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Reminder: Planning = General Problem Solving

(some new problem)

describe problem in planning language 7→ use off-the-shelf solver

(its solution)

Any problem that can be formulated as a planning problem.

Don’t write the C++ code, just describe the problem!

Don’t maintain the C++ code, maintain the description!
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What is a Planning Problem?

Given a planning task:

A description of the initial state.

A description of the goal condition.

A description of a set of possible actions.

→ Find a schedule of actions (a plan) that brings us from the initial
state to a state in which the goal condition holds.
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Classical Planning

. . . makes Simplifying Assumptions:

Initial situation unique and completely known, environment
deterministic, static, discrete, single-agent.

Actions executed one-by-one, plans are sequences.

This is often not the case in practice! Examples? Handling uncertainty
(robot control), temporal/parallel execution (transportation), . . .

So why do we do this?

Clean framework to study planning problems. (Simplicity is a virtue!)

Most influential ideas were conceived there. → This course!

Successful applications using classical planning. → Chapter 4

We can successfully compile many extended paradigms into classical
planning. → Outlined later in this Chapter

→ We focus entirely on classical planning in this course.
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Algorithmic Problems in Planning

Satisficing Planning

Input: A planning task Π.
Output: A plan for Π, or unsolvable if no plan for Π exists.

Optimal Planning

Input: A planning task Π.
Output: An optimal plan for Π, or unsolvable if no plan for Π exists.

→ The techniques successful for either one of these are almost disjoint!
→ Satisficing planning is much more effective in practice.

→ Programs solving these problems are called (optimal) planners,
planning systems, or planning tools.
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Computational Complexity in Planning

Why? From this course’s point of view, it’s simply one technical tool we need.

→ To get a heuristic h, we map the planning problem into a simpler (abstract/
relaxed) planning problem, from whose solution we compute h. To compute h
efficiently, the “simpler” problem must be solvable in polynomial time.

Definition (PlanEx and PlanOpt). PlanEx is the problem of deciding, given a
(STRIPS or FDR) planning task Π, whether or not there exists a plan for Π.
PlanOpt is the problem of deciding, given Π and B ∈ R+

0 , whether or not there
exists a plan for Π whose cost is at most B.

→ PlanEx ≈ satisficing planning, PlanOpt ≈ optimal planning.

Theorem (Planning is Hard). Each of PlanEx and PlanOpt is
PSPACE-complete.

Proof. See AI’18.
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Our Agenda for This Chapter

2 Transition Systems: The basic framework we’ll be moving in; forms
the basis for both STRIPS and FDR. (= state space, cf. AI’18)

3 STRIPS Planning: STRIPS is by far the most wide-spread
planning formalism. It is also the simplest possible reasonably
expressive planning formalism, and thus a canonical subject to study.

4 Finite-Domain Representations (FDR): FDR is only slightly more
general than STRIPS, but as we shall see can be quite useful.

5 STRIPS vs. FDR: The two formalisms can be compiled into each
other. Such compilations are wide-spread in practice, and we will
use them at some points during the course.

6 Extended Planning Frameworks: To at least give you a brief
glimpse beyond classical planning.
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Transition Systems

→ State space of planning task = a transition system.

Definition (Transition System). A transition system is a 6-tuple
Θ = (S,L, c, T, I, SG) where:

S is a finite set of states.

L is a finite set of transition labels.

c : L 7→ R+
0 is the cost function.

T ⊆ S × L× S is the transition relation.

I ∈ S is the initial state.

SG ⊆ S is the set of goal states.

The size of Θ is its number of states, size(Θ) := |S|.
We say that Θ has the transition (s, l, s′) if (s, l, s′) ∈ T . We also write this

s
l−→ s′, or s→ s′ when not interested in l.

We say that Θ is deterministic if, for all states s and labels l, there is at most

one state s′ with s
l−→ s′.

We say that Θ has unit costs if, for all l ∈ L, c(l) = 1.
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Transition Systems, ctd.

Terminology: Θ = (S,A, c, T, I, SG); s, s′, si ∈ S

s′ successor of s if s→ s′; s predecessor of s′ if s→ s′.

s′ reachable from s if there exists a sequence of transitions:

s = s0
l1−→ s1, . . . , sn−1

ln−→ sn = s′

n = 0 possible; then s = s′.
l1, . . . , ln is called path from s to s′.
s0, . . . , sn is also called path from s to s′.
The cost of that path is

∑n
i=1 c(li).

s′ reachable (without reference state) means reachable from I.

Solution for s: path from s to some s′ ∈ SG; optimal if cost is minimal
among all solutions for s.

s is solvable if it has a solution; else, s is a dead end.

Solution for I is called solution for Θ; Θ is solvable if it has a solution.

Note: We allow non-deterministic Θ here: In each state si, a solution may
select any one outgoing transition labeled with li+1. We will need this only for
abstractions (→ Chapters 11–13).
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Transition Systems: Illustration

Directed labeled graphs + mark-up for initial state and goal states:

initial state

actB, 4

actH, 2.3

actA, 2

actF, 1.1

actE, 0

actE, 0

actE, 0

actC, 3
actD, 4.7

actG
, 0

ac
tG

, 
0

actG
, 0

ac
tG

, 0

actC, 4

actC, 3

goal states

s3 s6

s2

s1 s4

s5

s7

s10

s9

s8

I

Are all states in Θ reachable? No: state at bottom, 2nd from right.

Are all states in Θ solvable? No: state near top, 2nd from left.

Is this Θ deterministic? No: On two of the goal states, actG labels more
than one outgoing transition.
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Transition Systems: Illustration, ctd.

Directed labeled graphs + mark-up for initial state and goal states:

initial state

actB, 4

actH, 2.3

actA, 2

actF, 1.1

actE, 0

actE, 0

actE, 0

actC, 3
actD, 4.7

actG
, 0

ac
tG

, 
0

actG
, 0

actC, 4

actC, 3

goal states

s3 s6

s2

s1 s4

s5

s7

s10

s9

s8

I

Is this Θ deterministic? Yes.

What are the optimal solutions for Θ? Any path that starts with actB,
applies actE n ∈ {0, 2, 4, . . . } times, then applies actC then actE and then
no action other than actG.
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Why don’t we simply use Dijkstra? Example Blocksworld

n blocks, 1 hand.

A single action either takes a block with the hand or puts a
block we’re holding onto some other block/the table.

blocks states

1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353
9 4596553

blocks states

10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921
17 26846616451246353
18 588633468315403843

→ We are interested in solving huge transition systems, represented in a
compact way as planning tasks (up next).
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STRIPS Planning: Syntax

Definition (STRIPS Planning Task). A STRIPS planning task is a 5-tuple
Π = (P,A, c, I,G) where:

P is a finite set of facts, also propositions.

A is a finite set of actions; each a ∈ A is a triple a = (prea, adda, dela) of
subsets of P referred to as the action’s precondition, add list, and delete
list respectively; we require that adda ∩ dela = ∅.
c : A 7→ R+

0 is the cost function.

I ⊆ P is the initial state.

G ⊆ P is the goal.

We say that Π has unit costs if, for all a ∈ A, c(a) = 1. We will often give each
action a ∈ A a name (a string), and identify a with that name.

Diff to AI’18: The cost function c.

→ What for do we allow 0-cost actions? Negligible cost (e.g. switch light
on, take photo with smartphone), asking questions about only one kind
of actions (e.g. Mars rover take-picture only).
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STRIPS Encoding of “TSP” in Australia

Propositions P : {at(x), visited(x) | x ∈ {Sydney,Adelaide,Brisbane,Perth,Darwin}}.

Initial state I: {at(Sydney), visited(Sydney)}.

Goal G: {at(Sydney)} ∪ {visited(x) | x ∈ {Sydney,Adelaide,Brisbane,Perth,Darwin}}.

Actions a ∈ A: drive(x, y) where x, y have a road.
Precondition prea: {at(x)}.
Add list adda: {at(y), visited(y)}.
Delete list dela: {at(x)}.

Cost function c:

c(drive(x, y)) =


1 {x, y} = {Sydney,Brisbane}
1.5 {x, y} = {Sydney,Adelaide}
3.5 {x, y} = {Adelaide,Perth}
4 {x, y} = {Adelaide,Darwin}
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STRIPS Planning: Semantics

Definition (STRIPS State Space). Let Π = (P,A, c, I,G) be a STRIPS
planning task. The state space of Π is the labeled transition system
ΘΠ = (S,L, c, T, I, SG) where:

The states (also world states) S = 2P are the subsets of P .

The labels L = A are Π’s actions; the cost function c is that of Π.

The transitions are T = {s a−→ s′ | a ∈ A[s], s′ = sJaK}, where

A[s] := {a ∈ A | prea ⊆ s} are the actions applicable in s; for a ∈ A[s],
sJaK := (s ∪ adda) \ dela; for a 6∈ A[s], sJaK is undefined, sJaK := ⊥.

The initial state I is identical to that of Π.

The goal states SG = {s ∈ S | G ⊆ s} are those that satisfy Π’s goal.

An (optimal) plan for s ∈ S is an (optimal) solution for s in ΘΠ. A solution for
I is called a plan for Π. Π is solvable if a plan for Π exists.

For ~a = 〈a1, . . . , an〉, sJ~aK :=

{
s n = 0
sJ〈a1, . . . , an−1〉KJanK n > 0

→ Is ΘΠ deterministic? Yes: the successor state s′ in s
a−→ s′ is uniquely

determined by s and a, through s′ = sJaK.
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STRIPS Encoding of Simplified “TSP”

Propositions P : {at(x), visited(x) | x ∈ {Sydney,Adelaide,Brisbane}}.

Initial state I: {at(Sydney), visited(Sydney)}.

Goal G: {visited(x) | x ∈ {Sydney,Adelaide,Brisbane}}. (Note: no “at(Sydney)”.)

Actions a ∈ A: drive(x, y) where x, y have a road.
Precondition prea: {at(x)}.
Add list adda: {at(y), visited(y)}.
Delete list dela: {at(x)}.

Cost function c:

c(drive(x, y)) =

{
1 {x, y} = {Sydney,Brisbane}
1.5 {x, y} = {Sydney,Adelaide}
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STRIPS Encoding of Simplified “TSP”: State Space

drive A
d Sy, 1.5

dr
iv

e 
B
r S

y,
 1

drive Sy Ad, 1.5

drive Sy Br, 1drive Ad Sy, 1.5

drive Br Sy, 1

dr
iv

e 
Sy 

B
r, 

1

drive Sy A
d, 1.5

{at(Sy), v(Sy)}

{at(Br), v(Sy), v(Br)}

{at(Ad), v(Sy), v(Ad)}

{at(Sy), v(Sy), v(Br)}

{at(Sy), v(Sy), v(Ad)}

{at(Ad), v(Sy), v(Br), v(Ad)}

{at(Br), v(Sy), v(Ad), v(Br)}

{at(Sy), v(Sy), v(Ad), v(Br)}

→ Exactly one optimal plan: drive Sy Br, drive Br Sy, drive Sy Ad.

→ Is this actually the state space? No, only the reachable part. E.g., ΘΠ also
includes the states {v(Sy)} and {at(Sy), at(Br)}.
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Questionnaire

Propositions P :
{at(x), visited(x) | x ∈ {Sydney,Adelaide,Brisbane,Perth,Darwin}}.

Initial state I: {at(Sydney), visited(Sydney)}.

How many states are there in the “TSP in Australia” task?

→: 210 = 1024. But only a small portion of them are reachable (less
than 5 · 24 = 80)!
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FDR Planning: Syntax

Definition (FDR Planning Task). A finite-domain representation planning
task, short FDR planning task, is a 5-tuple Π = (V,A, c, I,G) where:

V is a finite set of state variables, each v ∈ V with a finite domain Dv.

We refer to (partial) functions on V , mapping each v ∈ V into a member
of Dv, as (partial) variable assignments.

A is a finite set of actions; each a ∈ A is a pair (prea, eff a) of partial
variable assignments referred to as the action’s precondition and effects.

c : A 7→ R+
0 is the cost function.

I is a complete variable assignment called the initial state.

G is a partial variable assignment called the goal.

We say that Π has unit costs if, for all a ∈ A, c(a) = 1.

→ In FDR, a (partial) variable assignment represents a state in I, a condition in
prea and G, and an effect instruction in eff a.

Notation: Pairs (v, d) are facts, also written v = d. We identify partial variable
assignments p with fact sets. We write V [p] := {v ∈ V | p(v) is defined}.
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FDR Encoding of “TSP”

Variables V : at : {Sydney,Adelaide,Brisbane,Perth,Darwin}; visited(x) : {T, F} for
x ∈ {Sydney,Adelaide,Brisbane,Perth,Darwin}.

Initial state I: at = Sydney, visited(Sydney) = T, visited(x) = F for x 6= Sydney.

Goal G: at = Sydney, visited(x) = T for all x.

Actions a ∈ A: drive(x, y) where x, y have a road.
Precondition prea: at = x.
Effect eff a: at = y, visited(y) = T .

Cost function c:

c(drive(x, y)) =


1 {x, y} = {Sydney,Brisbane}
1.5 {x, y} = {Sydney,Adelaide}
3.5 {x, y} = {Adelaide,Perth}
4 {x, y} = {Adelaide,Darwin}
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FDR Planning: Semantics

Definition (FDR State Space). Let Π = (V,A, c, I,G) be an FDR planning
task. The state space of Π is the labeled transition system
ΘΠ = (S,L, c, T, I, SG) where:

The states (also world states) S are the complete variable assignments.

The labels L = A are Π’s actions; the cost function c is that of Π.

The transitions are T = {s a−→ s′ | a ∈ A[s], s′ = sJaK}, where

A[s] := {a ∈ A | prea ⊆ s} are the actions applicable in s; for a 6∈ A[s],

sJaK := ⊥; for a ∈ A[s], sJaK(v) :=

{
eff a(v) v ∈ V [eff a]
s(v) v 6∈ V [eff a]

The initial state I is identical to that of Π.

The goal states SG = {s ∈ S | G ⊆ s} are those that satisfy Π’s goal.

→ In sJaK, instead of “adding/deleting” facts, we overwrite the previous
variable values by eff a.

→ Plan, optimal plan, sJ~aK for action sequence ~a: as before (slide 19).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 2: Planning Formalisms 26/52

Introduction Trans. Sys. STRIPS FDR Planning STRIPS vs. FDR Extensions Conclusion References

FDR Encoding of Simplified “TSP”: State Space

(using “v(x)” as shorthand for visited(x) = T )

drive A
d Sy, 1.5

dr
iv

e 
B
r S

y,
 1

drive Sy Ad, 1.5

drive Sy Br, 1drive Ad Sy, 1.5

drive Br Sy, 1

dr
iv

e 
Sy 

B
r, 

1

drive Sy A
d, 1.5

{at = Br, v(Sy), v(Br)} {at = Sy, v(Sy), v(Br)} {at = Ad, v(Sy), v(Br), v(Ad)}

{at = Ad, v(Sy), v(Ad)} {at = Sy, v(Sy), v(Ad)} {at = Br, v(Sy), v(Ad), v(Br)}

{at = Sy, v(Sy), v(Ad), v(Br)}
{at = Sy, v(Sy)}

→ This is only the reachable part of the state space: E.g., ΘΠ also includes the
state {at = Sy, v(Br)}. (But neither {v(Sy)} nor {at = Sy, at = Br},
compare slide 21.)
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Questionnaire

Question!

How many STRIPS state variables are needed to encode the
problem of finding a path in a graph with n vertices?

(A): 1

(C): dlog2 ne
(B): n

(D): 2 ∗ dlog2 ne

→ (D): We need to encode our current position in the graph. This can be done with n
propositions of the form “at(p)”, but it can be done more compactly by: numbering
the positions ID(p); representing ID(p) in the binary system using dlog2 ne bits biti;
and representing each biti with two STRIPS facts True(biti) and False(biti).

Question!

How many FDR state variables are needed for this?

(A): 1

(C): dlog2 ne
(B): n

(D): 2 ∗ dlog2 ne

→ (A): We need 1 variable with n values, encoding our current position in the graph.
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STRIPS vs. FDR in Practice

How do people use FDR?

Our surface language is PDDL, which corresponds to STRIPS.
Most implemented planning tools are based on Fast Downward (FD)
[Helmert (2009)], which reads PDDL input, then internally uses a “clever”
STRIPS-2-FDR translation (see next).
That translation involves a PSPACE-complete sub-problem.

Why??? Practical Efficiency!

Regression: FDR avoids myriads of unreachable states. → Chapter 6
Causal Graphs: Capture variable dependencies; have a much clearer
structure for clever FDR (e.g., acyclic vs. cyclic). → Chapter 5
Complexity Analysis: Better with clearer causal graph. → Chapter 5
Construction of Heuristic Functions: Better with multiple-valued variables
and clearer causal graph. → Chapters 10 and 12
Modeling: Anyway, FDR is more natural! (It’s just one truck, after all.)

Why does anybody use STRIPS? It’s a legacy system.

→ We should be modeling in FDR. For historical reasons, we aren’t.
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STRIPS vs. FDR Conversions

Conversions:

(I) FDR-2-STRIPS: For each variable v with domain {d1, . . . , dk}, make k
STRIPS facts “v = d1”, . . . , “v = dk”.

(II) STRIPS-2-FDR: Näıve vs. clever variants, see slides 34 – 37.

What role does all this play here?

Both STRIPS and FDR are used in practice, cf. slide 30. The
programming exercises are in FD, hence FDR.

Some techniques in the remainder of the course are easier to introduce in
STRIPS, some are easier in FDR, so we will keep both around.

Specific relevance of (I): If the course introduces a technique A in STRIPS,
then A in FDR (and hence your FD code!) is equivalent to
“convert-FDR-2-STRIPS-then-do-A”.

Specific relevance of (II): So you get an understanding of how FD
processes the PDDL/STRIPS input to FDR.
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FDR-2-STRIPS: Details

Definition (FDR-2-STRIPS). Let Π = (V,A, c, I,G) be an FDR planning
task. The STRIPS conversion of Π is the STRIPS task
ΠSTR = (PV , A

STR, c, I,G) where:
PV = {v = d | v ∈ V, d ∈ Dv} is the set of (STRIPS) facts.
ASTR = {aSTR | a ∈ A} where preaSTR = prea, addaSTR = eff a, and

delaSTR =
⋃

(v=d)∈eff a

{
{v = prea(v)} if prea(v) is defined
{v = d′ | d′ ∈ Dv \ {d}} otherwise

The cost function c is defined by c(aSTR) := c(a) for all aSTR ∈ ASTR.
I and G are identical to those of Π.

→ The adds establish the new variable values of eff a; the deletes make sure to
erase the previous values of those variables.

→ Take-home message: FDR variable/value pairs ≈ STRIPS facts!

Proposition. Let Π = (V,A, c, I,G) be an FDR planning task, and let ΠSTR be
its STRIPS conversion. Then ΘΠ is isomorphic to the sub-system of ΘΠSTR

induced by those s ⊆ PV where, for each v ∈ V , s contains exactly one fact of
the form v = d. All other states in ΘΠSTR are unreachable.
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FDR-2-STRIPS: Simplified “TSP”

FDR V : at : {Sydney ,Adelaide,Brisbane}; visited(x) : {T, F} for
x ∈ {Sydney ,Adelaide,Brisbane}.

STRIPS P : at(x), visited(x, T ), visited(x, F ) for
x ∈ {Sydney ,Adelaide,Brisbane}.

FDR dr(x, y): pre = {at = x}, eff = {at = y, v(y) = T}.

STRIPS dr(x, y):

pre = {at(x)}, add = {at(y), v(y, T )}, del = {at(x), v(y, F )}.
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STRIPS-2-FDR: Näıve Translation

Definition (STRIPS-2-FDR). Let Π = (P,A, c, I,G) be a STRIPS planning
task. The FDR conversion of Π is the FDR task
ΠFDR = (VP , A

FDR, c, IFDR, GFDR) where:

VP = {vp | p ∈ P} is the set of variables, all Boolean.

AFDR = {aFDR | a ∈ A} where preaFDR = {vp = T | p ∈ prea} and
eff aFDR = {vp = T | p ∈ adda} ∪ {vp = F | p ∈ dela}.
The cost function c is defined by c(aFDR) := c(a) for all aFDR ∈ ASTR.

I = {vp = T | p ∈ I}; and G = {vp = T | p ∈ G}.

→ All variables here have two possible values only, so this does not benefit at all
from the added expressivity of FDR. Hence the designation “näıve”.

Proposition. Let Π = (P,A, c, I,G) be a STRIPS planning task, and let ΠFDR

be its STRIPS conversion. Then ΘΠ is isomorphic to ΘΠSTR .
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STRIPS-2-FDR, Näıve: Simplified “TSP”

STRIPS P : at(x), visited(x) for x ∈ {Sydney ,Adelaide,Brisbane}.

FDR V : at(x), visited(x) : {T, F} for x ∈ {Sydney ,Adelaide,Brisbane}.

STRIPS dr(x, y): pre = {at(x)}, add = {at(y), v(y)}, del = {at(x)}

FDR dr(x, y): pre = {at(x) = T},
eff = {at(y) = T, v(y) = T, at(x) = F}.
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STRIPS-2-FDR: Clever Translation

How to be clever?

Find sets {p1, . . . , pk} of STRIPS facts so that every reachable state
s makes exactly one pi true.

→ Deciding whether this holds, for a given {p1, . . . , pk}, is
PSPACE-complete (cf. slide 30). But one can design fast
algorithms finding some such sets [Helmert (2009)].

For each set {p1, . . . , pk} found, make one FDR variable v with
domain {d1, . . . , dk}.
This is implemented in the pre-processor of Fast Downward.
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STRIPS-2-FDR Näıve vs. Clever: Simplified “TSP”

STRIPS P : at(x), visited(x) for x ∈ {Sydney ,Adelaide,Brisbane}.

Näıve V : at(x), visited(x) : {T, F} for x ∈ {Sydney ,Adelaide,Brisbane}.

Clever V : at : {Sydney ,Adelaide,Brisbane};
visited(x) : {T, F} for x ∈ {Sydney ,Adelaide,Brisbane}.

→ The näıve version is merely STRIPS in disguise. The clever version is more
natural, and is explicit about the “truck position”.
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Action Description Language (ADL)

Framework Definition: [Pednault (1989); Hoffmann and Nebel (2001)].

Problem: Like STRIPS but with PL1 formulas in prea and G, and with
conditional effects that execute only if their individual effect condition holds.

Plan: Sequence of actions. (Yes, this is still “classical planning”.)

Example: If your action a opens the doors of an elevator, then each passenger
gets out iff their individual condition (“Is this my destination floor?”) holds. If
you want to satisfy complex constraints (“Group A should never meet group B
in the elevator”) then prea gets nasty. (See the PDDL file here.)

Compilation: PL1 formulas: Ground them (the universe is finite) and transform
to DNF [Gazen and Knoblock (1997); Koehler and Hoffmann (2000)].

Conditional effects: Either enumerate all combinations of effects, or introduce
artificial facts/actions enforcing an “effect evaluation phase” [Nebel (2000)].

State of the art: Get rid of PL1 formulas but keep the conditional
effects [Hoffmann and Nebel (2001)].
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Numeric and Temporal Planning

Numeric Planning: [Fox and Long (2003)]
prea : fuelSupply ≥ distance(x, y) ∗ fuelConsumption
eff a : fuelSupply := fuelSupply − distance(x, y) ∗ fuelConsumption

Compilation: Nothing known.

Temporal Planning: [Fox and Long (2003)]
durationa : distance(x, y)/speed
eff a : at Start ¬at(x), at End at(y).

Compilation: Ignore durations during search, schedule plan as a
post-process [Edelkamp (2003)]. Competitive with state of the art!
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Soft Goals and Trajectory Constraints

Soft Goals: [Gerevini et al. (2009)]

“I don’t absolutely have to visit Darwin, but if I do, I get a certain
amount R of reward.”

Compilation: Artificial actions that allow to forgo each weak goal, at
cost R; minimize cost [Keyder and Geffner (2009)]. State of the art!

Trajectory Constraints: [Gerevini et al. (2009)]

“I must visit Perth before I visit Darwin.”

Compilation: Artificial preconditions/effects, e.g. visited(Perth) into
precondition of driving to Darwin [Edelkamp (2006)]. State of the art!
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Conformant Planning

Framework Definition: [Smith and Weld (1998); Bonet and Givan (2006)].

Problem: There are many possible initial states (represented as a
formula), and each action may have several possible effects. We have no
observability during plan execution.

Plan: Sequence of actions that achieves the goal regardless which initial
state and action effects occur.

Example: You’re in a dark cave but don’t know where exactly. The plan
is to walk to the right until you reach a wall and can locate yourself
(thanks to noticing that the action “walk to the right” does not work
anymore). Then navigate to your goal by counting your steps.

Compilation: Artificial “what-if” facts, like “If I was at A initially, then I
am now at B” [Palacios and Geffner (2009)]. State of the art!
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Contingent Planning

Framework Definition: e.g., [Hoffmann and Brafman (2005)].

Problem: There are many possible initial states (represented as a
formula), and each action may have several possible effects. We have
partial observability during plan execution.

Plan: Tree of actions that achieves the goal in each of its leaves. (“Plan
ahead for all possible contingencies, i.e., situation aspects not known at
planning time.”)

Example: Solving the Wumpus world: You walk some steps, then use
sensing (for breeze and stench), and continue depending on the outcome.

Compilation: Sample initial states, classical planning with artificial facts
encoding knowledge yields a plan tree for those; in case a problem is
detected during execution, re-plan with the new state of knowledge
[Shani and Brafman (2011)]. Competitive with state of the art!
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Probabilistic Planning

Framework Definition: e.g., [Younes et al. (2005)].

Problem: Each action specifies a probability distribution over its possible
effects. We have full observability during plan execution. (Markov
Decision Process (MDP) framework.)

Plan: Policy that maps states to actions in a way that maximizes the
expected reward.

Example: Controlling a robot: If navigation comes with an imprecision
(which it usually does), then the outcome of a “move” operation is
uncertain.

Compilation: Make classical problem that acts as if you could choose
the outcomes; find a plan, and execute; if the plan fails, then re-plan
from the current state [Yoon et al. (2007)]. State of the art for problems
where “reactive behavior” is suitable (things may go wrong, but if they
do, they can be easily repaired).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 2: Planning Formalisms 44/52

Introduction Trans. Sys. STRIPS FDR Planning STRIPS vs. FDR Extensions Conclusion References

Summary

Transition systems are a kind of directed graph (typically huge) that
encode how the state of the world can change.

Planning tasks are compact representations for transition systems, based
on state variables; they are the input for planning systems.

In satisficing planning, we must find a solution to planning tasks (or show
that no solution exists). In optimal planning, we must additionally
guarantee that generated solutions are the cheapest possible.

Classical planning makes strong simplifying assumptions, but is very
successful in practice and can be used by compilation to tackle more
expressive planning problems.

In STRIPS, state variables are Boolean; in FDR, they may have arbitrary
finite domains. The two formalisms can be compiled into each other. FDR
is preferrable, but current planning technology is based on STRIPS for
historical reasons.

→ PDDL, see Next Chapter.
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Remarks

Regarding the name “FDR”:

FDR is not consistently named in the literature.

It is often referred to as SAS+ because that’s what some complexity
guys called it, in the first papers considering a formalism equivalent
to our FDR [e.g., Bäckström and Nebel (1995)].

[Helmert (2006)] called it multi-valued planning tasks (MPT) which
can still be seen in some papers.

[Helmert (2009)] finally called it FDR.
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Reading

Concise Finite-Domain Representations for PDDL Planning Tasks
[Helmert (2009)].

Available at:

http://www.informatik.uni-freiburg.de/~ki/papers/

helmert-aij2009.pdf

Content: Describes in detail the “clever” STRIPS-2-FDR conversion
implemented in Fast Downward. The sets {p1, . . . , pk} of STRIPS
facts, of which exactly one is true in every reachable state, are found
by automatic invariance analysis. Is in wide-spread use, and a basic
familiarity with it is relevant for anybody working in planning.
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