Introduction	Critical Path Heuristics	Dynamic Programming	Graphplan	FDR	Conclusion	References

Al Planning 8. Critical Path Heuristics It's a Long Way to the Goal, But How Long Exactly? Part I: Honing In On the Most Critical Subgoals

Álvaro Torralba, Cosmina Croitoru

Winter Term 2018/2019

Thanks to Prof. Jörg Hoffmann for slide sources

Álvaro Torralba, Cosmina Croitoru

AI Planning

Chapter 8: Critical Path Heuristics

Introduction 000	Critical Path Heuristics	Dynamic Programming 000000000	Graphplan 0000	FDR o	Conclusion 000000	References
Agenda						

- 1 Introduction
- 2 Critical Path Heuristics
- 3 Dynamic Programming Computation
- Graphplan Representation [for Reference]
- 5 What about FDR Planning?

6 Conclusion

Introduction ●00	Critical Path Heuristics	Dynamic Programming 000000000	Graphplan 0000	FDR o	Conclusion 000000	References
We Nee	ed Heuristic I	-unctions!				

 \rightarrow Critical path heuristics are a method to relax planning tasks, and thus automatically compute heuristic functions h.

We cover the 4 different methods currently known:

- \bullet Critical path heuristics: \rightarrow This Chapter
- \bullet Delete relaxation: \rightarrow Chapters 9 and 10
- Abstractions: \rightarrow Chapters 11-13
- Landmarks: \rightarrow Chapter 14
- LP Heuristics: \rightarrow Chapter 16

 \rightarrow Each of these have advantages and disadvantages. (We will do a formal comparison in Chapter 17.)

	Critical Path Heuristics	Graphplan 0000		References
<u></u>				

Critical Path Heuristics: Basic Idea

Introduction 00●	Critical Path Heuristics	Dynamic Programming 000000000	FDR o	Conclusion 000000	References
Our Ag	enda for This	s Chapter			

- Critical Path Heuristics: Introduces and illustrates the formal definition.
- Oynamic Programming Computation: The straightforward method to compute critical path heuristics.
- Graphplan Representation: A slightly less straigtforward method to compute critical path heuristics. I mention this here only because, historically, it was there first, and its terminology is all over the planning literature.
- What about FDR Planning? The above uses STRIPS as this is a little easier to discuss in the examples. In this section, we point out on 1 slide that (almost) everything remains exactly the same for FDR.

Definition (r^*) . Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task. The perfect regression heuristic r^* for Π is the function $r^*(s) := r^*(s, G)$ where $r^*(s, g)$ is the point-wise greatest function¹ that satisfies $r^*(s, g) =$

 $\left\{ \begin{array}{ll} 0 & g \subseteq s \\ min_{a \in A, regr(g, a) \neq \bot} c(a) + r^*(s, regr(g, a)) & \textit{otherwise} \end{array} \right.$

(Reminder Chapter 6: $regr(g, a) \neq \bot$ if $add_a \cap g \neq \emptyset$ and $del_a \cap g = \emptyset$; then, $regr(g, a) = (g \setminus add_a) \cup pre_a$.)

 \rightarrow The cost of achieving a subgoal g is 0 if it is true in s; else, it is the minimum of using any action a to achieve g.

Proposition. Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task. Then $r^* = h^*$. (Proof omitted.)

¹ "point-wise greatest" is needed here, and in the following, only to correctly handle 0-cost actions. We might bother you with an **Exercise** on this. Álvaro Torralba, Cosmina Croitoru Al Planning Chapter 8: Critical Path Heuristics 8/40

Definition (h^1). Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task. The critical path heuristic h^1 for Π is the function $h^1(s) := h^1(s, G)$ where $h^1(s, g)$ is the point-wise greatest function that satisfies $h^1(s, g) =$

 $\begin{cases} 0 & g \subseteq s \\ \min_{a \in A, \operatorname{regr}(g, a) \neq \bot} c(a) + h^1(s, \operatorname{regr}(g, a)) & |g| = 1 \\ \max_{g' \in g} h^1(s, \{g'\}) & |g| > 1 \end{cases}$

 \rightarrow For singleton subgoals g, use regression as in r^* . For subgoal sets g, use the cost of the most costly singleton subgoal $g' \in g$.

 $\rightarrow \text{"Path"} = g_1 \xrightarrow{a_1} g_2 \dots g_{n-1} \xrightarrow{a_{n-1}} g_n \text{ where } g_1 \subseteq s, \ g_n \subseteq G, \ g_i \neq g_j, \text{ and } g_i \subseteq regr(g_{i+1}, a_i). \ |g_i| = 1 \text{ here, } |g_i| \leq m \text{ for } h^m \text{ (up next)}.$

 \rightarrow "Critical path" = Cheapest path through the most costly subgoals g_i .

Introduction 000	Critical Path Heuristics	Dynamic Programming 000000000	Graphplan 0000	Conclusion 000000	References
The h^1	Heuristic in	"TSP" in Au	stralia		

- P: at(x) for $x \in \{Sy, Ad, Br, Pe, Ad\}; v(x)$ for $x \in \{Sy, Ad, Br, Pe, Ad\}.$
- A: drive(x, y) where x, y have a road.

$$c(drive(x,y)) = \begin{cases} 1 & \{x,y\} = \{Sy, Br\} \\ 1.5 & \{x,y\} = \{Sy, Ad\} \\ 3.5 & \{x,y\} = \{Ad, Pe\} \\ 4 & \{x,y\} = \{Ad, Da\} \end{cases}$$

• I:
$$at(Sy), v(Sy); G: at(Sy), v(x)$$
 for all x

• $h^1(I) = h^1(I, G) = h^1(I, \{at(Sy), v(Sy), v(Ad), v(Br), v(Pe), v(Da)\}) =$

- $h^1(I, \{at(Sy)\}) = h^1(I, \{v(Sy)\}) =$
- $h^1(I, \{v(Da)\}) =$
- $h^1(I, \{at(Ad)\}) =$
- So $h^1(I, \{v(Da)\}) =$
- The critical path is?

Álvaro Torralba, Cosmina Croitoru

10/40

Definition (h^m) . Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task, and let $m \in \mathbb{N}$. The critical path heuristic h^m for Π is the function $h^m(s) := h^m(s, G)$ where $h^m(s, g)$ is the point-wise greatest function that satisfies $h^m(s, g) =$

 $\begin{cases} 0 & g \subseteq s \\ \min_{a \in A, regr(g,a) \neq \bot} c(a) + h^m(s, regr(g,a)) & |g| \leq m \\ \max_{g' \subseteq g, |g'| = m} h^m(s, g') & |g| > m \end{cases}$

 \rightarrow For subgoal sets $|g| \leq m$, use regression as in r^* . For subgoal sets |g| > m, use the cost of the most costly *m*-subset g'.

 \rightarrow Like h^1 , basically just replace "1" with "m".

 \rightarrow For fixed $m,\,h^m(s,g)$ can be computed in time polynomial in the size of $\Pi.$ (See next section.)

Álvaro Torralba, Cosmina Croitoru

11/40

Introduction 000	Critical Path Heuristics	Dynamic Programming 000000000	Graphplan 0000		References
Cuiting		Line Duanauti			

Critical Path Heuristics: Properties

Proposition (h^m is Admissible). h^m is consistent and goal-aware, and thus also admissible and safe.

Proof Sketch. Goal-awareness is obvious. We need to prove that $h^m(s) \leq h^m(s') + c(a)$ for all transitions $s \xrightarrow{a} s'$. Since $s \supseteq regr(s', a)$, a critical path \vec{p} for $h^m(s')$ can be pre-fixed by a to obtain an upper bound on $h^m(s)$: all subgoals at the start of \vec{p} are contained in s', and are achieved by a in s.

 \rightarrow Intuition: h^m is admissible because it is always more difficult to achieve larger subgoals (so m-subsets can only be cheaper).

Introduction 000	Critical Path Heuristics 00000●	Dynamic F 0000000	Programming 000	Graphplan 0000	FDR o	Conclusion 000000	References
Questi	onnaire						
Questio	B C	D	Goal	l state I: t G: t(A), p ns A: drX	(D).	,	
	planning task, v	what is	the valu	e of $h^1(I)$	() ?		
(A): 2			(B)	: 3			
(A): 2 (C): 4			(D)	: 5			

Question!

In this planning task, what is the value of $h^2(I)$? (A): 5 (B): 8

Álvaro Torralba, Cosmina Croitoru

AI Planning

Introduction 000	Critical Path Heuristics	Dynamic Programming ●00000000	Graphplan 0000	FDR o	Conclusion 000000	References
Overvie	ew					

Basic idea:

"Consider all size- $\leq m$ subgoals g. Initialize $h^m(s,g)$ to 0 if $g \subseteq s$, and to ∞ otherwise.

Then keep updating the value of each g based on actions applied to the values computed so far, until the values converge."

- We start with an iterative definition of h^m that makes this approach explicit.
- We define a dynamic programming algorithm that corresponds to this iterative definition.
- We point out the relation to general fixed point mechanisms.

Introduction 000	Critical Path Heuristics	Dynamic Programming 00000000	Graphplan 0000	FDR o	Conclusion 000000	References
Iterativ	e Definition o	of h^m				

Definition (Iterative h^m). Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task, and let $m \in \mathbb{N}$. The iterative h^m heuristic h_i^m is defined by $h_0^m(s,g) :=$

 $\left\{\begin{array}{ll} 0 & g \subseteq s \\ \infty & otherwise \end{array}\right.$

 $\begin{array}{l} \text{and } h^m_{i+1}(s,g) := \\ \left\{ \begin{array}{l} \min[h^m_i(s,g), \min_{a \in A, regr(g,a) \neq \bot} c(a) + h^m_i(s, regr(g,a))] & |g| \leq m \\ \max_{g' \subseteq g, |g'| = m} h^m_{i+1}(s,g') & |g| > m \end{array} \right. \end{array}$

Proposition. Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task. Then the series $\{h_i^m\}_{i=0,\dots}$ converges to h^m .

Proof Sketch: (i) Convergence: If $h_{i+1}^m(s,g) \neq h_i^m(s,g)$, then $h_{i+1}^m(s,g) < h_i^m(s,g)$; that can happen only finitely often because each decrease is due to a new path for g. (ii) If $h_{i+1}^m = h_i^m$ then h_i^m satisfies the h^m equation (direct from definition). (iii) No function greater than h_i^m at any point can satisfy the h^m equation (easy by induction over i).

Critical Path Heuristics	Dynamic Programming 00●000000	Graphplan 0000		References

Dynamic Programming

Dynamic Programming Algorithm

 $\begin{array}{l} \text{new table } T_0^m(g), \text{ for } g \subseteq P \text{ with } |g| \leq m \\ \text{For all } g \subseteq P \text{ with } |g| \leq m \text{: } T_0^m(g) \coloneqq \left\{ \begin{array}{ll} 0 & g \subseteq s \\ \infty & \text{otherwise} \end{array} \right. \\ \text{fn } Cost_i(g) \coloneqq \left\{ \begin{array}{ll} T_i^m(g) & |g| \leq m \\ \max_{g' \subseteq g, |g'| = m} T_i^m(g') & |g| > m \end{array} \right. \\ \text{fn } Next_i(g) \coloneqq \min[Cost_i(g), \min_{a \in A, regr(g, a) \neq \bot} c(a) + Cost_i(regr(g, a))] \\ i \coloneqq 0 \end{array} \right. \end{array}$

do forever:

new table $T_{i+1}^m(g)$, for $g \subseteq P$ with $|g| \leq m$ For all $g \subseteq P$ with $|g| \leq m$: $T_{i+1}^m(g) := Next_i(g)$ if $T_{i+1}^m = T_i^m$ then stop endif i := i + 1enddo

Proposition. $h_i^m(s,g) = Cost_i(g)$ for all *i* and *g*. (Proof is easy.)

 \rightarrow This is very inefficient! (Optimized for readability.) We can use "Generalized Dijkstra" instead, maintaining the frontier of cheapest m-tuples reached so far.

	r the Decord.		E			
Introduction 000	Critical Path Heuristics	Dynamic Programming	Graphplan 0000	FDR o	Conclusion	References

Fixed Point Algorithm – Template!

 $\begin{array}{l} \mbox{new table } T^m(g), \mbox{ for } g \subseteq P \mbox{ with } |g| \leq m \\ \mbox{For all } g \subseteq P \mbox{ with } |g| \leq m ; \ T^m(g) := \left\{ \begin{array}{ll} 0 & g \subseteq s \\ \infty & \mbox{ otherwise} \end{array} \right. \\ \mbox{fn } Cost(g) := \left\{ \begin{array}{ll} T^m(g) & |g| \leq m \\ \max_{g' \subseteq g, |g'| = m} T^m(g') & |g| > m \end{array} \right. \\ \mbox{fn } Next(g) := \min[Cost(g), \min_{a \in A, regr(g, a) \neq \bot} c(a) + Cost(regr(g, a))] \\ \mbox{while } \exists g \subseteq P, |g| \leq m : T^m(g) \neq Next(g) \mbox{ do:} \\ \mbox{ select one such } g \\ T^m(g) := Next(g) \\ \mbox{endwhile} \end{array} \right.$

Proposition. Once the algorithm stops, $h^m(s,g) = Cost(g)$ for all g. **Proof Sketch:** Similar to that for convergence of h_i^m to h^m .

 \rightarrow This algorithm is not fully specified (hence "template"): How to select g s.t. $T^m(g) \neq Next(g)$? We will use dynamic programming for simplicity.

Álvaro Torralba, Cosmina Croitoru

Chapter 8: Critical Path Heuristics

18/40

Introduction 000	Critical Pa 000000	ath Heuristics	Dynamic 0000●0	Programming	Graphplan 0000	FDR o	Conclusion 000000	References
Exampl	e: m	= 1 in	"Logi	stics"				
A	B	C	•	Facts P: $t(x)$ $p(x) x \in \{A\}$ Initial state Goal G: $\{t($ Actions A (unload(x). E.g.: $load(x)$	$\{B, C, D, T\}$ $I: \{t(A), p$ $A), p(D)\}.$ unit costs):	. (C). drive(x)		

Content of Tables T_i^1 :

 $\begin{array}{||c||} \hline i & | & t(A) & | & t(B) & | & t(C) & | & t(D) & | & p(T) & | & p(A) & | & p(B) & | & p(C) & | & p(D) \\ \hline \hline \\ \hline \hline \\ \hline \end{array}$

 \rightarrow So $h^1(I) = 4$. (Cf. slide 13)

Note: This table computation always first finds the *shortest* path to achieve a subgoal g. Hence, with unit action costs, the value of g is fixed once it becomes $< \infty$, and equals the *i* where that happens. With non-unit action costs, neither is true. 19/40

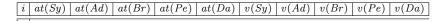
	Critical Path Heuristics	Dynamic Programming		References
Examp	le: $m = 2$ in	"Dompteur"		

- P: at(x) for $x \in \{Sy, Ad, Br, Pe, Ad\}; v(x)$ for $x \in \{Sy, Ad, Br, Pe, Ad\}.$
- A: drive(x, y) where x, y have a road.

$$c(drive(x,y)) = \begin{cases} 1 & \{x,y\} = \{Sy, Br\} \\ 1.5 & \{x,y\} = \{Sy, Ad\} \\ 3.5 & \{x,y\} = \{Ad, Pe\} \\ 4 & \{x,y\} = \{Ad, Da\} \end{cases}$$

I:
$$at(Sy), v(Sy); G: at(Sy), v(x)$$
 for all x

Content of Tables T_i^1 :



 \rightarrow So what is $h^1(I)$?

roduction Critical Path Heuristics Dynamic Programming 000000000000000000000000000000000000	Graphplan 0000	Conclusion 000000	References

Example: m = 2 in Very Simple "TSP" in Australia

- Facts P: at(Sy), at(Br), v(Sy), v(Br).
- Initial state I: at(Sy), v(Sy).
- Goal G: at(Sy), v(Sy), v(Br).
- Actions A: drive(Sy, Br), drive(Br, Sy); both cost 1. drive(Sy, Br):

pre at(Sy); add at(Br), v(Br); del at(Sy). drive(Br, Sy):

pre at(Br); add at(Sy), v(Sy); del at(Br).

Content of Tables T_i^2 :

i	at(Sy)	at(Br)	v(Sy)	v(Br)	$at(Sy), \\ at(Br)$	$at(Sy), \\ v(Sy)$	$\begin{array}{c} at(Sy), \\ v(Br) \end{array}$	$at(Br), \\ v(Sy)$	$at(Br), \\ v(Br)$	$\begin{array}{c} v(Sy),\\ v(Br) \end{array}$

\rightarrow So $h^2(I) = 2$, in contrast to $h^1(I) = 1$.

NOTE reg at(Sy), v(Br)) in step 1: Each of at(Sy) and v(Br) is reached, but not both together: drive(Sy, Br) deletes at(Sy) so we can't regress this subgoal over that action; drive(Br, Sy) yields the regressed subgoal $\{at(Br), v(Br)\}$ whose value at iteration 0 is ∞ .

Álvaro Torralba, Cosmina Croitoru

AI Planning

Chapter 8: Critical Path Heuristics

Introduction 000	Critical Path Heuristics	Dynamic Programming 00000000	Graphplan 0000	FDR o	Conclusion 000000	References
Runtim	e					

Proposition. Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task, and let $m \in \mathbb{N}$ be fixed. Then the dynamic programming algorithm runs in time polynomial in the size of Π .

Proof Sketch. With fixed m, the number of size-m fact sets is polynomial in the size of Π , so obviously each iteration of the algorithm runs in time polynomial in that size. The fixed point is reached at the latest at $i + 1 = |P|^m + 1$, as each path has length at most $|P|^m$.

 \rightarrow For any fixed m, h^m can be computed in polynomial time.

Remarks:

- In practice, only m = 1, 2 are used; higher values of m are infeasible.
- However! Instead of considering all "atomic subgoals" of size $\leq m$, one can select an arbitrary set C of atomic subgoals!

 $\rightarrow h^{C}$, currently investigated in FAI, great results in learning to recognize dead-ends [Steinmetz and Hoffmann (2016)].

Introduction 000	Critical Path Heuristics	Dynamic Programming			Conclusion 000000	References
Graphp	lan Represen	tation: The C	Case m	= 1		

1-Planning Graphs

$$\begin{array}{l} F_0 := s; \ i := 0 \\ \text{while} \ G \not\subseteq F_i \ \text{do} \\ A_i := \{a \in A \mid pre_a \subseteq F_i\} \\ F_{i+1} := F_i \cup \bigcup_{a \in A_i} add_a \\ \text{if} \ F_{i+1} = F_i \ \text{then stop endif} \\ i := i+1 \\ \text{endwhile} \end{array}$$

Rings a bell?

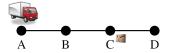
Álvaro Torralba, Cosmina Croitoru

AI Planning

Chapter 8: Critical Path Heuristics

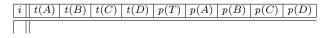
25/40

Introduction	Critical Path Heuristics	Dynamic Programming	Graphplan	FDR	Conclusion	References
000	000000	000000000	0●00	o	000000	
1-Planr	ning Graph fo	r "Logistics"				



- Initial state I: t(A), p(C).
- Goal G: t(A), p(D).
- Actions A: dr(X, Y), lo(X), ul(X).

Content of Fact Sets *F_i*:



 \rightarrow Rings a bell?

Introduction 000	Critical Path Heuristics	Dynamic Programming 000000000	Graphplan 00●0	FDR o	Conclusion 000000	References
1-Planr	ning Graphs v	vs. h^1				

Definition. Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task. The 1-planning graph heuristic h_{PG}^1 for Π is the function $h_{PG}^1(s) := \min\{i \mid s \subseteq F_i\}$, where F_i are the fact sets computed by a 1-planning graph, and the minimum over an empty set is ∞ .

Proposition. Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task with unit costs. Then $h_{PG}^1 = h^1$.

Proof Sketch: Induction over the value i of $h^1(s)$. Trivial for base case i = 0. For the step case, assume that $h^1_{\mathsf{PG}}(s) = h^1(s)$ for all s where $h^1(s) \leq i$, and show the same property for all s with $h^1(s) \leq i + 1$. $h^1_{\mathsf{PG}}(s) < i + 1$ directly contradicts the assumption. To show $h^1_{\mathsf{PG}}(s) \leq i + 1$, it suffices to observe that $h^1(pre_a) \leq i$ implies $h^1_{\mathsf{PG}}(pre_a) \leq i$ by assumption.

 \rightarrow Intuition: A 1-planning graph is like our dynamic programming algorithm for m=1, except that it represents not all facts but only those that have been reached (value $\neq\infty$), and instead of a fact-value table it only remembers that set.

Cuenha	I. D.	tation. The (Casa	
		Dynamic Programming 000000000	Graphplan 000●		References

Graphplan Representation: The General Case

m-Planning Graphs

$$\begin{split} F_0 &:= s; \ M_0 := \emptyset; \ i := 0 \\ \text{fn } Reached_i(g) &:= \left\{ \begin{array}{cc} True & g \subseteq F_i, \ \nexists g' \in M_i : g' \subseteq g \\ False & \text{otherwise} \end{array} \right. \\ \text{while not } Reached_i(G) \ \text{do} \\ A_i &:= \left\{ a \in A \mid Reached_i(pre_a) \right\} \\ F_{i+1} &:= F_i \cup \bigcup_{a \in A_i} add_a \\ M_{i+1} &:= \left\{ g \subseteq P \mid |g| \leq m, \forall a \in A_i : \text{not } Reached_i(regr(g, a)) \right\} \\ \text{if } F_{i+1} = F_i \ \text{and } M_{i+1} = M_i \ \text{then stop endif} \\ i &:= i+1 \\ \text{endwhile} \end{split}$$

 \rightarrow Intuition: All *m*-subsets *g* of *F*_i are reachable within *i* steps, except for those *g* listed in *M*_i (the "mutexes").

 \rightarrow Instead of listing the reached *m*-subsets, represent those that are not reached (and hope that there are fewer of those).

Álvaro Torralba, Cosmina Croitoru

AI Planning

Chapter 8: Critical Path Heuristics

Culturel	Daily I.L. Sta				
Introduction 000	Critical Path Heuristics	Dynamic Programming 000000000	Graphplan 0000	Conclusion 000000	References

Critical Path Heuristics in FDR

... are exactly the same!

 \rightarrow All definitions, results, and proofs apply, exactly as stated, also to FDR planning tasks. (See the single exception below.)

 \rightarrow Remember (cf. \rightarrow Chapter 2): We refer to pairs (v, d) of variable and value as facts. We identify partial variable assignments with sets of facts.

The single non-verbatim-applicable statement, adapted to FDR:

Proposition (h^m is Perfect in the Limit). There exists m s.t. $h^m = h^*$.

Proof. Given the definition of regr(g, a) for FDR (\rightarrow Chapter 6), it is easy to see by induction that every subgoal g contains at most one fact for each variable $v \in V$. Thus, if we set m := |V|, then the case |g| > m will never be used, so $h^m = r^*$.

 \rightarrow In FDR, it suffices to set m to the number of variables, as opposed to the number of variable values i.e. STRIPS facts, compare slide 12!

Álvaro Torralba, Cosmina Croitoru

Chapter 8: Critical Path Heuristics

Introduction 000	Critical Path Heuristics	Dynamic Programming 000000000	Graphplan 0000	FDR o	Conclusion •00000	References
Summa	ry					

- The critical path heuristics h^m estimate the cost of reaching a subgoal g by the most costly m-subset of g.
- This is admissible because it is always more difficult to achieve larger subgoals.
- h^m can be computed using dynamic programming, i.e., initializing true *m*-subsets *g* to 0 and false ones to ∞ , then applying value updates until convergence.
- This computation is polynomial in the size of the planning task, given fixed m. In practice, m = 1, 2 are used; m > 2 is typically infeasible.
- Planning graphs correspond to dynamic programming with unit costs, using a particular representation of reached/unreached *m*-subsets *g*.

Introduction	Critical Path Heuristics	Dynamic Programming	Graphplan	FDR	Conclusion	References
000	000000	000000000	0000	o	00000	
Historic	cal Remarks					

- The first critical path heuristic was introduced in the Graphplan system [Blum and Furst (1997)], which uses h^2 computed by a 2-planning graph.²
- 1-planning graphs are commonly referred to as relaxed planning graphs. This is because they're identical to Graphplan's 2-planning graphs when ignoring the delete lists [Hoffmann and Nebel (2001)].
- Graphplan spawned a huge amount of follow-up work [e.g., Kambhampati *et al.* (1997); Koehler *et al.* (1997); Koehler (1998); Kambhampati (2000)]; in particular, it was my personal "kindergarden planner".
- Nowadays, h^m is not in wide use anymore; its most prominent application right now is in modified forms that allow to use arbitrary sets of atomic subgoals (see slide 36), or to compute improved delete-relaxation heuristics (→ Chapter 10).

²Actually, Graphplan does parallel planning (a simplistic form of temporal planning), and uses a version of 2-planning graphs reflecting this. I omit the details since parallel planning is not relevant in practice.

Introduction 000	Critical Path Heuristics	Dynamic Programming 000000000	FDR o	Conclusion 000000	References
A Tech	nical Remark				

Reminder: Search Space for Progression

- start() = I
- $\operatorname{succ}(s) = \{(a, s') \mid \Theta_{\Pi} \text{ has the transition } s \xrightarrow{a} s'\}$

 \rightarrow Need to compute $h^m(s) = h^m(s, G) \Rightarrow$ one call of dynamic programming for every different search state s!

Reminder: Search Space for Regression

- start() = G
- $\operatorname{succ}(g) = \{(a,g') \mid g' = \operatorname{regr}(g,a)\}$

 \rightarrow Need to compute $h^m(I,g) = \max_{g' \subseteq g, |g'|=m} h^m(I,g') \Rightarrow$ a single call of dynamic programming, for s = I before search begins!

 \rightarrow For m=1, it is feasible to use progression and recompute the cost of the (singleton) subgoals in every search state s. For m=2 already, this is completely infeasible; all systems using h^2 do regression search, where all subgoals can be evaluated relative to the dynamic programming outcome for I.

Introduction 000	Critical Path Heuristics	Dynamic Programming 000000000	Graphplan 0000	FDR o	Conclusion 000000	References
Reading	<u>y</u>					

• Admissible Heuristics for Optimal Planning [Haslum and Geffner (2000)]. Available at:

• $h^m(P) = h^1(P^m)$: Alternative Characterisations of the Generalisation from h^{\max} to h^m [Haslum (2009)].

Available at: http://users.cecs.anu.edu.au/~patrik/publik/pm4p2.pdf Content: Shows how to characterize h^m in terms of h^1 in a compiled planning task that explicitly represents size-m conjunctions.

Relevance here: this contains the only published account of the iterative h_i^m characterization of h^m . Relevance more generally: yields an alternative computation of h^m . This is not per se useful, but variants thereof have been shown to allow the computation of powerful partial-delete-relaxation heuristics (\rightarrow Chapter 10).

Introduction 000	Critical Path Heuristics	Dynamic Programming 000000000	Graphplan 0000	FDR o	Conclusion 0000●0	References
Reading	g, ctd.					

• Explicit Conjunctions w/o Compilation: Computing $h^{FF}(\Pi^C)$ in Polynomial Time [Hoffmann and Fickert (2015)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/icaps15b.pdf

Content: Introduces the h^C heuristic (cf. slide 23), which allows to select an arbitrary set C of atomic subgoals, and thus strictly generalizes h^m .

This is only a side note in the paper though, the actual concern is with defining and computing partial-delete-relaxation heuristics on top of h^C .

Introduction	Critical Path Heuristics	Dynamic Programming	Graphplan	FDR	Conclusion	References
000	000000	000000000	0000	o	00000●	
Reading	g, ctd.					

• Towards Clause-Learning State Space Search: Learning to Recognize Dead-Ends [Steinmetz and Hoffmann (2016)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/aaai16.pdf

Content: Specifies how to "learn" the atomic subgoals C based on states s where the search already knows that $h^*(s) = \infty$, yet where $h^C(s) \neq \infty$. The learning process adds new conjunctions into C, in a manner guaranteeing that $h^C(s) = \infty$ afterwards.

Doing this systematically in a depth-first search, we obtain a framework that approaches the elegance of clause learning in SAT, finding and analyzing conflicts to learn knowledge that generalizes to other search branches.

Introduction 000	Critical Path Heuristics	Dynamic Programming 000000000	Graphplan 0000	FDR o	Conclusion 000000	References
Referen	ices I					

- Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis. *Artificial Intelligence*, 90(1–2):279–298, 1997.
- Patrik Haslum and Hector Geffner. Admissible heuristics for optimal planning. In S. Chien, R. Kambhampati, and C. Knoblock, editors, *Proceedings of the 5th International Conference on Artificial Intelligence Planning Systems (AIPS'00)*, pages 140–149, Breckenridge, CO, 2000. AAAI Press, Menlo Park.
- Patrik Haslum. $h^m(P) = h^1(P^m)$: Alternative characterisations of the generalisation from h^{\max} to h^m . In Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioannis Refanidis, editors, *Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS'09)*, pages 354–357. AAAI Press, 2009.
- Jörg Hoffmann and Maximilian Fickert. Explicit conjunctions w/o compilation: Computing $h^{FF}(\Pi^C)$ in polynomial time. In Ronen Brafman, Carmel Domshlak, Patrik Haslum, and Shlomo Zilberstein, editors, *Proceedings of the 25th International Conference on Automated Planning and Scheduling (ICAPS'15)*. AAAI Press, 2015.

Introduction	Critical Path Heuristics	Dynamic Programming	Graphplan	FDR	Conclusion	References
000	000000	000000000	0000	o	000000	
Referer	ices II					

- Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through heuristic search. *Journal of Artificial Intelligence Research*, 14:253–302, 2001.
- Subbarao Kambhampati, Eric Parker, and Eric Lambrecht. Understanding and extending Graphplan. In S. Steel and R. Alami, editors, *Proceedings of the 4th European Conference on Planning (ECP'97)*, pages 260–272. Springer-Verlag, 1997.
- Subbarao Kambhampati. Planning graph as a (dynamic) CSP: Exploiting EBL, DDB and other CSP search techniques in graphplan. *Journal of Artificial Intelligence Research*, 12:1–34, 2000.
- Jana Koehler, Bernhard Nebel, Jörg Hoffmann, and Yannis Dimopoulos. Extending planning graphs to an ADL subset. In S. Steel and R. Alami, editors, *Proceedings of the 4th European Conference on Planning (ECP'97)*, pages 273–285. Springer-Verlag, 1997.
- Jana Koehler. Planning under resource constraints. In H. Prade, editor, Proceedings of the 13th European Conference on Artificial Intelligence (ECAI'98), pages 489–493, Brighton, UK, August 1998. Wiley.

Introduction 000	Critical Path Heuristics	Dynamic Programming 000000000	Graphplan 0000	FDR o	Conclusion 000000	References
Referen	ices III					

Marcel Steinmetz and Jörg Hoffmann. Towards clause-learning state space search: Learning to recognize dead-ends. In Dale Schuurmans and Michael Wellman, editors, *Proceedings of the 30th AAAI Conference on Artificial Intelligence* (AAAI'16). AAAI Press, February 2016.