
Part II: Pretending Things Can Only Get Better

Álvaro Torralba, Cosmina Croitoru

Winter Term 2018/2019

Thanks to Prof. Jörg Hoffmann for slide sources

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 1/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Agenda

1 Introduction

2 The Delete Relaxation

3 What We Really Want is h+

4 The Additive and Max Heuristics

5 The Relaxed Plan Heuristic

6 What about FDR Planning?

7 Conclusion

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 2/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

We Need Heuristic Functions!

→ Delete relaxation is a method to relax planning tasks, and thus
automatically compute heuristic functions h.

We cover the 4 different methods currently known:

Critical path heuristics: Done. → Chapter 8

Delete relaxation: → This Chapter, and Chapter 10

Abstractions: → Chapter 11-13

Landmarks: → Chapter 14

→ Each of these have advantages and disadvantages. (We will do a
formal comparison in Chapter 17.)

→ Delete relaxation is very wide-spread, and highly successful for
satisficing planning! See Conclusion section and Chapter 21.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 4/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Pretending Things Can Only Get Better

“What was once true remains true forever.”

Relaxed world: (after)

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 5/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Our Agenda for This Chapter

→ Diff to AI’18: Our treatment here is more comprehensive, covering more
heuristics and dealing with arbitrary action costs.

2 The Delete Relaxation: Gives the formal definition, and states some
simple properties that immediately result in a simple “greedy” heuristic.

3 What We Really Want is h+: The greedy heuristic is really bad. Ideally,
what we want is h+, only we can’t actually compute it efficiently.

4 The Additive and Max Heuristics: Introduces the two most basic
methods for computing practical delete relaxation heuristics. Explains their
properties and weaknesses.

5 The Relaxed Plan Heuristic: Introduces a third, slightly less basic
method for doing that, and explains why it addresses said weaknesses.
Relaxed plans are the canonical delete relaxation heuristic, and extremely
wide-spread.

6 What about FDR Planning? The above uses STRIPS. In this section we
briefly point out that, by interpreting FDR variable/value pairs as STRIPS
facts, everything remains exactly the same for FDR.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 6/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

The Delete Relaxation

Definition (Delete Relaxation).
(i) For a STRIPS action a, by a+ we denote the corresponding delete relaxed

action, or short relaxed action, defined by prea+ := prea, adda+ := adda,
and dela+ := ∅.

(ii) For a set A of STRIPS actions, by A+ we denote the corresponding set of
relaxed actions, A+ := {a+ | a ∈ A}; similarly, for a sequence
~a = 〈a1, . . . , an〉 of STRIPS actions, by ~a+ we denote the corresponding
sequence of relaxed actions, ~a+ := 〈a+

1 , . . . , a
+
n 〉.

(iii) For a STRIPS planning task Π = (P,A, c, I,G), by Π+ := (P,A+, c, I,G)
we denote the corresponding (delete) relaxed planning task.

→ “+” super-script = delete relaxed. We’ll also use this to denote states
encountered within the relaxation.

Definition (Relaxed Plan). Let Π = (P,A, c, I,G) be a STRIPS planning
task, and let s be a state. An (optimal) relaxed plan for s is an (optimal) plan
for Π+

s where Πs = (P,A, c, s,G). A relaxed plan for I is also called a relaxed
plan for Π.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 8/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

The Relaxed Dompteur

P = {alive, haveTiger , tamedTiger , haveJump}.
Short: P = {A, hT , tT , J}.
Initial state I: alive.

Goal G: alive, haveJump.

Actions A:
getTiger : pre alive; add haveTiger
tameTiger : pre alive, haveTiger ; add tamedTiger
jumpTamedTiger : pre alive, tamedTiger ; add haveJump
jumpTiger : pre alive, haveTiger ; add haveJump; del alive

→ Relaxed plan for this task? 〈getTiger , jumpTiger〉

〈getTiger , tameTiger , jumpTamedTiger〉 works as well, but the previous one is
“better” :-)

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 9/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

State Dominance

Definition (Dominance). Let Π = (P,A, c, I,G) be a STRIPS planning
task, and let s, s′ be states. We say that s′ dominates s if s′ ⊇ s.

→ Dominance = “more facts true”.

Proposition (Dominance). Let Π = (P,A, c, I,G) be a STRIPS
planning task, and let s, s′ be states where s′ dominates s. We have:

(i) If s is a goal state, then s′ is a goal state as well.

(ii) If ~a is applicable in s, then ~a is applicable in s′ as well, and s′J~aK
dominates sJ~aK.

Proof. (i) is trivial. (ii) by induction over the length n of ~a. Base case
n = 0 is trivial. Inductive case n→ n+ 1 follows directly from induction
hypothesis and the definition of sJaK.

→ It is always better to have more facts true.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 10/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

The Delete Relaxation and State Dominance

Proposition. Let Π = (P,A, c, I,G) be a STRIPS planning task. Let s be a
state, and let a ∈ A be applicable in s. Then:

(i) sJa+K dominates s.

(ii) For any state s′ that dominates s, s′Ja+K dominates sJaK.

Ergo 1: Any real plan also works in the relaxed world.

Proposition (Delete Relaxation is Over-Approximating). Let
Π = (P,A, c, I,G) be a STRIPS planning task, let s be a state, and let ~a be a
plan for Πs. Then ~a+ is a relaxed plan for s.

Proof. Prove by induction over the length of ~a that sJ~a+K dominates sJ~aK.
Base case is trivial, inductive case follows from (ii) above.

Ergo 2: It is now clear how to find a relaxed plan.

Applying a relaxed action can only ever make more facts true ((i) above).

That cannot render the task unsolvable (proposition slide 10).

=⇒ So? Keep applying relaxed actions, stop if goal is true (see next slide).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 11/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Greedy Relaxed Planning

Greedy Relaxed Planning for Π+
s

s+ := s; ~a+ := 〈〉
while G 6⊆ s+ do:

if ∃a ∈ A s.t. prea ⊆ s+ and s+Ja+K 6= s+ /* i.e. adda 6⊆ s+ */ then
select one such a
s+ := s+Ja+K; ~a+ := ~a+ ◦ 〈a+〉

else return “Π+
s is unsolvable” endif

endwhile
return ~a+

Proposition. Greedy relaxed planning is sound, complete, and terminates in
time polynomial in the size of Π.

Proof. Soundness: If ~a+ is returned then, by construction, G ⊆ sJ~a+K.
Completeness: If “Π+

s is unsolvable” is returned, then no relaxed plan exists for
s+ at that point. As s+ dominates s, by the dominance proposition (slide 10),
this implies that no relaxed plan can exist for s. Termination: Every a ∈ A can
be selected at most once because afterwards s+Ja+K = s+.

=⇒ It is easy to decide whether a relaxed plan exists!

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 12/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Questionnaire

Question!

Say the task is to drive from Saarbrücken (SB) to Moscow (M).
Which of the following relaxed plans could be returned by Greedy
Relaxed Planning?

(A): Take the shortest route
from SB to M

(C): Drive from SB to both
Hongkong and Capetown,
then from SB to M

(B): Drive from SB to M via
Madrid

(D): Drive to Hongkong and the
same route back to SB,
then from SB to M

→ (A): Yes. (B): Yes, the route may be sub-optimal. (C): Yes, the “route” may
contain separate “branches” (it’s a tree, not a path). (D): No, because every
action on the greedy relaxed plan must achieve some new fact.

→ Lower/upper bounds on the heuristic value: Length of optimal route/size of
a maximal tree rooted at SB and spanning the entire map.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 13/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Greedy Relaxed Planning to Generate a Heuristic Function?

Using greedy relaxed planning to generate h

In search state s during forward search, run greedy relaxed planning on Π+
s .

Set h(s) to the cost of ~a+, or ∞ if “Π+
s is unsolvable” is returned.

→ Is this h accurate? NO! Greedy relaxed planning may select arbitrary actions
that aren’t relevant at all, over-estimating dramatically (cf. previous slide).

→ To be accurate, a heuristic needs to approximate the minimum effort needed
to reach the goal.

When we talk about “the distance to Moscow”, we don’t mean “via
Madrid” . . .

There also is an issue of “brittleness”: Greedy relaxed planning may give
drastically different values for very similar states (and even for the same
state if called twice). This is bound to be detrimental for search guidance.

To the rescue: h+.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 14/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

h+: The Optimal Delete Relaxation Heuristic

Definition (h+). Let Π = (P,A, c, I,G) be a STRIPS planning task with state
space ΘΠ = (S,A, c, T, I,G). The optimal delete relaxation heuristic h+ for Π
is the function h+ : S 7→ R+

0 ∪ {∞} where h+(s) is defined as the cost of an
optimal relaxed plan for s.

→ h+= minimum effort to reach the goal under delete relaxation.

→ But won’t h+ usually under-estimate h∗? Yes, but that’s just the effect of
considering a relaxed problem. Arbitrarily adding actions useless within the
relaxation (e.g., going to Moscow via Madrid) does not help to address it.

Proposition (h+ is Consistent). Let Π = (P,A, c, I,G) be a STRIPS
planning task. Then h+ is consistent, and thus admissible, safe, and goal-aware.

Proof. Let s′ = sJaK. We need to show that h+(s) ≤ h+(s′) + c(a). Let π′ be
an optimal relaxed plan for s′. Construct π := 〈a〉 ◦ π′. It suffices to show that
π is a relaxed plan for s. That is so because with Proposition slide 11 (ii), sJa+K
dominates sJaK = s′, from which the claim follows with Proposition slide 10 (ii).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 16/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

h+ in TSP

h+(TSP) = Minimum Spanning Tree

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 17/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

h+ in the Blocksworld

CD

B

C

B

A
A

Initial State Goal State

Optimal plan: 〈putdown(A), unstack(B,D), stack(B,C),
pickup(A), stack(A,B)〉.

Optimal relaxed plan: 〈stack(A,B), unstack(B,D), stack(B,C)〉.

Observe: What can we say about the “search space surface” at the
initial state here? The initial state lies on a local minimum under h+,
together with the successor state s where we stacked A onto B. All
direct other neighbors of these two states have a strictly higher h+ value.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 18/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Questionnaire

Question!

In the initial state of the Towers of Hanoi task with 5 discs, what
is the value of h+? (Assume STRIPS facts á la “on(disc1,disc2)”,
. . . , “on(disc5,peg1)”)

Question!

In this domain, h+ is equal to?

(A): Manhattan Distance (B): h∗

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 19/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Answer: Towers of Hanoi

→ The discs always “remain stacked”, so we can just clear the bottom
disc and move it over. For n discs, this takes h+(I) = n steps. So the
correct answer here is “5”.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 20/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Answer: Indiana, i.e., Finding a Path in a Graph

→ Manhattan Distance: No, relaxed plans can’t walk through walls.

→ h∗: Yes!

Finding a Path in a Graph, STRIPS: From x to y in graph (N,E)

P = {at(n) | n ∈ N}.
A = {move(n, n′) | (n, n′) ∈ E} where move(n, n′) =
({at(n)}, {at(n′)}, {at(n)}).

I = {at(x)}; G = {at(y)}.

Proposition. In the above STRIPS task (P,A, c, I,G), h+(I) = h∗(I).

Proof. Say that ~p := 〈move(x, n1), move(n1, n2), . . . , move(nk, y)〉 is an
optimal relaxed plan for (P,A, c, I,G). Then ~p is a plan for (P,A, c, I,G)
because x, n1, . . . , nk, y is a shortest path from x to y. This traverses each
node at most once, hence the deleted facts are not needed later on.

→ “Shortest paths never walk back”, hence deleted facts are never needed
again later on, hence delete relaxation is exact here.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 21/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

h+ in “Finding a Path in a Graph”: Illustration

h+(graph distance) = the real distance

(shortest paths never “walk back”)

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 22/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Questionnaire

Question!

Say the task is to drive from Saarbrücken (SB) to Moscow (M).
Which of the following relaxed plans corresponds to the heuristic
value returned by h+?

(A): Take the shortest route
from SB to M

(C): Drive to Hongkong and
Capetown in parallel, then
from SB to M

(B): Drive from SB to M via
Madrid

(D): Drive to Hongkong and the
same route back to SB,
then from SB to M

→ (A): Yes. (B), (C), (D): Obviously not.

[Compare slide 13!]

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 23/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

How to Compute h+?

Definition (PlanOpt+). By PlanOpt+, we denote the problem of
deciding, given a STRIPS planning task Π = (P,A, c, I,G) and B ∈ R+

0 ,
whether there exists a relaxed plan for Π whose cost is at most B.

→ By computing h+, we would solve PlanOpt+.

Theorem (Optimal Relaxed Planning is Hard). PlanOpt+ is
NP-complete.

Proof. Membership: Easy (guess action sequences of length |A|).
Hardness by reduction from SAT. Example: {C1 = {A}, C2 = {¬A}}

Actions setting variable to true, e.g.: pre empty, add {Atrue,Aset}.
Actions setting variable to false, e.g.: pre empty, add {Afalse,Aset}.
Actions satisfying clauses, e.g.: pre Atrue, add C1 sat ; pre Afalse, add
C2 sat .

Goal: “Xiset” for all variables Xi, “Cj sat” for all clauses Cj .

B := number of variables + number of clauses (= 3 here).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 24/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

And Now?

We approximate. (Business as usual)

Remember? (Chapter 7) “Inadmissible heuristics typically arise as
approximations of admissible heuristics that are too costly to compute.
(Examples: Chapter 9)”

→ The delete relaxation heuristic we want is h+. Unfortunately, this is
hard to compute so the computational overhead is very likely to be
prohibitive. All implemented systems using the delete relaxation
approximate h+ in one or the other way.

→ We will look at the most wide-spread approaches to do so.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 25/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

The Additive and Max Heuristics

Definition (hadd). Let Π = (P,A, c, I,G) be a STRIPS planning task. The
additive heuristic hadd for Π is the function hadd(s) := hadd(s,G) where
hadd(s, g) is the point-wise greatest function that satisfies hadd(s, g) =

0 g ⊆ s
mina∈A,g′∈adda

c(a) + hadd(s, prea) g = {g′}∑
g′∈gh

add(s, {g′}) |g| > 1

Definition (hmax). Let Π = (P,A, c, I,G) be a STRIPS planning task. The
max heuristic hmax for Π is the function hmax(s) := hmax(s,G) where hmax(s, g)
is the point-wise greatest function that satisfies hmax(s, g) = 0 g ⊆ s

mina∈A,g′∈adda
c(a) + hmax(s, prea) g = {g′}

maxg′∈gh
max(s, {g′}) |g| > 1

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 27/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

The Additive and Max Heuristics: Properties

Proposition (hmax is Optimistic). hmax ≤ h+, and thus hmax ≤ h∗.

Intuition. hmax simplifies relaxed planning by assuming that, to achieve a set g
of subgoals, it suffices to achieve the single most costly g′ ∈ g. Actual relaxed
planning, i.e. h+, can only be more expensive.

Proposition (hadd is Pessimistic). For all STRIPS planning tasks Π,
hadd ≥ h+. There exist Π and s so that hadd(s) > h∗(s).

Intuition. hadd simplifies relaxed planning by assuming that, to achieve a set g
of subgoals, we must achieve every g′ ∈ g separately. Actual relaxed planning,
i.e. h+, can only be less expensive. Proof for inadmissiblity: see example on
slide 34.

→ Both hmax and hadd approximate h+ by assuming that singleton subgoal
facts are achieved independently. hmax estimates optimistically by the most
costly singleton subgoal, hadd estimates pessimistically by summing over all
singleton subgoals.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 28/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

The Additive and Max Heuristics: Properties, ctd.

Proposition (hmax and hadd Agree with h+ on ∞). For all STRIPS planning
tasks Π and states s in Π, h+(s) =∞ if and only if hmax(s) =∞ if and only if
hadd(s) =∞.

Proof. hmax and hadd agree on states with infinite heuristic value simply
because their only difference lies in the use of the max vs.

∑
operations which

does not affect this property.

h+(s) <∞ implies hmax(s) <∞ because hmax ≤ h+. Vice versa, hmax(s) <∞
implies h+(s) <∞ because hmax can then be used to generate a closed
well-founded best-supporter function, from which a relaxed plan can be
extracted, cf. the next section.

→ States for which no relaxed plan exists are easy to recognize, and that is
done by both hmax and hadd. Approximation is needed only for the cost of an
optimal relaxed plan, if it exists.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 29/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Uh-Oh, I Think I Got a Déjà Vu Here . . .

Reminder: → slide 27

. . . hmax(s) := hmax(s,G) where hmax(s, g) . . . satisfies hmax(s, g) = 0 g ⊆ s
mina∈A,g′∈addac(a) + hmax(s, prea) g = {g′}
maxg′∈g h

max(s, {g′}) |g| > 1

Reminder: → Chapter 8

. . . h1(s) := h1(s,G) where h1(s, g) . . . satisfies h1(s, g) = 0 g ⊆ s
mina∈A,regr(g,a) 6=⊥c(a) + h1(s, regr(g, a)) |g| = 1
maxg′∈g h

1(s, {g′}) |g| > 1

Proposition. hmax = h1.

Proof. Say g = {g′}. regr({g′}, a) 6= ⊥ if adda ∩ {g′} 6= ∅ and
dela ∩ {g′} = ∅; then, regr(g, a) = ({g′} \ adda) ∪ prea. Because
adda ∩ dela = ∅, this is the same as saying “g′ ∈ adda, and regr(g, a) = prea”.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 30/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Questionnaire

Question!

Say the task is to drive from Saarbrücken (SB) to Moscow (M).
Which of the following relaxed plans corresponds to the heuristic
value returned by hmax and hadd?

(A): Take the shortest route
from SB to M

(C): Drive to Hongkong and
Capetown in parallel, then
from SB to M

(B): Drive from SB to M via
Madrid

(D): Drive to Hongkong and the
same route back to SB,
then from SB to M

→ (A): Yes, because hmax and hadd both are equal to h∗ here: There is a single
goal fact, and every action has a single precondition only, so all subgoals in the
equations on slide 27 will contain a single fact only. Hence the |g| > 1 cases
never occur and the equations simplify to r∗ (cf. Chapter 8).

→ (B), (C), (D): Obviously no, as (A) is correct.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 31/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Déjà Vus Can Be Useful!

→ You already know how to compute hmax = h1. → Chapter 8
→ Basically the same algorithm works for hadd!

Dynamic Programming algorithm computing hadd for state s

new table T add
0 (g), for g ∈ P

For all g ∈ P : T add
0 (g) :=

{
0 g ∈ s
∞ otherwise

fn Cost i(g) :=

{
T add
i (g) |g| = 1∑
g′∈g T

add
i (g′) |g| > 1

fn Next i(g) := min[Cost i(g),mina∈A,g′∈adda c(a) + Cost i(prea)]
do forever:

new table T add
i+1(g), for g ∈ P

For all g ∈ P : T add
i+1(g) := Next i(g)

if T add
i+1 = T add

i then stop endif
i := i + 1

enddo

Proposition. Let Π = (P,A, c, I,G) be a STRIPS planning task. Then the
series {T add

i (g)}i=0,... converges to hadd(s, g), for all g. (Proof omitted.)

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 32/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Example: hmax = h1 in “Logistics”

Initial state I: t(A), p(C).

Goal G: t(A), p(D).

Actions A: dr(X,Y), lo(X), ul(X).

Content of Tables T 1
i :

i t(A) t(B) t(C) t(D) p(T) p(A) p(B) p(C) p(D)

0 0 ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
1 0 1 ∞ ∞ ∞ ∞ ∞ 0 ∞
2 0 1 2 ∞ ∞ ∞ ∞ 0 ∞
3 0 1 2 3 3 ∞ ∞ 0 ∞
4 0 1 2 3 3 4 4 0 4
5 0 1 2 3 3 4 4 0 4

→ hmax(I) = 4.

→ What if we had 101 packages at C with goal D? Then still hmax(I) = 4
because each single package still has this same estimated cost.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 33/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Example: hadd in “Logistics”

Initial state I: t(A), p(C).

Goal G: t(A), p(D).

Actions A: dr(X,Y), lo(X), ul(X).

Content of Tables T add
i : (differences to content of T 1

i shown in red)
i t(A) t(B) t(C) t(D) p(T) p(A) p(B) p(C) p(D)

0 0 ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
1 0 1 ∞ ∞ ∞ ∞ ∞ 0 ∞
2 0 1 2 ∞ ∞ ∞ ∞ 0 ∞
3 0 1 2 3 3 ∞ ∞ 0 ∞
4 0 1 2 3 3 4 5 0 7
5 0 1 2 3 3 4 5 0 7

→ h+(I) = 5 < 7 = hadd(I) < 8 = h∗(I).

BUT: hadd(I) > h+(I) because? hadd(I) counts the cost of dr(A,B), dr(B,C)
2 times, for the two preconditions p(T) and t(D) of ul(D).

→ What if the goal were t(D), p(D)? Then
hadd(I) = 10 > 5 = h∗(I) = h+(I).

→ What if we had 101 packages at C with goal D? Then
hadd(I) = 707� 208 = h∗(I): For every package, cost 7 is added.
Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 34/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

The Additive and Max Heuristics: So What?

Summary of typical issues in practice with hadd and hmax:

Both hadd and hmax can be computed reasonably quickly. (Well, compared
to h2 anyhow, never mind hm for even larger m.)

hmax is admissible, but is typically far too optimistic. (slide 33)

hadd is not admissible, but is typically a lot more informed than hmax.
(slide 34)

hadd is sometimes better informed than h+, but “for the wrong reasons”
(slide 34): Rather than accounting for deletes, it overcounts by ignoring
positive interactions, i.e., sub-plans shared between subgoals.

→ Such overcounting can result in dramatic over-estimates of h∗!

→ Recall: To be accurate, a heuristic needs to approximate the minimum effort
needed to reach the goal.

→ Relaxed plans (up next) keep hadd’s informativity but avoid over-counting.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 35/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Relaxed Plans, Basic Idea

→ First compute a best-supporter function bs, which for every fact
p ∈ P returns an action that is deemed to be the cheapest achiever of p
(within the relaxation). Then extract a relaxed plan from that function,
by applying it to singleton subgoals and collecting all the actions.

→ The best-supporter function can be based directly on hmax or hadd,
simply selecting an action a achieving p that minimizes [c(a) plus the
cost estimate for prea]. That is, a best achiever of p in the equation
characterizing hmax respectively hadd (cf. slide 27).

And now for the details:

To be concrete: the best-supporter functions we will actually use.

How to extract a relaxed plan given a best-supporter function.

What is a best-supporter function, in general?

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 37/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Preview: The Best-Supporter Functions we Will Use

Definition (Best-Supporters from hmax and hadd). Let Π = (P,A, c, I,G) be
a STRIPS planning task, and let s be a state.

The hmax supporter function bsmax
s : {p ∈ P | 0 < hmax(s, {p}) <∞} 7→ A is

defined by bsmax
s (p) := arg mina∈A,p∈adda c(a) + hmax(s, prea).

The hadd supporter function bsadds : {p ∈ P | 0 < hadd(s, {p}) <∞} 7→ A is
defined by bsadds (p) := arg mina∈A,p∈adda c(a) + hadd(s, prea).

Example hadd in “Logistics”:

Heuristic values:

t(A) t(B) t(C) t(D) p(T) p(A) p(B) p(C) p(D)

hadd 0 1 2 3 3 4 5 0 7

Yield best-supporter function:

t(A) t(B) t(C) t(D) p(T) p(A) p(B) p(C) p(D)

bsadd – dr(A,B) dr(B,C) dr(C,D) lo(C) ul(A) ul(B) – ul(D)

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 38/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Relaxed Plan Extraction

Relaxed Plan Extraction for state s and best-supporter function bs

Open := G \ s; Closed := ∅; RPlan := ∅
while Open 6= ∅ do:

select g ∈ Open
Open := Open \ {g}; Closed := Closed ∪ {g};
RPlan := RPlan ∪ {bs(g)}; Open := Open ∪ (prebs(g) \ (s ∪ Closed))

endwhile
return RPlan

→ Starting with the top-level goals, iteratively close open singleton subgoals by
selecting the best supporter.

This is fast! Number of iterations bounded by |P |, each near-constant time.

But is it correct?
→ What if g 6∈ addbs(g)? Doesn’t make sense. → Condition (A).
→ What if bs(g) is undefined? Segmentation fault. → Condition (B).
→ What if the support for g eventually requires g itself (then already in Closed)
as a precondition? Then this does not yield a relaxed plan. → Condition (C).
Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 39/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Relaxed Plan Extraction from hadd in “Logistics”

Initial state I: t(A), p(C).

Goal G: t(A), p(D).

Actions A: dr(X,Y), lo(X), ul(X).

t(A) t(B) t(C) t(D) p(T) p(A) p(B) p(C) p(D)

bsadd – dr(A,B) dr(B,C) dr(C,D) lo(C) ul(A) ul(B) – ul(D)

Extracting a relaxed plan:

1 bsadds (p(D)) = ul(D); opens t(D), p(T).

2 bsadds (t(D)) = dr(C,D); opens t(C).

3 bsadds (t(C)) = dr(B,C); opens t(B).

4 bsadds (t(B)) = dr(A,B); opens nothing.

5 bsadds (p(T)) = lo(C); opens nothing.

6 Anything more? No, open goals empty at this point.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 40/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Best-Supporter Functions

→ For relaxed plan extraction to make sense, it requires a closed well-founded
best-supporter function:

Definition (Best-Supporter Function). Let Π = (P,A, c, I,G) be a STRIPS
planning task, and let s be a state. A best-supporter function for s is a partial
function bs : (P \ s) 7→ A such that p ∈ adda whenever a = bs(p).

The support graph of bs is the directed graph with vertices (P \ s) ∪A and arcs
{(a, p) | a = bs(p)} ∪ {(p, a) | p ∈ prea}. We say that bs is closed if bs(p) is
defined for every p ∈ (P \ s) that has a path to a goal g ∈ G in the support
graph. We say that bs is well-founded if the support graph is acyclic.

“p ∈ adda whenever a = bs(p)”: Condition (A).

bs is closed: Condition (B). (“bs will be defined wherever it takes us to”)

bs is well-founded: Condition (C). (Relaxed plan extraction starts at the
goals, and chains backwards in the support graph. If there are cycles, then
this backchaining may not reach the currently true state s, and thus not
yield a relaxed plan.)

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 41/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Support Graphs and Condition (C) in “Logistics”

Initial state: tA.

Goal: tD.

Actions: drXY .

How to do it (well-founded)

Best-supporter function: Yields support graph backchaining:
p bs(p)

t(B) dr(A,B)
t(C) dr(B,C)
t(D) dr(C,D)

drAB

drBA

tB

drBC

drCB

tC

drCD

drDC

tD

How NOT to do it (not well-founded)

Best-supporter function: Yields support graph backchaining:
p bs(p)

t(B) dr(C,B)
t(C) dr(B,C)
t(D) dr(C,D)

drAB

drBA

tB

drBC

drCB

tC

drCD

drDC

tD

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 42/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Questionnaire

P = {alive, haveTiger , tamedTiger , haveJump}.
Short: P = {A, hT , tT , J}.
Initial state I: alive.

Goal G: alive, haveJump.

Actions A:
getTiger : pre alive; add haveTiger
tameTiger : pre alive, haveTiger ; add tamedTiger
jumpTamedTiger : pre alive, tamedTiger ; add haveJump
jumpTiger : pre alive, haveTiger ; add haveJump; del alive

Question!

What is the hadd best supporter for haveJump? And the hmax best supporter?

→ There are two candidates in each case, namely the actions adding haveJump:
jumpTiger and jumpTamedTiger .

The precondition of jumpTiger has hadd= hmax value 1, and that of jumpTamedTiger
has hadd= hmax value 2. So both hadd and hmax force us to use jumpTiger .

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 43/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

hmax and hadd Supporter Functions: Correctness

Proposition. Let Π = (P,A, c, I,G) be a STRIPS planning task such that, for
all a ∈ A, c(a) > 0. Let s be a state where h+(s) <∞. Then both bsmax

s and
bsadds are closed well-founded supporter functions for s.

Proof. Since h+(s) <∞ implies hmax(s) <∞, it is easy to see that bsmax
s is

closed (hmax(s,G) <∞, and recursively hmax(s, prea) <∞ for the best
supporters).

If a = bsmax
s (p), then a is the action yielding 0 < hmax(s, {p}) <∞ in the hmax

equation.

Since c(a) > 0, we have hmax(s, prea) < hmax(s, {p}) and thus, for all q ∈ prea,
hmax(s, {q}) < hmax(s, {p}).

Transitively, if the support graph contains a path from fact vertex r to fact
vertex t, then hmax(s, {r}) < hmax(s, {t}). Thus there can’t be cycles in the
support graph and bsmax

s is well-founded. Similar for bsadds .

[→ One can also use hmax and hadd for 0-cost actions, by appropriate
tie-breaking in cases where hmax(s, {p}) = hmax(s, prea). Details omitted.]

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 44/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Relaxed Plan Extraction: Correctness

Proposition. Let Π = (P,A, c, I,G) be a STRIPS planning task, let s
be a state, and let bs be a closed well-founded best-supporter function
for s. Then the action set RPlan returned by relaxed plan extraction can
be sequenced into a relaxed plan ~a+ for s.

Proof. Order a before a′ whenever the support graph contains a path
from a to a′. Since the support graph is acyclic, such a sequencing
~a := 〈a1, . . . , an〉 exists.

We have p ∈ s for all p ∈ prea1 , because otherwise RPlan would contain
the action bs(p), necessarily ordered before a1.

We have p ∈ s ∪ adda1 for all p ∈ prea2 , because otherwise RPlan would
contain the action bs(p) 6= a1, necessarily ordered before a2.

Iterating the argument, over p ∈ preai+1
and s ∪ adda1 ∪ · · · ∪ addai ,

shows that ~a+ is a relaxed plan for s.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 45/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

The Relaxed Plan Heuristic

Definition (Relaxed Plan Heuristic). A heuristic function is called a relaxed
plan heuristic, denoted hFF, if, given a state s, it returns ∞ if no relaxed plan
exists, and otherwise returns

∑
a∈RPlan c(a) where RPlan is the action set

returned by relaxed plan extraction on a closed well-founded best-supporter
function for s.

Recall: (that this makes sense because)

If a relaxed plan exists, then there exists a closed well-founded
best-supporter function bs (cf. slide 44).

Relaxed plan extraction on bs yields a relaxed plan (previous slide).

Observe in “Logistics” (slide 40):

hFF(I) =5 = h+(I) < 7 = hadd(I) < 8 = h∗(I). BUT:

→ If the goal is t(D), p(D)? hadd(I) = 10 > 5 = h∗(I) = hFF(I) = h+(I).

→ If we have 101 packages at C that need to go to D? hFF(I) = 205 because
relaxed plan extraction selects the drive actions only once. By contrast,
hadd(I) = 707 overcounts these actions, cf. slide 34.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 46/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

The Relaxed Plan Heuristic: Properties

Proposition (hFF is Pessimistic and Agrees with h+ on ∞). For all STRIPS
planning tasks Π, hFF ≥ h+; for all states s, h+(s) =∞ if and only if
hFF(s) =∞. There exist Π and s so that hFF(s) > h∗(s).

Proof. hFF ≥ h+ follows directly from the previous slide. Agrees with h+ on
∞: Direct from definition. Inadmissiblity: Whenever bs makes sub-optimal
choices. → Exercise, perhaps

→ Relaxed plan heuristics have the same theoretical properties as hadd.

So what’s the point?

In practice, hFF typically does not over-estimate h∗ (or not by a large
amount, anyway).

→ hFF may be inadmissible, just like hadd, but for more subtle reasons.

Can hFF over-count, i.e., count sub-plans shared between subgoals more
than once? No, due to the set union in “RPlan := RPlan ∪ {bs(g)}”.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 47/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Helpful Actions Pruning: Idea & Impact

→ In search, expand only those actions contained in the relaxed plan.

Relaxed plan = “Go To Supermarket, Buy Milk, . . . ”

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 48/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Helpful Actions Pruning: Idea & Impact

→ In search, expand only those actions contained in the relaxed plan.

(Schedule domain:
many tools,

many objects.)

Relaxed plan does not drill holes into objects that need to be painted.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 48/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Helpful Actions Pruning

Definition (Helpful Actions). Let hFF be a relaxed plan heuristic, let s be a
state, and let RPlan be the action set returned by relaxed plan extraction on
the closed well-founded best-supporter function for s which underlies hFF. Then
an action a applicable to s is called helpful if it is contained in RPlan.

Remarks:

Initially introduced in FF [Hoffmann and Nebel (2001)], restricting
Enforced Hill-Climbing to use only the helpful actions.

There is no guarantee that the actually needed actions will be helpful, so
this does not preserve completeness (cf. slide 43).

Fast Downward uses the term preferred operators, for similar concepts for
a broad variety of heuristic functions h.

Fast Downward (the real one, not the stripped one in the Exercises) offers
a variety of ways for using preferred operators.

Preferred operators may have more impact on performance than different
heuristic functions [Richter and Helmert (2009)].

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 49/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Questionnaire

Question!

Say the task is to drive from Saarbrücken (SB) to Moscow (M).
Which of the following relaxed plans may be returned by Relaxed
Plan Extraction from hmax and hadd?
(A): Take the shortest route

from SB to M

(C): Drive to Hongkong and
Capetown in parallel, then
from SB to M

(B): Drive from SB to M via
Madrid

(D): Drive to Hongkong and the
same route back to SB,
then from SB to M

→ (A): Yes, because hmax and hadd both are equal to h∗ in this domain,
cf. slide 31.

→ (B), (C), (D): Obviously no, as (A) is correct.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 50/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Ignoring Deletes When the Language Doesn’t Have Any?

Reminder: → Chapter 2

Definition (FDR Planning Task). A finite-domain representation planning
task, short FDR planning task, is a 5-tuple Π = (V,A, c, I,G) where:

V is a finite set of state variables, each v ∈ V with a finite domain Dv.

A is a finite set of actions; each a ∈ A is a pair (prea, eff a) of partial
variable assignments referred to as the action’s precondition and effects.

. . .

We refer to pairs v = d of variable and value as facts. We identify (partial)
variable assignments with sets of facts.

→ ”Delete relaxation” = “act as if all facts that were once true will remain true
forever” = “FDR state variables accumulate, rather than change, their values”.

→ In practice (in particular, in the Fast Downward implementation), simply
formulate the algorithms relative to the “FDR facts” v = d.

→ What follows is the machinery needed to make this formal.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 52/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Delete Relaxed FDR Planning

Definition (Delete Relaxed FDR). Let Π = (V,A, c, I,G) be an FDR
planning task. Denote by PV := {v = d | v ∈ V, d ∈ Dv} the set of (FDR)
facts. The relaxed state space of Π is the labeled transition system
Θ+

Π = (S+, L, c, T, I, S+G) where:

The states (also relaxed states) S+ = 2PV are the subsets s+ of PV .

The labels L = A are Π’s actions; the cost function c is that of Π.

The transitions are T = {s+ a−→ s′+ | prea ⊆ s+, s′+ = s+ ∪ eff a}.
The initial state I is identical to that of Π.

The goal states are S+G = {s+ ∈ S+ | G ⊆ s+}.
An (optimal) relaxed plan for s+ ∈ S+ is an (optimal) solution for s+ in Θ+

Π. A
relaxed plan for I is also called a relaxed plan for Π.
Let ΘΠ = (S,A, c, T, I,G) be the state space of Π. The optimal delete
relaxation heuristic h+ for Π is the function h+ : S 7→ R+

0 ∪ {∞} where h+(s)
is defined as the cost of an optimal relaxed plan for s.

→ FDR states contain exactly one fact for each variable v ∈ V . There is no
such restriction on FDR relaxed states.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 53/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Done With FDR-2-STRIPS

Reminder: → Chapter 2

Proposition. Let Π = (V,A, c, I,G) be an FDR planning task, and let ΠSTR be
its STRIPS translation. Then ΘΠ is isomorphic to the sub-system of ΘΠSTR

induced by those s ⊆ PV where, for each v ∈ V , s contains exactly one fact of
the form v = d. All other states in ΘΠSTR are unreachable.

Observe: Θ+
Π has transition s+ a−→ s′+ if and only if s+JaSTR+K = s′+ in ΠSTR.

(Because s+JaSTR+K = s+ ∪ eff a)

Proposition. Denote by h∗Π and h+
Π the perfect heuristic and the optimal delete

relaxation heuristic in Π, and denote by h∗ΠSTR and h+
ΠSTR these heuristics in

ΠSTR. Then, for all states s of Π, h∗Π(s) = h∗ΠSTR(s) and h+
Π(s) = h+

ΠSTR(s).

→ Given an FDR task Π, everything we have done here can be done for Π by
doing it within ΠSTR.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 54/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Summary

The delete relaxation simplifies STRIPS by removing all delete effects of
the actions.

The cost of optimal relaxed plans yields the heuristic function h+, which is
admissible but hard to compute.

We can approximate h+ optimistically by hmax, and pessimistically by hadd.
hmax is admissible, hadd is not. hadd is typically much more informative,
but can suffer from over-counting.

Either of hmax or hadd can be used to generate a closed well-founded
best-supporter function, from which we can extract a relaxed plan.

The resulting relaxed plan heuristic hFF does not do over-counting, but
otherwise has the same theoretical properties as hadd; in practice, it
typically does not over-estimate h∗.

The delete relaxation can be applied to FDR simply by accumulating
variable values, rather than over-writing them. This is formally equivalent
to treating variable/value pairs like STRIPS facts.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 56/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Example Systems

HSP [Bonet and Geffner (2001)]

1. Search space: Progression (STRIPS-based).
2. Search algorithm: Greedy best-first search.
3. Search control: hadd.

FF [Hoffmann and Nebel (2001)]

1. Search space: Progression (STRIPS-based).
2. Search algorithm: Enforced hill-climbing (→ Chapter 7).
3. Search control: hFF extracted from hmax supporter function; helpful actions

pruning.

LAMA [Richter and Westphal (2010)]

1. Search space: Progression (FDR-based).
2. Search algorithm: Multiple-queue greedy best-first search.
3. Search control: hFF + a landmark heuristic (→ Chapter 14); for each, one

search queue all actions, one search queue only preferred operators.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 57/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Remarks

HSP was competitive in the 1998 International Planning
Competition (IPC’98); FF outclassed the competitors in IPC’00.

The delete relaxation is still at large, in particular with the wins of
LAMA and derivatives in the satisficing planning tracks of IPC’08,
IPC’11,and IPC’14.

I have personally done quite some work on understanding why this
relaxation works so well, in the planning benchmarks [Hoffmann
(2005, 2011)].

It has always been a challenge to take some delete effects into
account. Recent works of the FAI group allow, for the first time, to
interpolate smoothly between h+ and h∗: explicit conjunctions
[Keyder et al. (2012, 2014); Hoffmann and Fickert (2015); Fickert
et al. (2016)] and red-black planning [Katz et al. (2013); Katz and
Hoffmann (2013); Domshlak et al. (2015)]. → Chapter 10

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 58/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Remarks, ctd.

While hmax is not informative in practice, other lower-bounding
approximations of h+ are very important for optimal planning:
admissible landmark heuristics [Karpas and Domshlak (2009)]
(Chapters 14 and 16); LM-cut heuristic [Helmert and Domshlak
(2009)] (Chapter 17).

The delete relaxation has also been applied in Model Checking
[Kupferschmid et al. (2006)].

→ More generally, the relaxation principle is very generic and
potentially applicable in many different contexts, as are all
relaxation principles covered in this course.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 59/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Reading

Planning as Heuristic Search [Bonet and Geffner (2001)].

Available at:

http://www.dtic.upf.edu/~hgeffner/html/reports/hsp-aij.ps

Content: This is “where it all started”: the first paper1 explicitly
introducing the notion of heuristic search and automatically
generated heuristic functions to planning. Introduces the additive
and max heuristics hadd and hmax.

1Well, this is the first full journal paper treating the subject; the same authors
published conference papers in AAAI’97 and ECP’99, which are subsumed by the
present paper.
Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 60/65

http://www.dtic.upf.edu/~hgeffner/html/reports/hsp-aij.ps

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

Reading, ctd.

The FF Planning System: Fast Plan Generation Through Heuristic
Search [Hoffmann and Nebel (2001)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/jair01.pdf

Content: The main reference for delete relaxation heuristics.
Introduces the relaxed plan heuristic, extracted from the hmax

supporter function.2 Also introduces helpful actions pruning, and
enforced hill-climbing.

2Done in a unit-cost setting presented in terms of relaxed planning graphs instead
of hmax, and not identifying the more general idea of using a well-founded
best-supporter function (I used the same simpler presentation in the AI’18 core
course). The notion of best-supporter functions (handling non-unit action costs) first
appears in [Keyder and Geffner (2008)].
Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 61/65

http://fai.cs.uni-saarland.de/hoffmann/papers/jair01.pdf

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

References I

Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence,
129(1–2):5–33, 2001.

Carmel Domshlak, Jörg Hoffmann, and Michael Katz. Red-black planning: A new
systematic approach to partial delete relaxation. Artificial Intelligence, 221:73–114,
2015.

Maximilian Fickert, Jörg Hoffmann, and Marcel Steinmetz. Combining the delete
relaxation with critical-path heuristics: A direct characterization. Journal of
Artificial Intelligence Research, 56(1):269–327, 2016.

Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Alfonso Gerevini, Adele Howe, Amedeo Cesta,
and Ioannis Refanidis, editors, Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), pages 162–169. AAAI Press,
2009.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 62/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

References II

Jörg Hoffmann and Maximilian Fickert. Explicit conjunctions w/o compilation:
Computing hFF(ΠC) in polynomial time. In Ronen Brafman, Carmel Domshlak,
Patrik Haslum, and Shlomo Zilberstein, editors, Proceedings of the 25th
International Conference on Automated Planning and Scheduling (ICAPS’15). AAAI
Press, 2015.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

Jörg Hoffmann. Where ‘ignoring delete lists’ works: Local search topology in planning
benchmarks. Journal of Artificial Intelligence Research, 24:685–758, 2005.

Jörg Hoffmann. Analyzing search topology without running any search: On the
connection between causal graphs and h+. Journal of Artificial Intelligence
Research, 41:155–229, 2011.

Erez Karpas and Carmel Domshlak. Cost-optimal planning with landmarks. In Craig
Boutilier, editor, Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI’09), pages 1728–1733, Pasadena, California, USA, July 2009.
Morgan Kaufmann.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 63/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

References III

Michael Katz and Jörg Hoffmann. Red-black relaxed plan heuristics reloaded. In Malte
Helmert and Gabriele Röger, editors, Proceedings of the 6th Annual Symposium on
Combinatorial Search (SOCS’13), pages 105–113. AAAI Press, 2013.

Michael Katz, Jörg Hoffmann, and Carmel Domshlak. Who said we need to relax all
variables? In Daniel Borrajo, Simone Fratini, Subbarao Kambhampati, and Angelo
Oddi, editors, Proceedings of the 23rd International Conference on Automated
Planning and Scheduling (ICAPS’13), pages 126–134, Rome, Italy, 2013. AAAI
Press.

Emil Keyder and Hector Geffner. Heuristics for planning with action costs revisited. In
Malik Ghallab, editor, Proceedings of the 18th European Conference on Artificial
Intelligence (ECAI’08), pages 588–592, Patras, Greece, July 2008. Wiley.

Emil Keyder, Jörg Hoffmann, and Patrik Haslum. Semi-relaxed plan heuristics. In Blai
Bonet, Lee McCluskey, José Reinaldo Silva, and Brian Williams, editors,
Proceedings of the 22nd International Conference on Automated Planning and
Scheduling (ICAPS’12), pages 128–136. AAAI Press, 2012.

Emil Keyder, Jörg Hoffmann, and Patrik Haslum. Improving delete relaxation
heuristics through explicitly represented conjunctions. Journal of Artificial
Intelligence Research, 50:487–533, 2014.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 64/65

Introduction Delete Relaxation h+ Heuristic hadd and hmax Relaxed Plan Heuristic FDR Conclusion References

References IV

Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann.
Adapting an AI planning heuristic for directed model checking. In Antti Valmari,
editor, Proceedings of the 13th International SPIN Workshop (SPIN 2006), volume
3925 of Lecture Notes in Computer Science, pages 35–52. Springer-Verlag, 2006.

Silvia Richter and Malte Helmert. Preferred operators and deferred evaluation in
satisficing planning. In Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioannis
Refanidis, editors, Proceedings of the 19th International Conference on Automated
Planning and Scheduling (ICAPS’09), pages 273–280. AAAI Press, 2009.

Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based
anytime planning with landmarks. Journal of Artificial Intelligence Research,
39:127–177, 2010.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 9: Delete Relaxation Heuristics 65/65

	Introduction
	

	The Delete Relaxation
	

	What We Really Want is h+
	

	The Additive and Max Heuristics
	

	The Relaxed Plan Heuristic
	

	What about FDR Planning?
	

	Conclusion
	

	
	References

