

describe problem in planning language \mapsto use off-the-shelf solver

(its solution)

- Any problem that can be formulated as a planning problem.
- Don't write the C++ code, just describe the problem!
- \bullet Don't maintain the C++ code, maintain the description!

AI Planning

 Introduction Transition Systems STRIPS Planning Finite-Domain Representation (FDR) Planning 									
3 STRIPS Planning			roduction	1 Intro					
			nsition Systems	2 Trans					
④ Finite-Domain Representation (FDR) Planning	3 STRIPS Planning								
	4 Finite-Domain Representation (FDR) Planning								
5 STRIPS vs. FDR									
6 Extended Planning Frameworks [for Reference]	nce]	Frameworks [fc	ended Planning Fr	6 Exter					
7 Conclusion			aclusion						

Introduction 00000			FDR Planning 00000	STRIPS vs. FDR 00000000	Extensions 000000	Conclusion 000	References
What i	s a Pla	nning	Problem	?			

Given a planning task:

- A description of the initial state.
- A description of the goal condition.
- A description of a set of possible actions.

 \rightarrow Find a schedule of actions (a plan) that brings us from the initial state to a state in which the goal condition holds.

Introduction 00000			FDR Planning 00000	STRIPS vs. FDR 00000000		References
Classic	al Plan	ning				

- ... makes Simplifying Assumptions:
 - Initial situation unique and completely known, environment deterministic, static, discrete, single-agent.
 - Actions executed one-by-one, plans are sequences.

This is often not the case in practice! Examples? Handling uncertainty (robot control), temporal/parallel execution (transportation), ...

So why do we do this?

- Clean framework to study planning problems. (Simplicity is a virtue!)
- Most influential ideas were conceived there. \rightarrow This course!
- Successful applications using classical planning. \rightarrow Chapter 4
- We can successfully compile many extended paradigms into classical planning. → Outlined later in this Chapter

 \rightarrow We focus entirely on classical planning in this course.

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 2: Planning Formalisms	6/52
-----------------------------------	-------------	--------------------------------	------

Why? From this course's point of view, it's simply one technical tool we need.

 \rightarrow To get a heuristic h, we map the planning problem into a simpler (abstract/relaxed) planning problem, from whose solution we compute h. To compute h efficiently, the "simpler" problem must be solvable in polynomial time.

Definition (PlanEx and PlanOpt). *PlanEx is the problem of deciding, given a* (STRIPS or FDR) planning task Π , whether or not there exists a plan for Π . *PlanOpt is the problem of deciding, given* Π and $B \in \mathbb{R}_0^+$, whether or not there exists a plan for Π whose cost is at most B.

 \rightarrow PlanEx \approx satisficing planning, PlanOpt \approx optimal planning.

Theorem (Planning is Hard). Each of PlanEx and PlanOpt is **PSPACE**-complete.

AI Planning

Proof. See Al'18.

Álvaro Torralba, Cosmina Croit	toru
--------------------------------	------

Introduction 000●00				STRIPS vs. FDR 00000000	Conclusion 000	References
Alachit	hmic D	rablam	a in Dlar	ning		

Algorithmic Problems in Planning

Satisficing Planning

Input:A planning task Π.Output:A plan for Π, or unsolvable if no plan for Π exists.

Optimal Planning

Input:A planning task Π .Output:An optimal plan for Π , or unsolvable if no plan for Π exists.

 \rightarrow The techniques successful for either one of these are almost disjoint!

 \rightarrow Satisficing planning is *much* more effective in practice.

 \rightarrow Programs solving these problems are called (optimal) planners, planning systems, or planning tools.

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 2: Planning Formalisms	7/52
-----------------------------------	-------------	--------------------------------	------

Introduction 00000●			FDR Planning 00000	STRIPS vs. FDR 00000000	Extensions 000000	Conclusion	References
Our A	genda fe	or This	s Chapte	r			

- Transition Systems: The basic framework we'll be moving in; forms the basis for both STRIPS and FDR. (= state space, cf. Al'18)
- STRIPS Planning: STRIPS is by far the most wide-spread planning formalism. It is also the simplest possible reasonably expressive planning formalism, and thus a canonical subject to study.
- Finite-Domain Representations (FDR): FDR is only slightly more general than STRIPS, but as we shall see can be quite useful.
- STRIPS vs. FDR: The two formalisms can be compiled into each other. Such compilations are wide-spread in practice, and we will use them at some points during the course.
- **Extended Planning Frameworks:** To at least give you a brief glimpse beyond classical planning.

 \rightarrow State space of planning task = a transition system.

Definition (Transition System). A transition system is a 6-tuple

- $\Theta = (S, L, c, T, I, S^G)$ where:
 - S is a finite set of states.
 - L is a finite set of transition labels.
 - $c: L \mapsto \mathbb{R}_0^+$ is the cost function.
 - $T \subseteq S \times L \times S$ is the transition relation.
 - $I \in S$ is the initial state.
 - $S^G \subseteq S$ is the set of goal states.

The size of Θ is its number of states, $size(\Theta) := |S|$.

We say that Θ has the transition (s, l, s') if $(s, l, s') \in T$. We also write this

 $s \xrightarrow{l} s'$, or $s \rightarrow s'$ when not interested in *l*.

We say that Θ is deterministic if, for all states s and labels l, there is at most one state s' with $s \stackrel{l}{\to} s'$.

We say that Θ has unit costs if, for all $l \in L$, c(l) = 1.

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 2: Planning Formalisms	11/52
-----------------------------------	-------------	--------------------------------	-------

Introduction 000000	Trans. Sys. 00●00		FDR Planning 00000	STRIPS vs. FDR 00000000	Extensions 000000	Conclusion 000	References
Transition Systems:			Illustrati	on			

Directed labeled graphs + mark-up for initial state and goal states:

- Are all states in Θ reachable? No: state at bottom, 2nd from right.
- Are all states in Θ solvable? No: state near top, 2nd from left.

AI Planning

• Is this Θ deterministic? No: On two of the goal states, actG labels more than one outgoing transition.

Álvaro Torralba,	Cosmina	Croitoru	
------------------	---------	----------	--

13/52

Introduction	Trans. Sys.	STRIPS	FDR Planning	STRIPS vs. FDR	Extensions	Conclusion	References
	00000						

Transition Systems, ctd.

Terminology: $\Theta = (S, A, c, T, I, S^G)$; $s, s', s_i \in S$

- s' successor of s if $s \to s'$; s predecessor of s' if $s \to s'$.
- s' reachable from s if there exists a sequence of transitions:

 $s = s_0 \xrightarrow{l_1} s_1, \dots, s_{n-1} \xrightarrow{l_n} s_n = s'$

- n = 0 possible; then s = s'.
- l_1, \ldots, l_n is called path from s to s'.
- s_0, \ldots, s_n is also called path from s to s'.
- The cost of that path is $\sum_{i=1}^{n} c(l_i)$.
- s' reachable (without reference state) means reachable from I.
- Solution for s: path from s to some $s' \in S^G$; optimal if cost is minimal among all solutions for s.
- s is solvable if it has a solution; else, s is a dead end.
- Solution for I is called solution for Θ ; Θ is solvable if it has a solution.

Note: We allow non-deterministic Θ here: In each state s_i , a solution may select any one outgoing transition labeled with l_{i+1} . We will need this only for abstractions (\rightarrow Chapters 11–13).

Álvaro Torralba, Cosmina Croitoru Al Planning Chapter 2: Plann	ing Formalisms 12/52
--	----------------------

Transitio	+	III	م به مد ما			
		FDR Planning 00000	STRIPS vs. FDR 00000000	Extensions 000000	Conclusion 000	References

Directed labeled graphs + mark-up for initial state and goal states:

- Is this Θ deterministic? Yes.
- What are the optimal solutions for Θ ? Any path that starts with actB, applies actE $n \in \{0, 2, 4, ...\}$ times, then applies actC then actE and then no action other than actG.

AI Planning

Álvaro Torralba, Cosmina Croitoru

• n blocks, 1 hand.

• A single action either takes a block with the hand or puts a block we're holding onto some other block/the table.

blocks	states	blocks	states
1	1	10	58941091
2	3	11	824073141
3	13	12	12470162233
4	73	13	202976401213
5	501	14	3535017524403
6	4051	15	65573803186921
7	37633	16	1290434218669921
8	394353	17	26846616451246353
9	4596553	18	588633468315403843

 \rightarrow We are interested in solving **huge** transition systems, represented in a **compact** way as planning tasks (up next).

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 2: Planning Formalisms	15/52

- Propositions P: $\{at(x), visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}.$
- Initial state I: {at(Sydney), visited(Sydney)}.
- Goal G: $\{at(Sydney)\} \cup \{visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}$.

• Actions $a \in A$: drive(x, y) where x, y have a road. Precondition pre_a : $\{at(x)\}$. Add list add_a : $\{at(y), visited(y)\}$. Delete list del_a : $\{at(x)\}$.

• Cost function c:

$$c(drive(x,y)) = \begin{cases} 1 & \{x,y\} = \{byaney, Brisbane\}\\ 1.5 & \{x,y\} = \{Sydney, Adelaide\}\\ 3.5 & \{x,y\} = \{Adelaide, Perth\}\\ 4 & \{x,y\} = \{Adelaide, Darwin\} \end{cases}$$

D · 1

			FDR Planning 00000	STRIPS vs. FDR 00000000	Conclusion	References
STRIP	S Planr	ning: S	yntax			

Definition (STRIPS Planning Task). A STRIPS planning task is a 5-tuple $\Pi = (P, A, c, I, G)$ where:

- *P* is a finite set of facts, also propositions.
- A is a finite set of actions; each a ∈ A is a triple a = (pre_a, add_a, del_a) of subsets of P referred to as the action's precondition, add list, and delete list respectively; we require that add_a ∩ del_a = Ø.
- $c: A \mapsto \mathbb{R}_0^+$ is the cost function.
- $I \subseteq P$ is the initial state.
- $G \subseteq P$ is the goal.

We say that Π has unit costs if, for all $a \in A$, c(a) = 1. We will often give each action $a \in A$ a name (a string), and identify a with that name.

Diff to Al'18: The cost function c.

 \rightarrow What for do we allow 0-cost actions? Negligible cost (e.g. switch light on, take photo with smartphone), asking questions about only one kind of actions (e.g. Mars rover *take-picture* only).

Álvaro Torralba, Cosmina Croitoru

Chapter 2: Planning Formalisms

17/52

19/52

				STRIPS vs. FDR 00000000		References
STRIP	S Planr	ning: S	emantics	5		

Definition (STRIPS State Space). Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task. The state space of Π is the labeled transition system $\Theta_{\Pi} = (S, L, c, T, I, S^G)$ where:

• The states (also world states) $S = 2^P$ are the subsets of P.

AI Planning

- The labels L = A are Π 's actions; the cost function c is that of Π .
- The transitions are $T = \{s \xrightarrow{a} s' \mid a \in A[s], s' = s[a]\}$, where
- $\begin{array}{l} A[s] := \{a \in A \mid pre_a \subseteq s\} \text{ are the actions applicable in } s; \text{ for } a \in A[s], \\ s\llbracket a \rrbracket := (s \cup add_a) \setminus del_a; \text{ for } a \notin A[s], s\llbracket a \rrbracket \text{ is undefined, } s\llbracket a \rrbracket := \bot. \end{array}$
- The initial state I is identical to that of Π .

• The goal states $S^G = \{s \in S \mid G \subseteq s\}$ are those that satisfy Π 's goal. An (optimal) plan for $s \in S$ is an (optimal) solution for s in Θ_{Π} . A solution for I is called a plan for Π . Π is solvable if a plan for Π exists.

For
$$\vec{a} = \langle a_1, \dots, a_n \rangle$$
, $s[\![\vec{a}]\!] := \begin{cases} s & n = 0\\ s[\![\langle a_1, \dots, a_{n-1} \rangle]\!][\![a_n]\!] & n > 0 \end{cases}$

 \rightarrow Is Θ_{Π} deterministic? Yes: the successor state s' in $s \xrightarrow{a} s'$ is uniquely determined by s and a, through $s' = s[\![a]\!]$.

AI Planning

Álvaro Torralba, Cosmina Croitoru

Chapter 2: Planning Formalisms

				STRIPS vs. FDR 00000000		References
STRIP	S Enco	ding o	f Simplifi	ed "TSP"		

• Propositions P: $\{at(x), visited(x) \mid x \in \{Sydney, Adelaide, Brisbane\}\}$.

AI Planning

- Initial state I: { at(Sydney), visited(Sydney) }.
- Goal G: {visited(x) | $x \in \{Sydney, Adelaide, Brisbane\}\}$. (Note: no "at(Sydney)".)
- Actions $a \in A$: drive(x, y) where x, y have a road. Precondition pre_a : $\{at(x)\}$. Add list add_a : $\{at(y), visited(y)\}$. Delete list del_a : $\{at(x)\}$.
- Cost function *c*:

$$c(drive(x,y)) = \begin{cases} 1 & \{x,y\} = \{Sydney, Brisbane\}\\ 1.5 & \{x,y\} = \{Sydney, Adelaide\} \end{cases}$$

Álvaro Torralba, Cosmina Croitoru

Chapter 2: Planning Formalisms

Introduction 000000	Trans. Sys. 00000	STRIPS 000000	FDR Planning 00000	STRIPS vs. FDR 00000000	Extensions 000000	Conclusion	References
Questi	onnaire						

• Propositions *P*:

 $\{at(x), visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}.$

• Initial state I: $\{at(Sydney), visited(Sydney)\}$

How many states are there in the "TSP in Australia" task?

 \rightarrow : $2^{10} = 1024$. But only a small portion of them are reachable (less than $5 \cdot 2^4 = 80$)!

Álvaro Torralba, Cosmina Croitoru

Al Planning Chapter 2: Planning Formalisms

ms 22/52

20/52

Introduction 000000	Trans. Sys. 00000		FDR Planning 00000	STRIPS vs. FDR 00000000	Extensions 000000	Conclusion 000	References
STRIP	S Enco	ding of	f Simplifi	ed "TSP"	: State	Space	

 \rightarrow Exactly one optimal plan: drive Sy Br, drive Br Sy, drive Sy Ad.

 \rightarrow Is this actually the state space? No, only the reachable part. E.g., Θ_{Π} also includes the states $\{v(Sy)\}$ and $\{at(Sy), at(Br)\}$.

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 2: Planning Formalisms	21/52

			0	STRIPS vs. FDR 00000000		References
FDR P	lanning	: Synt	ax			

Definition (FDR Planning Task). A finite-domain representation planning task, short FDR planning task, is a 5-tuple $\Pi = (V, A, c, I, G)$ where:

- V is a finite set of state variables, each v ∈ V with a finite domain D_v.
 We refer to (partial) functions on V, mapping each v ∈ V into a member of D_v, as (partial) variable assignments.
- A is a finite set of actions; each a ∈ A is a pair (pre_a, eff_a) of partial variable assignments referred to as the action's precondition and effects.
- $c: A \mapsto \mathbb{R}_0^+$ is the cost function.
- I is a complete variable assignment called the initial state.
- G is a partial variable assignment called the goal.

We say that Π has unit costs if, for all $a \in A$, c(a) = 1.

 \rightarrow In FDR, a (partial) variable assignment represents a state in I, a condition in pre_a and G, and an effect instruction in eff_a .

Notation: Pairs (v, d) are facts, also written v = d. We identify partial variable assignments p with fact sets. We write $V[p] := \{v \in V \mid p(v) \text{ is defined}\}.$

AI Planning

Álvaro Torralba, Cosmina Croitoru

Introduction 000000	Trans. Sys. 00000		. 0	STRIPS vs. FDR 00000000	Extensions 000000	Conclusion 000	References
FDR E	ncoding	g of "	SP"				

- Variables V: at: {Sydney, Adelaide, Brisbane, Perth, Darwin}; visited(x): $\{T, F\}$ for $x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}.$
- Initial state I: at = Sydney, visited(Sydney) = T, visited(x) = F for $x \neq Sydney$.
- Goal G: at = Sydney, visited(x) = T for all x.
- Actions $a \in A$: drive(x, y) where x, y have a road. Precondition pre_a : at = x.

Effect eff_a : at = y, visited(y) = T.

• Cost function c:

Croitoru A	AI Planning	Chapter 2: Planning Formalisms
c(drive(x,y)) =	$= \left\{ \begin{array}{c} 1.5\\ 3.5\\ 4 \end{array} \right.$	$ \{x, y\} = \{Sydney, Adelaide\} $ $ \{x, y\} = \{Adelaide, Perth\} $ $ \{x, y\} = \{Adelaide, Darwin\} $
e.	(1	$\{x, y\} = \{Sydney, Brisbane\}$

Álvaro Torralba. Cosmina Croitoru

Chapter 2: Planning Formalisms

00000 FDR Encoding of Simplified "TSP": State Space

 \rightarrow This is only the reachable part of the state space: E.g., Θ_{Π} also includes the state $\{at = Sy, v(Br)\}$. (But neither $\{v(Sy)\}$ nor $\{at = Sy, at = Br\}$, compare slide 21.)

(using " $v(x)$ " as s

Álvaro	Torralba.	Cosmina	Croitoru	

25/52

		0	STRIPS vs. FDR 00000000		References
	~				

FDR Planning: Semantics

Definition (FDR State Space). Let $\Pi = (V, A, c, I, G)$ be an FDR planning task. The state space of Π is the labeled transition system $\Theta_{\Pi} = (S, L, c, T, I, S^G)$ where:

- The states (also world states) S are the complete variable assignments.
- The labels L = A are Π 's actions; the cost function c is that of Π .
- The transitions are $T = \{s \xrightarrow{a} s' \mid a \in A[s], s' = s[a]\}$, where $A[s] := \{a \in A \mid pre_a \subseteq s\}$ are the actions applicable in s; for $a \notin A[s]$, $s\llbracket a \rrbracket := \bot; \text{ for } a \in A[s], \ s\llbracket a \rrbracket(v) := \begin{cases} eff_a(v) & v \in V[eff_a] \\ s(v) & v \notin V[eff_a] \end{cases}$
- The initial state I is identical to that of Π .
- The goal states $S^G = \{s \in S \mid G \subseteq s\}$ are those that satisfy Π 's goal.

 \rightarrow In s[a], instead of "adding/deleting" facts, we overwrite the previous variable values by eff_a .

 \rightarrow Plan, optimal plan, $s[\![\vec{a}]\!]$ for action sequence \vec{a} : as before (slide 19). Planning

Álvaro Torralba,	Cosmina Croitoru	AI

Chapter 2: Planning Formalisms 26/52

Introduction	Trans. Sys.	STRIPS	FDR Planning	STRIPS vs. FDR	Extensions	Conclusion	References
000000	00000	000000	0000●	00000000	000000	000	
Questi	onnaire						

Question!

How many STRIPS state variables are needed to encode the problem of finding a path in a graph with *n* vertices?

(A): 1	(B): <i>n</i>	
(C): $\lceil \log_2 n \rceil$	(D): $2 * \lceil \log_2 n \rceil$	

 \rightarrow (D): We need to encode our current position in the graph. This can be done with n propositions of the form "at(p)", but it can be done more compactly by: numbering the positions ID(p); representing ID(p) in the binary system using $\lceil \log_2 n \rceil$ bits bit_i ; and representing each bit_i with two STRIPS facts $True(bit_i)$ and $False(bit_i)$.

Question!	
How many FDR state	variables are needed for this?
(A): 1	(B): <i>n</i>
(C): $\lceil \log_2 n \rceil$	(D): $2 * \lceil \log_2 n \rceil$
(Λ) , M = n = 1 + m = 1 +	the subline encoding our surrout position in the graph

 \rightarrow (A): We need 1 variable with n values, encoding our current position in the graph.

AI Planning

Álvaro Torralba, Cosmina Croitoru

How do people use FDR?

- Our surface language is PDDL, which corresponds to STRIPS.
- Most implemented planning tools are based on Fast Downward (FD) [Helmert (2009)], which reads PDDL input, then internally uses a "clever" STRIPS-2-FDR translation (see next).
- That translation involves a **PSPACE**-complete sub-problem.

Why??? Practical Efficiency!

- $\bullet~$ Regression: FDR avoids myriads of unreachable states. $\rightarrow~$ Chapter 6
- Causal Graphs: Capture variable dependencies; have a much clearer structure for clever FDR (e.g., acyclic vs. cyclic). → Chapter 5
- Complexity Analysis: Better with clearer causal graph. \rightarrow Chapter 5
- Construction of Heuristic Functions: Better with multiple-valued variables and clearer causal graph. → Chapters 10 and 12
- Modeling: Anyway, FDR is more natural! (It's just one truck, after all.)

Why does anybody use STRIPS? It's a legacy system.

\rightarrow We should be modeling in	FDR. For histor	ical reasons, we aren't.	
Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 2: Planning Formalisms	30/52

Definition (FDR-2-STRIPS). Let $\Pi = (V, A, c, I, G)$ be an FDR planning task. The STRIPS conversion of Π is the STRIPS task $\Pi^{STR} = (P_V, A^{STR}, c, I, G)$ where:

- $P_V = \{v = d \mid v \in V, d \in D_v\}$ is the set of (STRIPS) facts.
- $A^{\text{STR}} = \{a^{\text{STR}} \mid a \in A\}$ where $pre_{a^{\text{STR}}} = pre_{a}$, $add_{a^{\text{STR}}} = eff_{a}$, and $del_{a^{\text{STR}}} = \bigcup_{(v=d) \in eff_{a}} \begin{cases} \{v = pre_{a}(v)\} & \text{if } pre_{a}(v) \text{ is defined} \\ \{v = d' \mid d' \in D_{v} \setminus \{d\}\} & \text{otherwise} \end{cases}$
- The cost function c is defined by $c(a^{STR}) := c(a)$ for all $a^{STR} \in A^{STR}$.
- I and G are identical to those of Π .

 \rightarrow The adds establish the new variable values of $e\!f\!f_a$; the deletes make sure to erase the previous values of those variables.

\rightarrow Take-home message: FDR variable/value pairs \approx STRIPS facts!

Proposition. Let $\Pi = (V, A, c, I, G)$ be an FDR planning task, and let Π^{STR} be its STRIPS conversion. Then Θ_{Π} is isomorphic to the sub-system of $\Theta_{\Pi^{\text{STR}}}$ induced by those $s \subseteq P_V$ where, for each $v \in V$, s contains exactly one fact of the form v = d. All other states in $\Theta_{\Pi^{\text{STR}}}$ are unreachable.

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 2: Planning Formalisms	32/52
-----------------------------------	-------------	--------------------------------	-------

			FDR Planning 00000	STRIPS vs. FDR 0000000	Extensions 000000	Conclusion	References	

STRIPS vs. FDR Conversions

Conversions:

- **O** FDR-2-STRIPS: For each variable v with domain $\{d_1, \ldots, d_k\}$, make k STRIPS facts " $v = d_1$ ", ..., " $v = d_k$ ".
- STRIPS-2-FDR: Naïve vs. clever variants, see slides 34 37.

What role does all this play here?

- Both STRIPS and FDR are used in practice, cf. slide 30. The programming exercises are in FD, hence FDR.
- Some techniques in the remainder of the course are easier to introduce in STRIPS, some are easier in FDR, so we will keep both around.
- Specific relevance of (I): If the course introduces a technique A in STRIPS, then A in FDR (and hence your FD code!) is equivalent to "convert-FDR-2-STRIPS-then-do-A".
- Specific relevance of (II): So you get an understanding of how FD processes the PDDL/STRIPS input to FDR.

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 2: Planning Formalisms	31/52

	Trans. Sys. 00000			STRIPS vs. FDR 0000000	Conclusion	References
FDR-2	-STRIP	S: Sin	nplified"	TSP"		

- FDR V: $at : \{Sydney, Adelaide, Brisbane\}; visited(x) : \{T, F\}$ for $x \in \{Sydney, Adelaide, Brisbane\}.$
- STRIPS P: at(x), visited(x, T), visited(x, F) for $x \in \{Sydney, Adelaide, Brisbane\}$.
- FDR dr(x, y): $pre = \{at = x\}, eff = \{at = y, v(y) = T\}.$
- STRIPS dr(x,y):

 $pre = \{at(x)\}, \ add = \{at(y), v(y, T)\}, \ del = \{at(x), v(y, F)\}.$

AI Planning

Álvaro Torralba, Cosmina Croitoru

Chapter 2: Planning Formalisms

Definition (STRIPS-2-FDR). Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task. The FDR conversion of Π is the FDR task $\Pi^{\text{FDR}} = (V_P, A^{\text{FDR}}, c, I^{\text{FDR}}, G^{\text{FDR}})$ where:

- $V_P = \{v_p \mid p \in P\}$ is the set of variables, all Boolean.
- $A^{\mathsf{FDR}} = \{a^{\mathsf{FDR}} \mid a \in A\}$ where $pre_{a^{\mathsf{FDR}}} = \{v_p = T \mid p \in pre_a\}$ and $eff_{a^{\mathsf{FDR}}} = \{v_p = T \mid p \in add_a\} \cup \{v_p = F \mid p \in del_a\}.$
- The cost function c is defined by $c(a^{\text{FDR}}) := c(a)$ for all $a^{\text{FDR}} \in A^{\text{STR}}$.
- $I = \{v_p = T \mid p \in I\}$; and $G = \{v_p = T \mid p \in G\}$.

 \rightarrow All variables here have two possible values only, so this does not benefit at all from the added expressivity of FDR. Hence the designation "naïve".

Proposition. Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task, and let Π^{FDR} be its STRIPS conversion. Then Θ_{Π} is isomorphic to $\Theta_{\Pi^{\text{STR}}}$.

Álvaro Torra	alba, Cosmina C	roitoru	AI Planning	Chapter 2	2: Planning For	malisms	34/52
Introduction 000000	Trans. Sys. 00000	STRIPS 000000	FDR Planning 00000	STRIPS vs. FDR 000000€0	Extensions 000000	Conclusion 000	References
STRIP	S-2-FD	R: Cle	ver Tran	slation			

Introduction Trans. Sys. STRIPS FDR Planning STRIPS vs. FDR Extensions Conclusion References 00000 STRIPS-2-FDR, Naïve: Simplified "TSP"

- **STRIPS** P: at(x), visited(x) for $x \in \{Sydney, Adelaide, Brisbane\}$.
- FDR V: at(x), visited(x): $\{T, F\}$ for $x \in \{Sydney, Adelaide, Brisbane\}$.
- STRIPS dr(x, y): $pre = \{at(x)\}, add = \{at(y), v(y)\}, del = \{at(x)\}$
- FDR dr(x, y): $pre = \{at(x) = T\},$ $eff = \{at(y) = T, v(y) = T, at(x) = F\}.$

Álvaro Torra	lba, Cosmina C	roitoru	AI Planning	Chapter 2	2: Planning For	nalisms	35/52
Introduction 000000	Trans. Sys. 00000	STRIPS 000000	FDR Planning 00000	STRIPS vs. FDR 0000000●	Extensions 000000	Conclusion 000	References
STRID		P Noï		wor: Simp	lified "	TCD"	

- **STRIPS** P: at(x), visited(x) for $x \in \{Sydney, Adelaide, Brisbane\}$.
- Naïve V: at(x), visited(x): $\{T, F\}$ for $x \in \{Sydney, Adelaide, Brisbane\}$.
- Clever V: $at : \{Sydney, Adelaide, Brisbane\};$ visited $(x) : \{T, F\}$ for $x \in \{Sydney, Adelaide, Brisbane\}.$

 \rightarrow The naı̈ve version is merely STRIPS in disguise. The clever version is more natural, and is explicit about the "truck position".

How to be clever?

- Find sets $\{p_1, \ldots, p_k\}$ of STRIPS facts so that every reachable state s makes exactly one p_i true.
 - \rightarrow Deciding whether this holds, for a given $\{p_1, \ldots, p_k\}$, is **PSPACE**-complete (cf. slide 30). But one can design fast algorithms finding *some* such sets [Helmert (2009)].
- For each set $\{p_1, \ldots, p_k\}$ found, make *one* FDR variable v with domain $\{d_1, \ldots, d_k\}$.
- This is implemented in the pre-processor of Fast Downward.

Introduction Trans. Sys. STRIPS OCODO FDR Planning STRIPS vs. FDR Extensions Conclusion References

Framework Definition: [Pednault (1989); Hoffmann and Nebel (2001)]. **Problem:** Like STRIPS but with PL1 formulas in pre_a and G, and with conditional effects that execute only if their individual effect condition holds.

Plan: Sequence of actions. (Yes, this is still "classical planning".)

Example: If your action a opens the doors of an elevator, then each passenger gets out iff their individual condition ("Is this my destination floor?") holds. If you want to satisfy complex constraints ("Group A should never meet group B in the elevator") then pre_a gets nasty. (See the PDDL file <u>here</u>.)

Compilation: PL1 formulas: Ground them (the universe is finite) and transform to DNF [Gazen and Knoblock (1997); Koehler and Hoffmann (2000)].

Conditional effects: Either enumerate all combinations of effects, or introduce artificial facts/actions enforcing an "effect evaluation phase" [Nebel (2000)].

State of the art: Get rid of PL1 formulas but keep the conditional effects [Hoffmann and Nebel (2001)].

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 2: Planning Formalisms	39/52
-----------------------------------	-------------	--------------------------------	-------

Soft Goals: [Gerevini et al. (2009)]

"I don't absolutely have to visit Darwin, but if I do, I get a certain amount R of reward."

Compilation: Artificial actions that allow to forgo each weak goal, at cost R; minimize cost [Keyder and Geffner (2009)]. State of the art!

Trajectory Constraints: [Gerevini *et al.* (2009)]

"I must visit Perth before I visit Darwin."

Compilation: Artificial preconditions/effects, e.g. *visited*(*Perth*) into precondition of driving to Darwin [Edelkamp (2006)]. State of the art!

AI Planning

Chapter 2: Planning Formalisms

41/52

000000	00000	000000	00000	0000000	00000	000	
Introduction	Trans. Sys.	STRIPS	FDR Planning	STRIPS vs. FDR	Extensions	Conclusion	References

Numeric and Temporal Planning

Numeric Planning: [Fox and Long (2003)] $pre_a : fuelSupply \ge distance(x, y) * fuelConsumption$ $eff_a : fuelSupply := fuelSupply - distance(x, y) * fuelConsumption$

Compilation: Nothing known.

Temporal Planning: [Fox and Long (2003)] $duration_a : distance(x, y)/speed$ $eff_a : at Start \neg at(x)$, at End at(y).

Compilation: Ignore durations during search, schedule plan as a post-process [Edelkamp (2003)]. Competitive with state of the art!

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 2: Planning Formalisms	40/52
-----------------------------------	-------------	--------------------------------	-------

			FDR Planning 00000	STRIPS vs. FDR 00000000	Extensions 000●00	Conclusion	References
Confor	mant P	lannin	g				

Framework Definition: [Smith and Weld (1998); Bonet and Givan (2006)].

Problem: There are many possible initial states (represented as a formula), and each action may have several possible effects. We have no observability during plan execution.

Plan: Sequence of actions that achieves the goal regardless which initial state and action effects occur.

Example: You're in a dark cave but don't know where exactly. The plan is to walk to the right until you reach a wall and can locate yourself (thanks to noticing that the action "walk to the right" does not work anymore). Then navigate to your goal by counting your steps.

Compilation: Artificial "what-if" facts, like "If I was at A initially, then I am now at B" [Palacios and Geffner (2009)]. State of the art!

Álvaro Torralba, Cosmina Croitoru Al Planning

Framework Definition: e.g., [Hoffmann and Brafman (2005)].

Problem: There are many possible initial states (represented as a formula), and each action may have several possible effects. We have partial observability during plan execution.

Plan: Tree of actions that achieves the goal in each of its leaves. ("Plan ahead for all possible contingencies, i.e., situation aspects not known at planning time.")

Example: Solving the Wumpus world: You walk some steps, then use sensing (for breeze and stench), and continue depending on the outcome.

Compilation: Sample initial states, classical planning with artificial facts encoding knowledge yields a plan tree for those; in case a problem is detected during execution, re-plan with the new state of knowledge [Shani and Brafman (2011)]. Competitive with state of the art!

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 2: Planning Formalisms	43/52

Introduction	Trans. Sys.	STRIPS	FDR Planning	STRIPS vs. FDR	Extensions	Conclusion	References
000000	00000	000000	00000	00000000	000000	●00	
Summa	ary						

- Transition systems are a kind of directed graph (typically huge) that encode how the state of the world can change.
- Planning tasks are compact representations for transition systems, based on state variables; they are the input for planning systems.
- In satisficing planning, we must find a solution to planning tasks (or show that no solution exists). In optimal planning, we must additionally guarantee that generated solutions are the cheapest possible.
- Classical planning makes strong simplifying assumptions, but is very successful in practice and can be used by compilation to tackle more expressive planning problems.

AI Planning

- In STRIPS, state variables are Boolean; in FDR, they may have arbitrary finite domains. The two formalisms can be compiled into each other. FDR is preferrable, but current planning technology is based on STRIPS for historical reasons.
 - \rightarrow PDDL, see Next Chapter.

46/52

Álvaro Torralba, Cosmina Croitoru

AI Planning

			FDR Planning 00000	STRIPS vs. FDR 00000000		References
Probab	vilistic F	Dannir	νσ			

rodadilistic Planning

Framework Definition: e.g., [Younes et al. (2005)].

Problem: Each action specifies a probability distribution over its possible effects. We have full observability during plan execution. (Markov Decision Process (MDP) framework.)

Plan: Policy that maps states to actions in a way that maximizes the expected reward.

Example: Controlling a robot: If navigation comes with an imprecision (which it usually does), then the outcome of a "move" operation is uncertain.

Compilation: Make classical problem that acts as if you could *choose* the outcomes; find a plan, and execute; if the plan fails, then re-plan from the current state [Yoon et al. (2007)]. State of the art for problems where "reactive behavior" is suitable (things may go wrong, but if they do, they can be easily repaired).

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 2: Planning Formalisms	44/52

Introduction	Trans. Sys.	STRIPS	FDR Planning	STRIPS vs. FDR	Extensions	Conclusion	References
000000	00000	000000	00000	00000000	000000	○●○	
Remar	ks						

Regarding the name "FDR":

- FDR is not consistently named in the literature.
- It is often referred to as SAS⁺ because that's what some complexity guys called it, in the first papers considering a formalism equivalent to our FDR [e.g., Bäckström and Nebel (1995)].
- [Helmert (2006)] called it multi-valued planning tasks (MPT) which can still be seen in some papers.
- [Helmert (2009)] finally called it FDR.

Introduction	Trans. Sys.	STRIPS	FDR Planning	STRIPS vs. FDR	Extensions	Conclusion	References
000000	00000	000000	00000	00000000	000000	00●	
Readin	g						

• Concise Finite-Domain Representations for PDDL Planning Tasks [Helmert (2009)].

Available at:

http://www.informatik.uni-freiburg.de/~ki/papers/ helmert-aij2009.pdf

Content: Describes in detail the "clever" STRIPS-2-FDR conversion implemented in Fast Downward. The sets $\{p_1, \ldots, p_k\}$ of STRIPS facts, of which exactly one is true in every reachable state, are found by automatic invariance analysis. Is in wide-spread use, and a basic familiarity with it is relevant for anybody working in planning.

Álvaro Torra	alba, Cosmina C	roitoru	AI Planning	Chapter 2	: Planning For	malisms	48/52
Introduction 000000	Trans. Sys. 00000	STRIPS 000000	FDR Planning 00000	STRIPS vs. FDR 00000000	Extensions 000000	Conclusion	References
Refere	nces II						

- Alfonso Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti, and Yannis
 Dimopoulos. Deterministic planning in the fifth international planning competition:
 PDDL3 and experimental evaluation of the planners. *Artificial Intelligence*, 173(5-6):619–668, 2009.
- Malte Helmert. The Fast Downward planning system. *Journal of Artificial Intelligence Research*, 26:191–246, 2006.
- Malte Helmert. Concise finite-domain representations for PDDL planning tasks. *Artificial Intelligence*, 173:503–535, 2009.
- Jörg Hoffmann and Ronen Brafman. Contingent planning via heuristic forward search with implicit belief states. In Susanne Biundo, Karen Myers, and Kanna Rajan, editors, *Proceedings of the 15th International Conference on Automated Planning and Scheduling (ICAPS-05)*, pages 71–80, Monterey, CA, USA, 2005. Morgan Kaufmann.
- Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through heuristic search. *Journal of Artificial Intelligence Research*, 14:253–302, 2001.

Introduction	Trans. Sys.	STRIPS	FDR Planning	STRIPS vs. FDR	Extensions	Conclusion	References
000000	00000	000000	00000	00000000	000000	000	
Refere	nces I						

- Christer Bäckström and Bernhard Nebel. Complexity results for SAS⁺ planning. *Computational Intelligence*, 11(4):625–655, 1995.
- Blai Bonet and Robert Givan. 5th international planning competition: Non-deterministic track – call for participation. In *Proceedings of the 5th International Planning Competition (IPC'06)*, 2006.
- Stefan Edelkamp. Taming numbers and durations in the model checking integrated planning system. *Journal of Artificial Intelligence Research*, 20:195–238, 2003.
- Stefan Edelkamp. On the compilation of plan constraints and preferences. In Derek Long and Stephen Smith, editors, *Proceedings of the 16th International Conference* on Automated Planning and Scheduling (ICAPS'06), pages 374–377, Ambleside, UK, 2006. Morgan Kaufmann.
- Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing temporal planning domains. *Journal of Artificial Intelligence Research*, 20:61–124, 2003.
- B. Cenk Gazen and Craig Knoblock. Combining the expressiveness of UCPOP with the efficiency of Graphplan. In S. Steel and R. Alami, editors, *Proceedings of the 4th European Conference on Planning (ECP'97)*, pages 221–233. Springer-Verlag, 1997.

Álvaro Torralba	, Cosmina	Croitoru	
-----------------	-----------	----------	--

Al Planning Chapter 2: Planning Formalisms 49/52

Introduction 000000	Trans. Sys. 00000	FDR Planning 00000	STRIPS vs. FDR 00000000	Extensions 000000	Conclusion 000	References
Refere	nces III					

- Emil Keyder and Hector Geffner. Soft goals can be compiled away. *Journal of Artificial Intelligence Research*, 36:547–556, 2009.
- Jana Koehler and Jörg Hoffmann. On the instantiation of ADL operators involving arbitrary first-order formulas. In *Proceedings ECAI-00 Workshop on New Results in Planning, Scheduling and Design*, 2000.
- Bernhard Nebel. On the compilability and expressive power of propositional planning formalisms. *Journal of Artificial Intelligence Research*, 12:271–315, 2000.
- Hector Palacios and Hector Geffner. Compiling uncertainty away in conformant planning problems with bounded width. *Journal of Artificial Intelligence Research*, 35:623–675, 2009.
- Edwin P.D. Pednault. ADL: Exploring the middle ground between STRIPS and the situation calculus. In R. Brachman, H. J. Levesque, and R. Reiter, editors, *Principles of Knowledge Representation and Reasoning: Proceedings of the 1st International Conference (KR-89)*, pages 324–331, Toronto, ON, May 1989. Morgan Kaufmann.
- Guy Shani and Ronen I. Brafman. Replanning in domains with partial information and sensing actions. In Toby Walsh, editor, *Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI'11)*, pages 2021–2026. AAAI Press/IJCAI, 2011.

AI Planning

Introduction	Trans. Sys.	STRIPS	FDR Planning	STRIPS vs. FDR	Extensions	Conclusion	References
000000	00000	000000	00000	00000000	000000	000	
Refere	nces IV						

- D. E. Smith and D. Weld. Conformant Graphplan. In Jack Mostow and Charles Rich, editors, *Proceedings of the 15th National Conference of the American Association for Artificial Intelligence (AAAI'98)*, pages 889–896, Madison, WI, USA, July 1998. MIT Press.
- Sung Wook Yoon, Alan Fern, and Robert Givan. FF-Replan: a baseline for probabilistic planning. In Mark Boddy, Maria Fox, and Sylvie Thiebaux, editors, *Proceedings of the 17th International Conference on Automated Planning and Scheduling (ICAPS'07)*, pages 352–359, Providence, Rhode Island, USA, 2007. Morgan Kaufmann.
- Håkan L. S. Younes, Michael L. Littman, David Weissman, and John Asmuth. The first probabilistic track of the international planning competition. *Journal of Artificial Intelligence Research*, 24:851–887, 2005.

Al Planning Chapter 2: Planning Formalisms