
International Journal on Software Tools for Technology Transfer (2023) 25:407–426
https://doi.org/10.1007/s10009-022-00685-9

EXPLANATION PARADIGMS LEVERAGING ANALYT IC INTUIT ION

Special Section: Introducing Explanation Paradigms Leveraging Analytic Intuition

Analyzing neural network behavior through deep statistical model
checking

Timo P. Gros1 · Holger Hermanns1 · Jörg Hoffmann1 ·Michaela Klauck1 ·Marcel Steinmetz1

Accepted: 18 October 2022 / Published online: 13 December 2022
© The Author(s) 2022

Abstract
Neural networks (NN) are taking over ever more decisions thus far taken by humans, even though verifiable system-level
guarantees are far out of reach. Neither is the verification technology available, nor is it even understood what a formal,
meaningful, extensible, and scalable testbed might look like for such a technology. The present paper is an attempt to improve
on both the above aspects. We present a family of formal models that contain basic features of automated decision-making
contexts and which can be extended with further orthogonal features, ultimately encompassing the scope of autonomous
driving. Due to the possibility to model random noise in the decision actuation, each model instance induces a Markov
decision process (MDP) as verification object. The NN in this context has the duty to actuate (near-optimal) decisions. From
the verification perspective, the externally learnt NN serves as a determinizer of the MDP, the result being a Markov chain
which as such is amenable to statistical model checking. The combination of an MDP and an NN encoding the action policy
is central to what we call “deep statistical model checking” (DSMC). While being a straightforward extension of statistical
model checking, it enables to gain deep insight into questions like “how high is the NN-induced safety risk?”, “how good
is the NN compared to the optimal policy?” (obtained by model checking the MDP), or “does further training improve the
NN?”. We report on an implementation of DSMC inside the Modest Toolset in combination with externally learnt NNs,
demonstrating the potential of DSMC on various instances of the model family, and illustrating its scalability as a function
of instance size as well as other factors like the degree of NN training.

Keywords Statistical model checking · Neural networks · Learning · Verification · Scalability

Authors are listed alphabetically. This work was partially supported
by the ERC Advanced Investigators Grant 695614 (POWVER), by the
German Research Foundation (DFG) under Grant No. 389792660, as
part of TRR 248 – CPEC, see https://perspicuous-computing.science,
by the Key-Area Research and Development Program
Grant 2018B010107004 of Guangdong Province, and by the European
Regional Development Fund (ERDF).
A preliminary version of this work was published at FORTE [30].
Here, we report full technical details as well as new experiments
exploring scalability as a function of instance size and the degree of
NN training.

B Michaela Klauck
klauck@cs.uni-saarland.de

Timo P. Gros
timopgros@cs.uni-saarland.de

Holger Hermanns
hermanns@cs.uni-saarland.de

Jörg Hoffmann
hoffmann@cs.uni-saarland.de

1 Introduction

Neural networks (NN), in particular deep neural networks,
promise astounding advances across a manifold of comput-
ing applications in domains as diverse as image classification
[51], natural language processing [43], and game playing
[67]. NNs are the technical core of ever more intelligent sys-
tems, created to assist or replace humans in decision-making.
This development comes with the urgent need to devise

methods to analyze, and ideally verify, desirable behavioral
properties of such systems. Unlike for traditional program-
ming methods, this endeavor is hampered by the nature of

Marcel Steinmetz
steinmetz@cs.uni-saarland.de

1 Saarland Informatics Campus, Saarland University,
Saarbrücken, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-022-00685-9&domain=pdf
https://perspicuous-computing.science

408 T. P. Gros et al.

neural networks, whose complex function representation is
not suited to human inspection and is highly resistant to
mechanical analysis of important properties.
Verification Challenge. As a matter of fact, remarkable
progress is being made toward automated NN analysis, be it
through specialized reasoning methods of the SAT-modulo-
theories family [22,45,49], or through suitable variants
of abstract interpretation [21,57] or quantitative analysis
[17,70]. All these works thus far focus on the verification
of individual NN decision episodes, i.e., the behavior of a
single input/output function call. In contrast, the verification
of NNs being the decisive (in the literal sense of the word)
authorities inside larger systems placed in possibly uncertain
contexts is wide-open scientific territory.
Very many real-world examples, where NNs are expected

to become central decision entities—from autonomous driv-
ing to medical care robotics—involve discrete decision-
making in the presence of random phenomena. The former
are to be taken in the best possible manner, and it is the NN
that decides which decisions to take when and where. A very
natural formal model for studying the principles, require-
ments, efficacy and robustness of such an NN, is the model
family of Markov decision processes [64] (MDP). MDPs are
a very widely studied class of models in the AI community,
as well as in the verification community, whereMDPs are the
main semantic object of probabilistic model checking [53].
Assume now we are facing a problem for which a NN

decision entity has been developed by a different party. If the
problem statement can be formally cast as a certainMDP, we
may use this MDP as a context to study properties of the NN
delivered to us. Concretely, the NN will be put to use as a
determinizer of the otherwise nondeterministic choices in the
MDP, so that altogether aMarkov chain results, which in turn
can be evaluated by standard probabilistic model checking
techniques. The idea can be further extended by making the
technology available to a certification authority responsible
for NN system approval, or to the party designing the NN, as
a valuable feedback mechanism in the design process.

Deep statistical model checking. However, this style of ver-
ification is challenged by the complexity of analyzing the
participating NN and that of analyzing the induced system
behaviors and interactions. Already the latter is a notori-
ous practical impediment to successful verification rooted in
state space explosion problems. Indeed, standard probabilis-
tic model checking will suffer quickly from this. However,
for Markov chains, there is a scalable alternative to standard
model checking at hand, nowadays referred to as statistical
model checking [42,54,71]. The latter method employs effi-
cient sampling techniques to statistically check the validity
of a certain formal property. If applicable, it does not suf-
fer from the state space explosion problem, in contrast to
standard probabilistic model checking.

The scalable verificationmethodwe proposed inDSMC20
[30] is called deep statistical model checking (DSMC) by us.
At its core is a straightforward variation of statistical model
checking, applied to anMDP, together with an NN that has to
take the decisions. For this, DSMC expects anNN that can be
queried as a black-box oracle to resolve the nondeterminism
in the MDP given: The NN receives the state descriptor as
input, and it returns as output a decision determining the next
step. The DSMCmethod integrates the pair of NN andMDP,
and analyzes the resulting Markov chain statistically. In this
way, it is possible to statistically verify properties of the NN
itself, as we will discuss.
Racetrack. To study the potential of DSMC, we perform
practical experiments with a case study family that remotely
resembles the autonomous driving challenge, albeit with
some drastic restrictions relative to the grand vision. These
restrictions are as follows: (i) We consider a single vehicle,
there is no traffic otherwise. (ii) No object or position sens-
ing is in use, instead the vehicle is aware of its exact position
and speed. (iii) No speed limits or other traffic regulations
are in place. (iv) Fuel consumption is not optimized for. (vi)
Weather and road conditions are constant. (vii) The entire
problem is discretized in a coarse manner. What remains
after all these restrictions (apart from inducing a roadmap of
further works beyond what we study) is the problem of nav-
igating a vehicle from start to goal on a discrete map, with
actions allowing to accelerate/decelerate in discrete direc-
tions, subject to a probabilistic risk of action failing to take
effect in each step. The objective is to reach the goal in amin-
imal number of steps without bumping into a boundary wall.
This problem is known as the Racetrack, a benchmark origi-
nating in AI autonomous decision-making [9,63]. Recently,
the benchmark has also been used inmultiplemodel checking
and verification contexts [7], where some of the restrictions
from above have been relaxed and more features have been
added. In formal terms, eachmap and parameter combination
induces an MDP.
Racetrack is a simple problem, simple enough to put a

neural network in the driver seat: This NN is then the central
authority in the vehicle control loop. It needs to take action
decisions with the objective to navigate the vehicle safely
toward the goal. There are a good number of scientific pro-
posals on how to construct and train an NN for mastering
such tasks, and the present paper is not trying at all to inno-
vate in this respect. Instead, the central contribution of this
paper is a scalablemethod to verify the effectiveness of anNN
trained externally for its task. This technique, DSMC, is by
no means bound to the Racetrack problem domain, instead
it is generally applicable. We evaluate it in the context of
Racetrack because we do think that this is a crisp formal
model family, which is of value in ongoing activities to sys-
tematize our understanding of NNs that are supposed to take
over important decisions from humans.

123

Analyzing neural network behavior... 409

Our concrete modelling context is MDPs represented in
Jani [14], a language interfacing with the leading probabilis-
tic model checkers out there. For the sake of experimentation
and for use by third parties, we have implemented a connec-
tion between NNs and the state-of-the-art statistical model
checker modes [10,13], part of the Modest Toolset [38].
This extension gives the possibility to use anNNoracle and to
analyze the resulting Markov chain by SMC. We thus estab-
lish an initial DSMC tool infrastructure, which we apply on
Racetrack benchmarks.
It will become evident by our empirical evaluation that

there are a variety of use cases for DSMC, pertaining to end
users and domain engineers alike:

– Quality assurance. DSMC can be a tool for end users, or
engineers, in system approval or certification, regarding
safety, robustness, absence of deadlocks, or performance
metrics. The generic connection to model checking
furthermore enables the comparison of NN oracles to
provably optimal choices, on moderate-size models: tak-
ing out the NN, the original MDP results, and can be
submitted to standard probabilistic model checking. In
our implementation, we usemcsta [38] for this purpose,
the probabilisticmodel checker of theModestToolset,
based on value iteration.

– Learning pipeline assessment. DSMC can serve as a tool
for the NN engineers designing the NN learning pipeline
in the first place. This is because the DSMC analysis can
reveal specific deficiencies in that pipeline. For exam-
ple, we show that simple heat maps can highlight where
the oracles are unsafe. And we exhibit cases where NN
oracles turn out highly unsafe despite this phenomenon
not being derivable from standard measures of learning
performance. Such problemswould likely have remained
undetected without DSMC.

There are already works building up on DSMC giving
evidence for the potential impact of the approach. The infor-
mation delivered byDSMChas already been used to improve
reinforcement learning strategies [32] and for the design
of policy-analysis tools in synergy with interactive visual-
ization techniques [26,28]. The most important work based
on DSMC is MoGym [29], the integrated toolbox enabling
the training and verification of machine-learned decision-
making agents based on formal models, which bridges the
reinforcement learning community to formal methods.
In summary, our contributions are as follows:

1. We present deep statistical model checking, which statis-
tically evaluates the connection of an NN oracle and an
MDP formalizing the problem context.

2. We establish tool infrastructure for DSMCwithinmodes
to connect to NN oracles.

3. We establish infrastructure for Racetrack benchmarking,
including parsing, simulation, Jani model export, com-
parison with optimal behavior, and also for NN learning.

4. We illustrate the use and feasibility of DSMC in Race-
track case studies.

5. We demonstrate the scalability of DSMC, depending on
multiple dimensions, e.g., model size and number of
training episodes, i.e., NN quality, in a huge, time con-
suming study on scaled Racetrack benchmarks.

The benchmark and all infrastructure including our mod-
ification of modes as well as our Janimodel is archived and
publicly available at DOI https://doi.org/10.5281/zenodo.
3760098 [31] as presented inDSMC20. The infrastructure for
the scalability study is available at https://doi.org/10.5281/
zenodo.7071405 on Zenodo.
The paper is organized as follows: Section3 briefly covers
the necessary background in model checking, neural net-
works, and the Racetrack benchmark. Section4 introduces
the DSMC connection and discusses our implementation.
Section5 introduces our Racetrack infrastructure, specif-
ically the Jani model and the NN learning machinery.
Section6 describes the case studies and shows how DSMC
can be applied. Section7 evaluates the performance and scal-
ability of the DSMC approach, and Sect. 8 closes the paper
with a discussion of the approach and ideas for future devel-
opments.

2 Related work

As mentioned above, the need to analyze and verify NNs
is becoming more and more important. Thus, several quite
differentmethods have been invented for automatedNNanal-
ysis, e.g., special methods based on SAT-modulo-theories
[22,45,49], abstract interpretation [21,57] or quantitative
analysis [17,70] have been developed. But all these tech-
niques have in common that they try to verify individual NN
decision episodes, i.e., the behavior of a single input/output
function call. The field of analyzing NNs, taking the deci-
sions in the context of a larger system with uncertainty, we
enter with our work here, is quite new and unexplored.
Verification of NN control systems by integrating Taylor

models and zonotopes [66] has recently been implemented.
In addition, UPPAAL Stratego [19] combines formal meth-
ods with reinforcement learning and uses, e.g., decision trees
for policy presentation and verification [5].
Other works combining formal methods with NNs, for

example, study strategy synthesis for partially observable
MDPs (POMDPs) to find strategies that fulfill certain proba-
bilistic timed properties. In this approach, a recurrent neural
network (RNN) is trained which encodes POMDP strate-
gies. The RNN is then used to construct a Markov chain for

123

https://doi.org/10.5281/zenodo.3760098
https://doi.org/10.5281/zenodo.3760098
https://doi.org/10.5281/zenodo.7071405
https://doi.org/10.5281/zenodo.7071405

410 T. P. Gros et al.

which the temporal property can be checked using standard
verification techniques [15]. The key difference to our work
is that the Markov chain induced by a strategy given by the
RNN is fully built and not simulated to check if a given prop-
erty holds. If it does not hold, a counterexample is generated
which helps to locally improve the strategy.
Another work combining formal methods and machine

learning reasons about the behavior of NN structures by
extracting a decision-tree model of it over which reasoning
is possible using model checking [4]. This model forms a
correct-by-design controllerwith performances of usualNNs
in reinforcement learning. This controller can be integrated
in a bounded model checking procedure to find re-training
opportunities.
To be able to add features to NNs acting as a controller

without re-training and loosing toomuch performance, quan-
titative runtime shields have been invented [6]. The shields
may alter the command given by the controller before pass-
ing it to the system under control. To generate these shields,
reactive synthesis is used, i.e., a stochastic model of the
system is built. The controller performance and shield inter-
ference is defined by quantitativemeasures given asweighted
automata. The shield construction task can then be reduced
to finding an optimal strategy in a stochastic 2-player game.
Furthermore, an iterative learning procedure consisting of

SMT-solving and learning phases has been used to construct
controllers for stochastic and partially unknown environ-
ments [48]. The problem is given as anMDPwith an a-priori
unknown cost function. Learning techniques can be used to
get cost-optimal strategies but without safety guarantees. By
first constructing a set of safe schedulers using anSMT-solver
and then refining this set to an optimal scheduler, the problem
can be solved.
In addition, a reinforcement learning algorithm has been

invented to synthesize policies which fulfill a given linear
time property on an MDP [40]. By expressing the property
as a Limit Deterministic Büchi Automaton a reward function
over the state-action pairs of the MDP can be defined such
that the policy is only constructed by considering the part of
the MDP which fulfills the property.
Another work on controller synthesis and verification

uses policy refinement to construct strategies fulfilling tem-
poral logic syntactically co-safe properties, which can be
unbounded in time, on general MDPs (discrete-time stochas-
tic models over uncountable state spaces) by using approxi-
mately similar abstract models [34].
Avoid reachability properties have been verified on neu-

ral agent-environment systems represented as a feed-forward
ReLU NN by expressing the problem as a mixed-integer
linear program [2]. This approach has been applied to
arbitrary-step reachability properties and properties asking
if an action will be applied. An extension of this work [3]
also supports agents defined on recurrent NNs [41] using a

simplified version of linear temporal logic on bounded exe-
cutions.

3 Background

In this section, we introduce the theoretical background and
all the concepts we need and build upon later when present-
ing and discussing our DSMC approach on the Racetrack
benchmark.

3.1 Markov decision processes

The models we consider are discrete-state Markov Decision
Processes (MDP). For any nonempty set S, we let D(S)
denote the set of probability distribution over S.Wewrite δ(s)
for the Dirac distribution that assigns probability 1 to s ∈ S.
Definition 1 (MarkovDecisionProcess) AMarkovDecision
Process (MDP) is a tupleM = �S,A, T , s0� consisting of
a finite set of states S, a finite set of actions A, a partial
transition probability function T : S ×A �→ D(S), and an
initial state s0 ∈ S. We say that action a ∈ A is applicable
in state s ∈ S if T (s, a) is defined. We denote byA(s) ⊆ A
the set of actions applicable in s. We assume that A(s) is
nonempty for each s (which is no restriction because always
a self-loop can be added).

MDPs are often associated with a reward structure, spec-
ifying numerical rewards to be accumulated when moving
along state sequences, i.e., r : S× A×S → R. Here we are
interested instead in the probability of property satisfaction.
Rewards, however, appear in our case study as part of the NN
training which aims at optimizing the return

Gt =
T�

k=t+1
γ k−t−1Rk, (1)

which is the accumulated discounted reward from time t on,
where Ri is the random variable representing the reward
obtained in step i , γ ∈ [0, 1] is a discount factor, and T
is the final time step [68].
The behavior of an MDP is usually considered together

with an entity resolving the otherwise nondeterministic
choices in a state. This is effectuated by an action policy
(or scheduler, or adversary) that determines which applica-
ble action to apply when and where. In full generality, this
policy may use randomization (picking a distribution over
applicable actions), and it may use the past history when
picking. The former is of no importance for the setting con-
sidered here, while the latter is. Histories are represented as
finite sequences of states (i.e., words over S), thus they are
drawn from S+. We use last(w) to denote the last state in
w ∈ S+.

123

Analyzing neural network behavior... 411

Definition 2 (Action Policy) A (deterministic, his- tory-
dependent) action policy is a function σ : S+ → A such that
∀w ∈ S+ : σ(w) ∈ A(last(w)). An action policy is mem-
oryless if it satisfies σ(w) = σ(w�) whenever last(w) =
last(w�).

Memoryless policies can equally be represented as σ : S →
A such that ∀s ∈ S : σ(s) ∈ A(s).
Definition 3 (Markov Chain) A Markov Chain is a tuple
C = �S, T , s0� consisting of a set of states S, a transition
probability function T : S → D(S) and an initial state
s0 ∈ S.
An MDP �S,A, T , s0� together with an action policy
σ : S+ → A induces a countable-state Markov chain
�S+, T �, s0� over state histories in the obvious way: For any
w ∈ S+ with T (last(w), σ (w)) = μ, set T �(w) = d where
d(ws) = μ(s). For memoryless σ , the original state space S
can be recovered by setting T �(last(w)) = μ in the above,
since both are lumping equivalent [12].

3.2 Probabilistic and statistical model checking

Model checking of probabilistic models (such as MDPs)
nowadays comes in two flavors. Probabilistic model check-
ing (PMC) [53] is an algorithmic technique to determine
the extremal (maximal or minimal) probability (or expecta-
tion) with which an MDP satisfies a certain (temporal logic)
property when ranging over all imaginable action policies.
For some types of properties (step-bounded reachability,
expected number of steps to reach) it does not suffice to
restrict to memoryless policies, while for others (inevitabil-
ity, step-unbounded reachability) it does. At the core of PMC
are numerical algorithms that require the full state space to
be available upfront (in some way or another) [37,61].
If fixing a particular policy, the MDP turns into a Markov

chain. In this setting, statistical model checking (SMC)
[42,55,71] is a popular alternative to probabilistic model
checking. This is because PMC, requiring the full state space,
is limited by the state space explosion problem. SMC is not,
even if the underlying model is infinite in size. Furthermore,
SMC can extend to non-Markovian formalisms or complex
continuous dynamics effectively. At its core, SMC harvests
classicalMonteCarlo simulation and hypothesis testing tech-
niques. In a nutshell, n finite samples of model executions
are generated and evaluated to determine the fraction of exe-
cutions satisfying a property under study. This yields an
estimate q � of the actual value q of the property, together
with a statistical statement on the potential error. A typical
guarantee is that P(|q � − q| < �) > δ, where 1 − δ is the
confidence that the result is �-correct. To decrease � and δ,
n must be increased. SMC is attractive as it only requires
constant memory independent of the size of the state space.

When facing rare events, however, the number of samples
needed to achieve sufficient confidence may explode.
In the MDP setting (or more complicated settings), SMC

analysis is always bound to a particular action policy turn-
ing an otherwise nondeterministic model into a stochastic
process. Nevertheless, many SMC tools support nondeter-
ministic models, e.g., Prism [52] and UPPAAL SMC [20].
They use an implicitly defined uniform random action pol-
icy to resolve choices. UPPAAL Stratego [19] is using
Q-learning and SMC to iteratively learn a near-optimal pol-
icy. Reinforcement learning strategies to tackle continuous
state spaces have also been integrated in the tool [46]. In
addition, for probabilistic timed automata strategies to find
near-optimal schedulers have been developed using abstrac-
tion and sampling techniques [18]. The statistical model
checker modes [13], which is part of theModest Toolset
[38], lets the user choose out of a small set of predefined
policies, or provides light-weight support for iterating over
policies [13,56] to statistically approximate an optimal pol-
icy in addition to the uniform random scheduler. In any case,
results obtained by SMC are to be interpreted relative to the
implicitly or explicitly defined action policy.
In the following, we will use the statistical model checker

modes of the Modest Toolset which contains simula-
tion algorithms specifically tailored to MDPs and more
advanced models. The tool is implemented in C#. It offers
multiple statistical methods including confidence intervals,
Okamoto bound [60], and SPRT [69]. As simulation is easily
and efficiently parallelizable, modes can exploit multi-core
architectures.

3.3 Deep Q-learning

Neural networks (NN) have recently been applied with dra-
matic successes to the learning of action policies in large
transition systems, fromAtari games [59] over Go and Chess
[67] to Rubik’s cube [1]. This clearly suggests that NNs will
play a key role in action decisions of autonomous systems in
the future. In particular, this pertains to action decisions in
environments formalizable as MDPs.
NNs consist of neurons: atomic computational units that

typically apply a nonlinear function, theiractivation function,
to a weighted sum of their inputs [65]. For example, recti-
fied linear units (ReLu) use the activation function f (x) =
max(0, x). Here, we consider feed-forward NNs, a classi-
cal architecture where neurons are arranged in a sequence
of layers. Inputs are provided to the first (input) layer, and
the computation results are propagated through the layers in
sequence until reaching thefinal (output) layer. In every layer,
every neuron receives as inputs the outputs of all neurons in
the previous layer. For a given set of possible inputs I and
(final layer) outputs O, a neural network can be considered
as an efficient-to-query total function π : I → O.

123

412 T. P. Gros et al.

So-called deep neural networks consist of many layers. In
tasks such as image recognition, successful NN architectures
have become quite sophisticated, involving, e.g., convolution
andmax-pooling layers [51]. Feed-forward NNs are compar-
atively simple, yet they are in widespread use [24], and are
in principle able to approximate any function to any desired
degree of accuracy [44].
Such NNs can be trained in a multitude of ways. Here

we use deep Q-learning [59], a successful and nowadays
widespread form of deep reinforcement learning (DRL). In
DRL, the NN is trained by iteratively executing the policy
and updating it. Each step executes the currentNN from some
state, and updates the NN weights using gradient descent.
The so-called q-values represent the expected return, i.e.,

the expected discounted accumulated reward, that is received
when taking an action a and following the q-values-induced
policy afterward. In classical Q-learning [68], these q-values
are learned separately for each state-action pair by using a
table for approximation. In contrast, deep Q-learning uses an
NN to jointly approximate all the q-values, i.e., the q-values
of all actions, for a given state. Such an NN is also called
deep Q-network (DQN).
DeepQ-learning has been shown to learn high-quality NN

action policies in a variety of challenging decision-making
problems [59], and especially to perform better on the bench-
mark we used here, the Racetrack, then policies trained with
supervised learning [33].

4 Neural networks as MDP action policies

4.1 ConnectingMDP and action oracle

Racetrack is a simple instance of many further examples
representing real-world phenomena that involve randomness
and decision-making. This is the natural scenario where NNs
are taking over ever more duties. In essence, their role is very
close to that of an action policy: Decide in each situation
what options to pick next. If we consider the “situations”
(the inputs I) as the states S of a given MDP, and the
“options” (outputsO) as actionsA, then the NN is a function
π : S → A. We call such a function an action oracle. Indeed
this is what the reinforcement learning process in Q-learning
and other approaches delivers naturally.
Observe that an action oracle can be cast into an action

policy except for a subtle problem. Action policies only pick
actions (from A(s), thus) applicable at the current state s,
while action oraclesmay not. A better fitting definitionwould
constrain oracles to always return an applicable action. Yet it
is not clear how to guarantee this for NNs – it is easy to see
that, even for linear multi-classification, the hard constraints
required to guarantee action applicability lead to non-convex
optimization problems. An easy fix would use the highest-

ranked applicable action instead of the NN classifier output
itself. For our purposes however, where we want to analyze
the quality of the NN oracle, it makes sense to explicitly
distinguish inapplicable actions as a form of low quality.
If an oracle returns an inapplicable action, then no valid

behavior is prescribed and in that sense the system can be
considered stalled.

Definition 4 (ActionOracle Stalling)LetM = �S,A, T , s0�
be an MDP, and π : S → A be an action oracle. We say that
s ∈ S is stalled under π if π(s) /∈ A(s).
To accommodate for stalling, we augment the MDP upfront
with a fresh action † available at every state, this action is
chosen upon stalling, leading to a fresh state ‡ with only that
action to continue. So M = �S,A, T , s0� is transformed
intoM‡ = �S ∪ {‡},A∪ {†}, T �, s0� where for each state s,
T �(s, †) = δ(‡) and otherwise T �(s, a) = T (s, a) wherever
the latter is defined.

Definition 5 (Oracle induced Markov chain) Let M =
�S,A, T , s0� be anMDP, and letπ be an action oracle forM.
Then theMarkov chain Cπ induced byπ is the one induced in
M‡ by the memoryless action policy σ defined by σ(w) = †
whenever last(w) is ‡ or stalled under π , and otherwise by
σ(w) = π(last(w)).
In words, the oracle induced policy fixes the probability dis-
tribution over transitions in each state to that of the chosen
action. If that action is inapplicable, then the chain transitions
to the fresh state ‡ which represents stalled situations.

Deep Statistical Model Checking. Overall, Cπ is a Markov
chain that uses π as an oracle to determinize the MDPM
whenever possible, and stalls otherwise.Withπ implemented
by a neural network, we can use statistical model checking
on Cπ to analyze the NN behavior in the context ofM. This
analysis has the potential to deliver deep insights into the
effectiveness of the NN applied, allowing for comparisons
with other policies and also with optimal policies, the latter
obtained from exhaustive model checking. From a practical
perspective, an important remark is that in the definitions
above and in our implementation of DSMC described below,
the inputs to the NN are assumed to be theMDP states s ∈ S.
This captures the scenario where the NN takes the role of a
classical system controller, whose inputs are system state
attributes, such as program variables. More generally, the
connection from theMDPmodel to theNN inputmay require
an intermediate function f mapping S to the input domain
of the NN. This is in particular the case for NNs process-
ing image sequences, like in vision systems in autonomous
driving. In such a scenario, the MDP model states have to
represent the relevant aspects of the NN input (e.g., objects
and their properties in an image). This advanced form of
connection remains a topic for future work. It lacks the crisp
nature of the problem considered here.

123

Analyzing neural network behavior... 413

4.2 DSMC implementation

Deep statistical model checking is based on a pair consisting
of an NN and an MDP operating on the same state space.
The NN is assumed to be trained externally prior to the anal-
ysis, in which it is combined with the MDP. To experiment
with this concept in a real environment, we have devel-
oped a DSMC implementation inside theModest Toolset
[38], which includes the explicit-statemodel checkermcsta,
and in particular the statistical model checker modes [13].
modes thus far offers the options Uniform and Strict
to resolve nondeterminism. We implemented a novel option
called Oracle, which calls an external procedure to resolve
nondeterminism. With that option in place, every time the
next action has to be chosen, modes provides the current
model state s to the Oracle, which then calls the external
procedure and returns the chosen action to modes. In this
way, the Oracle can connect to an external NN serving as
an action oracle from modes’s perspective.
At the implementation level, connecting to standard NN

tools is non-trivial due to the programming languages used.
TheModest Toolset is implemented in C#, whereas stan-
dard NN tools are bound to languages like Python or Java.
Our key observation to overcome this issue is that a seamless
integration is not actually required. Standard NN tools are
primarily required for NN training, which is computation-
ally intensive and requires highly optimized code. In contrast,
implementing our NN Oracle requires only NN evaluation
(calling the NN on a given input) which is easy—it merely
requires to propagate the input values through the network.
We thus implemented NN evaluation directly in theModest
Toolset’s code base, as part of our extension. The NNs are
learned using standard NN tools. From there, we export a
file containing the NN weights and biases. Our extension of
modes reads that file, and uses it to reconstruct the sameNN,
for use with our evaluation procedure. When the Oracle is
called, it connects to that procedure.

5 Racetrack

As previously outlined, we consider Racetrack as a simple
and discrete, yet highly extensible approximation of real-
world phenomena that involve randomness and decision-
making. In this section, we spell out how these benchmarks
are made concrete use of, how they are implemented and
designed in detail.

5.1 Background on Racetrack

Originally, Racetrack is a pen and paper game [23]. A track
is drawn with a start line and a goal line on a squared sheet
of paper. A vehicle starts with velocity 0 from some posi-

Fig. 1 The maps of our Racetrack benchmarks: Barto-small (left top),
Barto-big (left bottom), Ring (right)

tion on the start line, with the objective to reach the goal
as fast as possible without crashing into a wall. Nine pos-
sible actions modify the current velocity vector by one unit
(up, down, left, right, four diagonals, keep current veloc-
ity). This simple game lends itself naturally as a benchmark
for sequential decision-making in risky scenarios. In par-
ticular, when extending the problem with noise, we obtain
MDPs that do not necessarily allow the vehicle to reach the
goal with certainty. In a variety of such noisy forms, Race-
track was adopted as a benchmark for MDP algorithms in
the AI community [9,11,58,62,63]. Because of its analogy to
autonomous driving, Racetrack has recently also been used
in multiple verification and model checking contexts [7].
Like in previous work, we consider the single-agent ver-

sion of the game. We use some of the benchmarks, i.e., track
shapes, that are readily available. Specifically, we use the
three Racetrack maps illustrated in Fig. 1, originally intro-
duced by Barto et al. [9]. The track itself is defined as a
two-dimensional grid, where each cell of the grid can rep-
resent a possible starting position “s” (indicated in green),
a goal position “g” (red), or can contain a wall “x” (white,
crossed). Like Barto et al. [9], we consider a noisy version
of Racetrack that emulates slippery road conditions: actions
may fail with a given probability, in which case the action
does not change the velocity and the vehicle instead contin-
ues driving with unchanged velocity vector.

5.2 JANI framework

Central to our practical work is the Jani-model format
[14,47]. It can express models of distributed and concurrent
systems in the form of networks of automata, and supports
property specification based on probabilistic computation
tree logic (PCTL) [36]. In full generality, Jani models are
networks of stochastic timed automata, but we concentrate
on MDPs here. Automatic translations from and into other
modeling languages are available, connecting among others
to the planning language PPDDL [50] and to the Prism lan-

123

414 T. P. Gros et al.

guage, and thus to the model checker Prism [52]. A large
set of quantitative verification benchmarks (QVBS) [39] is
available in Jani, and many tools offer direct support, among
them ePMC, Storm and theModest Toolset [25,35,38].

5.3 Racetrackmodel in JANI

In the following, we discuss the details of the Racetrack
model representation and implementation in Jani as done
in our online appendix of DSMC20 [30,31].
The track itself is represented as a (constant) two-

dimensional array whose size equals that of the grid. The
Jani files of different Racetrack instances differ only in this
array. Vehicle movements and collision checks are repre-
sented by separate automata that synchronize using shared
actions.
The vehicle automaton keeps track of the current state

of the vehicle via four bounded integer variables, position
and directional velocity, described by two vectors: its cur-
rent position (x, y) indexing a cell within the grid, and
its current velocity (dx , dy) ∈ Z

2 in x- and y-direction.
The state of the vehicle is updated at discrete steps. At
each step, the speed of the vehicle can be controlled via 9
different actions corresponding to the acceleration vectors
(ax , ay) ∈ ({−1, 0, 1})2. Acceleration is applied additively,
i.e., the vehicle’s new velocity vector (d �x , d �y) after apply-
ing acceleration (ax , ay) is given by d �x = dx + ax and
d �y = dy + ay . The position of the vehicle is updated accord-
ing to the updated velocity vector, i.e., x � = x + d �x and
y� = y + d �y .
Whatwe just specified is the deterministic variant ofRace-

track. In the noisy variant, acceleration only succeeds with a
probability of p ∈ [0, 1), while with probability (1− p) the
vehicle’s velocity remains the same.
In addition, a state of the model contains two Boolean

variables indicating whether the vehicle has crashed, or has
reached a goal cell. We say that the vehicle has crashed if
the vehicle either moved out of the grid (i.e., its position no
longer constitutes a valid grid coordinate), or the vehicle’s
last movement trajectory crossed a wall cell.
As described, the vehicle automaton starts at a location

with one edge for each one of the 9 different acceleration
vectors. Each of the edges updates the velocity accordingly
and sends the start and resulting end coordinates to the colli-
sion check automaton. The collision check can respond with
three different answers: “valid”, “crash”, or reached “goal”.
If the trajectory was valid, the vehicle automaton transitions
back to its initial location. Otherwise the vehicle automaton
transitions into a terminal location where no further moves
are possible.
The collision check automaton takes care of two things. It

first checks whether the vehicle’s destination lies within the
grid. If so, it then iteratively computes the discretized trajec-

tory T , and looks up for each referenced coordinate whether
the corresponding entry in the grid array represents a wall
or goal cell. If the trajectory leads out of the track, or when
an intersection of the trajectory with either a wall or a goal
cell is detected, the result is immediately sent to the vehicle
automaton. If the trajectory was completely generated with-
out detecting a collision, the vehicle automaton’s request is
answered with “valid”, and the location is reset, waiting for
the next trajectory to test.
Determining whether the vehicle has crashed or has

passed a goal is done by discretizing the trajectory from
the vehicle’s former position (x0, y0) := (x, y) to its new
position (xn, yn) := (x �, y�) into a sequence of coordinates
T = �(x0, y0), (x1, y1), . . . , (xn, yn)�. Then, the vehicle has
touched a wall if and only if T references a coordinate of a
wall or goal cell, respectively. Checking whether the vehicle
traversed a goal cell is done in the same fashion. The trajec-
tory discretization T is defined as displayed in Eq.2, where
σx = sgn(dx), σy = sgn(dy) and mx = dx|dy| , my =

dy
|dx | . In

words, if either the horizontal or vertical speed is 0 (cases 1
to 3), the trajectory contains exactly all grid coordinates on
the straight line between (x, y) and (x �, y�). Otherwise, we
linearly interpolate n points between the two positions and
then for each such point round to the closest position on the
map. In our model, n is given by max

�|dx | ,
��dy
���, while the

original discretization models always choose n = dx . The
latter is problematic when having a velocity which moves
more into the y- (case 5) than into the x-direction (case 4), as
then only few points will be contained in the trajectory and
counterintuitive results are produced.

5.4 Scaling Racetrack

In the scalability study,whichwewill show later in this paper,
we scale a Racetrack benchmark up by using finer discretiza-
tions, thereby effectively making the track larger to navigate.
This scaling approach is simple and canonical, and facilitates
a detailed direct comparison across different sizes. Specifi-
cally, we scale by the factor N where every cell in the original
map is replaced by a square of N 2 cells. Themap growth thus
is quadratic in N ; e.g., for the Barto-big map shape in Fig. 1,
the original map has a size of 30×33 cells, while with N = 2
we get 60 × 66 cells and with N = 3 we get 90 × 99 cells
and so on.

5.5 Learning neural networks for Racetrack

For the sake of realistic empirical studies, we have drawn on
established NN learning techniques to obtain NN oracles for
the Racetrack case studies. Here, we briefly summarize the
main design decisions. Notably, DSMC is entirely indepen-

123

Analyzing neural network behavior... 415

dent of the concrete learning process, depth, and shape of the
NN employed.
NNs are learnt for a specific map (cf. Fig. 1), with the

inputs being 15 integer values, encoding the two-dimensional
position, the two-dimensional velocity, the distance to the
nearest wall in eight directions, the x and y differences to the
goal coordinates, and Manhattan goal distance (absolute x-
and y-difference, summed up). Actions to accelerate in the 9
possible directions are encoded as classification outputs, i.e.,
the output layer consists of 9 neurons.
A crucial design decision is the learning objective, i.e.,

the rewards used in deep Q-learning. We set the reward for
reaching the goal line to 100, and for crashing into a wall to
values within [− 50,− 20]. We used a discount factor of 0.99
to encourage short trajectories to the goal. This arrangement
was chosen because, empirically, it resulted in an effective
learningprocess [27].With higher negative rewards for crash-
ing, the policies learn to prefer not to move or to move in
circles.
Similarly, smaller negative rewards make the learnt poli-

cies prefer to crash quickly. Using a discount factor yields-
better learning performance, but does not match the overall
Racetrack setup. This exemplifies that the choice of objec-
tives for learning is governed by learning performance. Both
meta-parameters and numeric parameters such as rewards
typically require fine-tuning orthogonal to, or at least below
the level of abstraction of, the qualities of interest in the
application.
We experimented with a range of NN architectures and

hyperparameter settings, the objective being to keep the NNs
simplewhile still able to learn useful oracles in our Racetrack
benchmarks. TheNNswe settled on have the above described
input and output layers, and two hidden layers each of size
64. All neurons use the ReLU activation function.
NNs are learnt in twovariants: First, starting on the starting

line (so called normal start (NS)) vs. second, starting from a
random point anywhere on the map (so-called random start
(RS)), each with initial velocity 0. Variant RS turned out to
yield much more effective and robust learning.

T =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(x, y)� if dx = 0 and dy = 0 (1)

(x, y) , (x + σx , y) , (x + 2 · σx , y) . . . ,

�
x �, y�

��
if dx
= 0 and dy = 0 (2)

(x, y) ,
�
x, y + σy

�
,
�
x, y + 2 · σy

�
. . . ,

�
x �, y�

��
if dx = 0 and dy
= 0 (3)

(x, y) ,

�
x + σx ,

�
y + my

�
,
�
x + 2 · σx ,

�
y + 2 · my

�
. . . ,

�
x �, y�

�� if dx
= 0 and dy
= 0
and |dx | ≥

��dy
�� (4)

(x, y) ,

��x + mx
 , y + σy
�
,
��x + 2 · mx
 , y + 2 · σy

�
. . . ,

�
x �, y�

�� if dx
= 0 and dy
= 0
and |dx | <

��dy
�� (5)

(2)

Intuitively, RS seems a more challenging task as there is
more that the policy needs to learn. Still, for NS, it takes the
policy a long time to reach the goal at all, while with RS
this happens more quickly yielding earlier and more robust
learning also farther away from the goal. Consider Fig. 2,
which depicts the training curve of two policies, one trained
in the NS setting and the other in the RS setting. The train-
ingsplot depicts the sliding mean of the returns achieved
during training. For the RS mode, the goal line is already
reached shortly after the training starts (as indicated by the
dotted orange line) and the policy increases steadily until a
plateau, where the policy only improves slightly, is reached.
In contrast, for the NS mode, the goal line is reached for the
first time after about 17.000 episodes (blue dashed line) and
therefore just then receives the first positive reward. Thus,
the policy can only start to learn how to reach the goal after
these 17.000 episodes, which explains the abrupt increase in
achieved returns afterward.
Note, that the average value of achieved returns in the end

of training cannot directly be compared to another. As the
episodes trained with random start in average are shorter, as
they regularly start closer to the goal line, the achieved returns
are discounted less and therefore are higher (see Eq.1).

6 NN quality analysis using DSMC

Wenow demonstrate the statistical model checking approach
to NN policy verification through case studies in Racetrack.
Section6.1 illustrates the use of DSMC for quality assurance
by human analysts (end users, engineers) in system approval.
Section6.2 illustrates the use of DSMC as a tool for the engi-
neers designing the NN learning pipeline.
Throughout,weusemodeswith an error bound P(error >

�) < κ , where � = 0.01 and κ = 0.05, i.e., a confidence of
95%. We set the maximal run length to 10,000 steps. Unless
otherwise stated, we set the slippery-noise level in Racetrack,

123

416 T. P. Gros et al.

Fig. 2 Combined training plot for training two polices on the Ringmap.
The curves depict the sliding mean of the last 500 observed returns
during training. The dashed lines indicate the first time the goal line
was reached, i.e., the first time a positive return was observed

i.e. the probability of action failure, to 20%. The NN oracles
are learnt by training runs starting anywhere on the map; we
will illustrate how DSMC can highlight the deficiencies of
the alternate approach (starting on the starting line only). The
experiments in this sectionwere run on an Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz (4 cores, 8 threads) with 32GB
RAM and a 450GB HDD.

6.1 Quality assurance in system approval

The variety in abstract property specification gives versa-
tility to the quality assurance process. This is important in
particular because, as previously argued, the relevant qual-
ity properties will typically not be identical to the objectives
used for NN learning. In the Racetrack example, NN learning
optimizes expected return subject to fine-tuned reward and
discount values. For the quality assurance, we consider crash
probability and goal probability, expressed as CTL path for-
mulas in Jani, namely ♦crashed (“eventually crashed”) for
the former and ¬crashed U goal (“not crashed until reach-
ing goal”) for the latter.1

We highlight that the DSMC analysis can not only point
out that an NN oracle has deficiencies, but also where: in
which regions of the MDP state space S. Namely, in cyber-
physical systems, it is natural to use the spatial dimension
underlying S for systematizing the analysis and visualizing
its result. This delivers not only a yes/no answer, but an actual
quality report. We illustrate this here through the use of sim-
ple heat maps over the Racetrack road map. The heat maps
visualize the value of the respective property for every cell
when starting in it with velocity 0.
Figure3 shows quality assurance results for crash proba-

bility in all the Racetrack benchmarks, using for each the best

1 Further properties of interest could be, e.g., bounded goal probability
(how likely is it that we will reach the goal within a given number of
steps?), expected number of steps to goal, or risk of stalling.

NN oracle from reinforcement learning (i.e. those yielding
highest returns). The heat maps use a simple color scheme
as an illustration how the analysis results can be visualized
for the human analysts. Similar color schemes will be used
in all plots below.
From the displayed DSMC results, quality assurance ana-

lysts can directly conclude that the NN oracles are fairly
safe in Barto-small (left top), with crash probabilities mostly
below 0.1; but not on Barto-large (left bottom) and Ring
(right) where crash probabilities are above 0.5 on signifi-
cant parts of the map. Generally, crash probability increases
with distance to the goal line. Some interesting subtleties are
also visible, for example that crash probabilities are relatively
high in the left-turn before the goal in Barto-small.
Our next results, in Fig. 4, illustrate the quality assurance

versatility afforded by DSMC, through an analysis quite dif-
ferent from the previous one. The human analysts here decide
to evaluate goal probability (a quality stronger than not crash-
ing because the latter may be achieved by idling). Apart
from the original setting, they consider a stress-test scenario
where the road is significantly more slippery than during NN
training, namely 50% instead of 20%. They finally decide
to compare with optimal goal probabilities, computable via
the probabilistic model checker mcsta, so that they can see
whether any deficiencies are due to the NN, or are unavoid-
able given the high amount of noise.
The figure shows the outcome for Barto-large. One of the

deficiencies is immediately apparent, the NN policy does
not pass the stress test. Its goal probability matches the opti-
mal values only near the goal line, and exhibits significant
deficiencies elsewhere. Based on these insights, the quality
analysts can now decide whether to relax the stress-test (after
all, even optimal behavior here does not reach the goal with
certainty), or whether to reject these NN polices and request
re-training.

6.2 Learning pipeline analysis and revision

More generally, DSMC can yield important insights not only
for quality assurance, but also for the engineers designing the
NN learning pipeline in the first place. There are two distinct
scenarios:

(i) The engineers run the same success tests as in quality
assurance, and re-train if a test is not passed.

(ii) The engineers assess different properties of interest to
the learning process itself (e.g. expected length of policy
runs), or assess the impact of different hyperparameter
settings.

In both scenarios, theDSMC analysis results point to specific
state space regions that require improvement. This can be
directly operationalized to revise the learning pipeline, by

123

Analyzing neural network behavior... 417

Fig. 3 Heat maps of NN-induced crash probabilities for all Racetrack benchmarks

Fig. 4 Goal probability of NN oracle on the Barto-big benchmark trained and executed with 20% noise versus stress-test executed with 50% noise
using the same NN (middle) versus optimal policies obtained by probabilistic model checking with 50% noise (right)

starting more training runs from states in the critical regions.
DSMC has already been applied for analyses of this kind
during evaluation stages [32].
Figures3 and 4 above have already demonstrated (i). Next

we demonstrate (ii) through two case studies analyzing dif-
ferent hyperparameter settings.
Our first case study, in Fig. 5, analyzes the number n of

training episodes, as a central hyperparameter of the learning
pipeline. The only information available in deep Q-learning
for the choice of this hyperparameter is the learning curve,
i.e., the expected return as a function of n, depicted on the
right. Yet, as our DSMC analysis here shows, this informa-
tion is insufficient to obtain reliable policies. InBarto-big, the
highest return is obtained after n =90,000 episodes. From
n =70,000 to n =90,000, the return slightly increases. Yet

we see in Fig. 5 that the additional 20,000 training episodes,
while increasing overall goal probability, lead to highly defi-
cient behavior in an area near the start of the map, where goal
probability drops below 0.25. If provided with that informa-
tion, the engineers can focus additional training on that area,
for instance.
In our next case study, we assume that the NN engineers

decide to analyze the impact of starting training runs on (a)
the starting line versus (b) random points anywhere on the
map. Figure6 shows the results for the Ring map, where they
are most striking. In variant (a), the top part of the Racetrack
was completely ignored by the learning process. Looking into
this issue, one finds that, during training, the first solution
happens to be found via the bottom route. From there on,

123

418 T. P. Gros et al.

Fig. 5 Goal probabilities on the Barto-big benchmark (color coding as in Fig. 4), for NN oracles learnt over n =70,000 (left) and n =90,000
(middle) training episodes, together with Q-learning curve (right)

Fig. 6 Goal probabilities in Ring for NN oracles where training was carried out with reinforcing runs from the start line only (left) versus from
anywhere on the map (right)

the reinforcement learning process has a strong bias to that
route, preventing any further exploration of other routes.
Phenomena like this are highly detrimental if the learnt

policy needs to be broadly robust, across most of the envi-
ronment. The deficiency is obvious given theDSMC analysis
results, and these results make it obvious how the problem
can be fixed. But neither can be seen in the learning curves.

7 Computational performance of DSMC

After having demonstrated the strengths and usefulness of the
DSMCapproach, it remains to show its feasibility in a perfor-
mance evaluation and scalability study. Section7.1 evaluates
the computational effort incurred by DSMC compared to a
conventional SMC setting where the MDP policy is coded
in the model itself. Afterward, we consider size scaling (see
Sect. 7.2) of the benchmarks and evaluate scalability in dif-

ferent dimensions. Section7.3 demonstrates scalability as a
function of training episodes and Sect. 7.4 concentrates on
scalability w.r.t. instance size

7.1 NN versus engineered policy

As discussed, it can be highly demanding or infeasible to ver-
ify the input/output behavior of even a single NN decision
episode, and that complexity is potentially compounded by
the state space explosion problemwhen endeavoring to verify
the behavior induced by anNNoracle. Deep statistical model
checking carries promise as a “light-weight” approach to this
formidable problem, as no state space needs to be stored and
on the NN side it merely requires to call the NN on sample
inputs. In addition, it is efficiently parallelizable, just like
SMC. Yet (1) the approach might suffer from an excessive
number of sample runs needed to obtain sufficient confi-

123

Analyzing neural network behavior... 419

dence, and/or (2) the overhead of NN calls might severely
hamper its runtime feasibility.
Figure7 shows data regarding (1). We compare the effort

for analyzing our NN policies to that required for analyz-
ing a conventional engineered (hand-coded) policy that we
incorporated into our Jani models.2 As the heat maps show,
the latter effort is higher. This is due to a tendency to more
risky behavior in the hand-made policy, resulting in higher
variance. Regarding (2), the runtime overhead for NN calls
is actually negligible in our study. Each call takes between
1 and 4 ms. There is an added overhead for constructing the
NN once at the beginning of the analysis, but that takes at
most 6ms.
These results should not be over-interpreted, as they per-

tain to the particular engineered policy experimented with.
Nevertheless, they indicate that, as onewould expect, the per-
formance variance of NN polices (and therewith the DSMC
analysis effort) is not necessarily higher than that of conven-
tional policies.
As a side remark, please note, that for both of these aspects,

we decided not to compare to SMC using a uniform ran-
domscheduler becausefirst, driving randomly around is quite
unrealistic, e.g., because it is quite unsafe. Second, we saw
in our experiments with a uniform random scheduler that the
goal probability calculatedwith SMC is 0 inmost of the cases
because it is so unsafe. Thus, SMC with a random scheduler
and DSMC are not comparable because the results and run-
times are influenced by more factors than just by replacing
the NN by a scheduler.

7.2 Scalability study: setup

In the remainder of this section, we consider size scaling,
using the scaled Racetrack instances as per Sect. 5.4.We con-
centrate on the Barto-big track shape in Fig. 1. Fixing that
shape, we scale up by using finer discretizations, thereby
effectively making the track larger to navigate. This may
impact the performance of DSMC (number of sample runs,
runtime) in several ways:

(i) Analyzing policy behavior from every map cell (with
initial velocity 0), the number of calls to DSMC equals
the number of cells after scaling.

(ii) The MDP becomes larger and individual policy runs
become longer, which may affect the number of sample
runs required to obtain the desired statistical confidence
in the analysis result.

2 Thepolicy implements a simple reactive controller that brakes if awall
is near and otherwise accelerates toward the goal. Its goal probability
is moderately worse than that of the best NN policies.

(iii) The quality of an NN policy—its ability to successfully
navigate the map—may affect the number of sample runs
required in DSMC.

We now summarize the results of our study examining these
effects. We consider (iii) first as it turns out to influence
DSMC performance quite substantially, thus being impor-
tant to understand as a prerequisite for our scalability study.
We analyze (iii) as a function of training degree, which is of
interest in itself if one is interested in analyzing theNNpolicy
under training at different stages (which is a natural appli-
cation of DSMC). Given our insights into (iii), we then turn
to our study of (i) and (ii) using NN policies of comparable
quality.
All experiments were run on 5 virtual machines having

an AMD EPYC Processor at approximately 2.5GHz using
Ubuntu 18.04 with 8 vCPUs and 16GB RAM. A total of
158,377 processing hours have been invested in this study,
i.e., reproducing already a fraction of these results takes a
lot of time. All our scripts and infrastructure we used are
available online at https://doi.org/10.5281/zenodo.7071405.
Like in the experiments described above, we use modes

with an error bound P(error > �) < κ , where � = 0.01 and
κ = 0.05, i.e., a confidence of 95% and amaximal run length
of 10,000 steps.
We investigated if the performancewhen running aDSMC

experiment with a specific NN multiple times is affected
by perturbations caused by the probabilistic behavior of
the model or the mode of operation of SMC. Thereby, we
observed that the performance and quality differences are
negligible and mostly caused by machine performance vari-
ations and thus will not look deeper into this in the following.

7.3 Scalability as a function of training episodes

To evaluate the impact of training strength on the runtime of
DSMC,we extracted networks for theBarto-bigmap in Fig. 1
after 5k, 10k, 15k, 20k and 25k training episodes for N = 1,
and for N = 2 after 30k, 35k, 40k and 45k training episodes
(because here training takes longer). Figure8 summarizes the
results.
DSMC exhibits an easy-hard-easy pattern as the training

degree grows. This is characteristic: for other scaling fac-
tors N the same pattern emerges. Indeed the pattern is easily
explained andmakes sense. Little-trainedNNpolicies tend to
crash quickly and thus are easy to analyze. Strongly trained
policies tend to reach the goal reliably with little variance,
again resulting in high statistical confidence after relatively
few sample runs. The hard cases lie in the middle where the
NN policy exhibits high variance between runs that crash and
ones that reach the goal, necessitating more analysis effort.
To corroborate these findings, let us have a closer look at

the dependency between policy quality and DSMC runtime.

123

https://doi.org/10.5281/zenodo.7071405

420 T. P. Gros et al.

Fig. 7 Heat maps showing computational effort needed by DSMC, measured by the number of sample runs performed by modes to analyze goal
probability for each map location. Results shown for the policies induced by our learnt NN in the top row, versus a simple hand-coded policy (see
text) at the bottom. Each point on the map shows �log2(#runs)�

Fig. 8 Average runtime of DSMC per map cell, over training episodes

Fixing N = 3, we examine twoNNpolicies σbad and σgood of
different quality, analyzing their goal probability and DSMC
runtime locally, specific to different regions of the map in

difference to the global analysis afforded by Fig. 8. Figure9
shows the data.
In Fig. 9a, b we depict, for two different policies σbad and

σgood, for each map cell the goal probability when starting
the policy from that cell with an initial velocity of 0. This
goal probability was determined by running DSMC on the
respective MDP state. In Fig. 9c, we depict the difference in
runtime between (a) and (b), namely the quotient of DSMC
runtime for σbad over DSMC runtime for σgood on a cell-by-
cell basis. Briefly put, dark green to yellow colors mean that
DSMC on σbad takes less time than DSMC on σgood, orange
to light red means that both are analyzed in similar runtime,
darker red to blue means that σbad takes more time to analyze
up to a factor of> 10. The exact color-coding legend is given
as part of Fig. 12.
The heat maps clearly show the effect of local policy qual-

ity on DSMC runtime. Near the starting line, where σbad
typically does not reach the goal, σbad is much easier to ana-
lyze than σgood. This changes drastically in the first curve
of the track, where σbad exhibits high variance and becomes

123

Analyzing neural network behavior... 421

Fig. 9 a, b Goal probability per cell for N = 3 with a bad-quality NN policy σbad (a) versus a good-quality NN policy σgood (b). c DSMC runtime
difference quotient σbad

σgood
per cell; color coding same as in Fig. 12, please see the legend there

(a) (b) (c)

Fig. 10 a Total number of states in the MDP; b runtime of DSMC per map cell; c number of runs in DSMC per map cell. Each shown as a function
of map size. b and c show min/average/max over 5 policies

much harder to analyze than σgood. As we move closer to the
goal, this latter phenomenon gradually diminishes, except for
the last curve which σbad frequently fails to navigate success-
fully resulting in higher DSMC runtimes.

7.4 Scalability as a function of instance size

We now examine DSMC scalability as a function of instance
size. Given the above insights, in this study, we only com-
pare NN policies of similar global quality, as measured by
the training return they achieve.Wemainly focus on strongly
trained policies, where DSMC serves for quality assurance.
To account for variance in local policy quality (which is
impossible to avoid), we train and analyze 5 different NN
policies for each value of N .
Figure10a displays the size of the MDP state space (num-

ber of states) to be considered by the analysis. The plots in

(b) and (c) present our main scalability result as functions of
the map size, in terms of (b) average DSMC runtime per map
cell (initializedwith velocity zero) and (c) average number of
sample runs per map cell. We detail these results for the most
demanding policy (max) and for the easiest policy (min) at
each scale, together with the average (avg). Averaging over
all cells factors out complexity source (i) from above which
is a trivial phenomenon here due to our complete coverage
of cells on the track.
The model size shown in (a) indicates that the MDPs ana-

lyzed are quite non-trivial, with millions of states already for
N = 1 and N = 2, and going up to almost 150 million states
for N = 5. Against this background, (b) clearly shows that
the effort needed by DSMC increases linearly as a function
of map size. This is corroborated by (c) which shows that the
required number of sample runs barely has any tendency to
increase with increasing map size at all; the scaling curve is

123

422 T. P. Gros et al.

Fig. 11 Accumulated runtime of DSMC over whole map as function
of map size; max, min, avg over 5 policies

dominated instead by the amount of variance across different
policies.
We also ran these scalability experimentswith lesser train-

ing, choosing low/middle quality policies following [16] as
ones that deliver 20% (50%) of the maximal achieved return.
The results are similar to the above in terms of the scaling
behavior over N , sowe do not repeat Figs. 10 and 11 for those
settings. In terms of scaling over training degree as discussed
in the previous section, low-quality policies are much eas-
ier to analyze, as expected. For middle-quality policies, the
results are less conclusive, with DSMC effort roughly similar
to high-quality policies but with more variance; we conclude
from this that the hard region as displayed in Fig. 8 tends to
be narrow, and correlate only loosely with policy return.
Together, these findings indicate that DSMC can be scal-

able in non-trivial application scenarios. The data confirm
the expected result that, all other circumstances being equal,
run length is the determining factor for DSMC performance,
and thus the advantages of statistical model checking carry
over to DSMC.
The accumulated effort for DSMC across all map cells

grows substantially as a function of N , see Fig. 11, simply
due to map size. This illustrates that an exhaustive analysis
of the state space is highly demanding in these benchmarks.
Note though that this task is trivial to parallelize, so that it
can still be feasible to check large fractions of the state space.
Indeed this was exploited in our experimental setup, running
on a cluster of multicores.
Figure12 provides a fine-grained view of differences in

DSMC performance as a function of scaling size, comparing
N = 1 versus N = 2 (left) and N = 2 versus N = 5
(right). Each cell in the heat maps shows the quotient of
DSMC runtime of the smaller map over the larger map. Map
cells are aligned across different map sizes according to their
positions in the respective discretization.
In both heat maps, “strong” colors are rare, i.e., there is

only little dark green and dark red/blue. The runtime dif-
ferences hence are mostly not extreme, corroborating our

observations from Fig. 10. There is however a certain degree
of variation, which turns out to again be mostly caused by
policy quality differences.
To understand this, consider first the left-hand side heat

map. Near the start line and goal of the track, orange
andyellowdominate—indicating similar runtimes—because
DSMC analysis for both values of N tends to be quick. This
is different in the remaining middle part of the track, where
there is more policy-success variance, and hence more sam-
ple runs are needed, for both values of N . The smaller map
size for N = 1 then results in significantly smaller runtimes.
In the right-hand side heat map, the picture is not as clear.

Differences are again small close to the goal (light green this
time as the size gap from N = 2 to N = 3 is larger), but
elsewhere the picture is very mixed. The latter is due to local
policy-quality variation, which is more pronounced in the
larger maps. All the areas with distinctly large performance
differences (e.g., the dark green stripe in the last curve) are
due to poor quality of one of the two policies.

8 Conclusion

NNs are an increasingly widespread decision-making com-
ponent in intelligent systems. Verifying the overall behavior
of systems incorporating such components remains a grand
challenge. When such a network is integrated into a con-
trol loop, the verification needs to intertwine controller and
network verification [16].
Deep statistical model checking is a promising approach

to address this challenge, leveraging the strength of statistical
model checking as a light-weight approach for the purpose
of checking the behavior of systems incorporating neural
networks treated as black-box functions that merely need to
be called not analyzed.
The most important aspects of the DSMC approach are

its (i) genericity—in that it provides a generic and scalable
basis for analyzing learnt action policies; its (ii) openness—
since the approach is put into practice using the Jani format,
supported by many tools for probabilistic or statistical model
checking; and its (iii) focus—on an abstract fragment of the
“autonomous driving” challenge. We consider these contri-
butions as a conceptual nucleus of broader activities to foster
the scientific understanding of neural network efficacy, by
providing the formal and technological framework for pre-
cise, yet scalable problem analysis.
From a general perspective, DSMC provides a refined

formofSMCforMDPswhere thus far only implicitly defined
random action policies have been available. If those were
applied to Racetrack, goal probabilities< 0.1would result—
except directly at the goal line. DSMC instead can harvest
available data for a far better suited action policy, in the form
of an NN oracle trained on the data at hand. Of course, other

123

Analyzing neural network behavior... 423

Fig. 12 DSMC runtime difference quotient small-maplarge-map per cell for N = 1 versus N = 2 (left) and N = 2 versus N = 5 (right)

forms of oracles (based on, e.g., random forests) can be con-
sidered with DSMC right away, too.
In addition to the initial case study of DSMC20 suggest-

ing that the approach may indeed be useful and feasible, we
have contributed new evidence that DSMC can be scalable.
The advantages of statistical model checking are inherited in
our study, exhibiting a linear runtime increase per state as a
function of instance size. We have furthermore shown that
there are significant interactions between policy quality and
analysis performance, which become important when using
DSMC during the training process (e.g., to identify weak-
quality regions for re-training) [32].
Note also that theDSMC approach is highly parallelizable

in terms of all its major activities, (i) statistical model check-
ing (independent sample runs), (ii) neural network evaluation
(GPU/TPU hardware), and (iii) sweeping a state space parti-
tion (trivial). So, by effectively leveraging large amounts of
hardware, there is some hope that large scalability challenges
can be tackled.
We hope that the study provides a compelling basis for

further research on deep statistical model checking.
Racetrack forms a viable starting point for this endeavor

in that it can be made more realistic in a manifold of
dimensions: car configurations regarding speed and accel-
eration limits, fuel efficiency, different surface conditions
[8], appearing/disappearing obstacles, other traffic partici-
pants, speed limits and other traffic regulations, different
probabilistic perturbances, change from map perspective
to ego-perspective of an autonomous vehicle, mediated by
vision and other sensor systems. We are actually embark-

ing on an exploration of these dimensions, focussing first on
speed limits and random obstacles.
Our Racetrack case study makes it easy to produce “heat

maps”, as a meaningful way to represent a partitioned per-
spective on the state space and sampling one member state
from each set as a representative. With the TraceVis tool, we
also showed how visualization techniques in 3D can help to
get even more insights from the DSMC results and to display
more information than in the simple heat maps [26,28]. We
believe that such a representative analysis makes sense (e.g.,
to provide an overview for human users) in many application
scenarios. An open question is how to partition states, or how
to support users in doing so; physical location might work in
many cases.
Apart from the extension of our study to more general

Racetrack maps and to examples with larger state spaces, an
important scaling dimension yet to be evaluated is NN com-
plexity. In particular, convolutional networks from computer
vision are of interest, in a context where the policy inputs
are images. Such an architecture is possible in principle, but
would require an extension of DSMC to incorporate amodel-
to-NNadapter producing (or approximating) the image based
on the MDP state.
In theMDPs considered so far,we always assumed scenar-

ios with perfect knowledge and full observability. It would be
worth investigating how DSMC can be applied to POMDP
scenarios.

Funding Open Access funding enabled and organized by Projekt
DEAL. This work was partially supported by the ERC Advanced
InvestigatorsGrant 695614 (POWVER), by theGermanResearchFoun-
dation (DFG) under Grant No. 389792660, as part of TRR 248 – CPEC,

123

424 T. P. Gros et al.

see https://perspicuous-computing.science, by the Key-Area Research
and Development Program Grant 2018B010107004 of Guangdong
Province, and by the European Regional Development Fund (ERDF).

Data availability The benchmark and all infrastructure including our
modification of modes as well as our Janimodel are archived and pub-
licly available at DOI 10.5281/zenodo.3760098 [31]. The infrastructure
for the scalability study is available at DOI 10.5281/zenodo.7071405.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Agostinelli, F., McAleer, S., Shmakov, A., Baldi, P.: Solving the
Rubik’s cube with deep reinforcement learning and search. Nat.
Mach. Intell. 1(8), 356–363 (2019)

2. Akintunde, M., Lomuscio, A., Maganti, L., Pirovano, E.:
Reachability analysis for neural agent-environment systems. In:
Thielscher, M., Toni, F., Wolter, F. (eds.) Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Sixteenth
International Conference, KR 2018, Tempe, Arizona, 30 October–
2 November 2018, pp. 184–193. AAAI Press (2018). https://aaai.
org/ocs/index.php/KR/KR18/paper/view/17991

3. Akintunde,M.E., Kevorchian, A., Lomuscio, A., Pirovano, E.: Ver-
ification of RNN-based neural agent-environment systems. In: The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27–February 1, 2019, pp. 6006–
6013. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.
33016006

4. Alamdari, P.A., Avni, G., Henzinger, T.A., Lukina, A.: Formal
methods with a touch of magic. In: 2020 Formal Methods in
Computer Aided Design, FMCAD 2020, Haifa, Israel, September
21–24, 2020, pp. 138–147. IEEE (2020). https://doi.org/10.34727/
2020/isbn.978-3-85448-042-6_21

5. Ashok, P., Kretínský, J., Larsen, K.G., Coënt, A.L., Taankvist, J.H.,
Weininger, M.: SOS: safe, optimal and small strategies for hybrid
Markov decision processes. In: Parker, D.,Wolf, V. (eds.) Quantita-
tive Evaluation of Systems, 16th International Conference, QEST
2019, Glasgow, UK, September 10–12, 2019, Proceedings, Lec-
ture Notes in Computer Science, vol. 11785, pp. 147–164. Springer
(2019). https://doi.org/10.1007/978-3-030-30281-8_9

6. Avni, G., Bloem, R., Chatterjee, K., Henzinger, T.A., Könighofer,
B., Pranger, S.: Run-time optimization for learned controllers

through quantitative games. In: Dillig, I., Tasiran, S. (eds.) Com-
puter Aided Verification—31st International Conference, CAV
2019, New York City, NY, USA, July 15–18, 2019, Proceedings,
Part I, Lecture Notes in Computer Science, vol. 11561, pp. 630–
649. Springer (2019). https://doi.org/10.1007/978-3-030-25540-
4_36

7. Baier, C., Christakis, M., Gros, T.P., Groß, D., Gumhold, S.,
Hermanns, H., Hoffmann, J., Klauck, M.: Lab conditions for
research on explainable automated decisions. In: Proceedings of
the 1st TAILOR Workshop—Foundations of Trustworthy AI—
Integrating Learning, Optimization and Reasoning Co-Located
with 24th EuropeanConference onArtificial Intelligence, TAILOR
2020, Santiago de Compostela, Spain (2020)

8. Baier, C., Dubslaff, C., Hermanns, H., Klauck, M., Klüppelholz,
S., Köhl, M.A.: Components in probabilistic systems: Suitable
by construction. In: Margaria,T., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verification and Validation: Ver-
ification Principles—9th International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2020, Rhodes, Greece,
October 20–30, 2020, Proceedings, Part I, Lecture Notes in Com-
puter Science, vol. 12476, pp. 240–261. Springer (2020). https://
doi.org/10.1007/978-3-030-61362-4_13

9. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-
time dynamic programming. Artif. Intell. 72(1–2), 81–138 (1995)

10. Bogdoll, J., Fioriti, L.M.F., Hartmanns, A., Hermanns, H.: Partial
order methods for statistical model checking and simulation. In:
FMOODS-FORTE, LNCS 6722, pp. 59–74 (2011)

11. Bonet, B., Geffner, H.: Labeled RTDP: improving the convergence
of real-time dynamic programming. In: ICAPS, pp. 12–21 (2003)

12. Buchholz, P.: Exact and ordinary lumpability in finite Markov
chains. J. Appl. Probab. 31(1), 59–75 (1994)

13. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A
statistical model checker for nondeterminism and rare events. In:
Beyer, D., Huisman, M. (eds.) Tools and Algorithms for the Con-
struction andAnalysis of Systems—24th International Conference,
TACAS 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14–20, 2018, Proceedings, Part II, Lecture Notes
in Computer Science, vol. 10806, pp. 340–358. Springer (2018).
https://doi.org/10.1007/978-3-319-89963-3_20

14. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges,
S., Turrini, A.: JANI: Quantitative model and tool interaction. In:
TACAS (2), LNCS 10206, pp. 151–168 (2017)

15. Carr, S., Jansen, N., Wimmer, R., Serban, A.C., Becker, B., Topcu,
U.: Counterexample-guided strategy improvement for pomdps
using recurrent neural networks. In: Kraus, S. (ed.) Proceedings
of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10–16, 2019, pp.
5532–5539. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/
768

16. Christakis, M., Eniser, H.F., Hermanns, H., Hoffmann, J., Kothari,
Y., Li, J., Navas, J.A., Wüstholz, V.: Automated safety verification
of programs invoking neural networks. In: Silva, A., Leino, K.R.M.
(eds.) Computer Aided Verification—33rd International Confer-
ence, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings,
Part I, Lecture Notes in Computer Science, vol. 12759, pp. 201–
224. Springer (2021). https://doi.org/10.1007/978-3-030-81685-
8_9

17. Croce, F., Andriushchenko, M., Hein, M.: Provable robustness of
ReLU networks via maximization of linear regions. In: AISTATS,
PMLR 89, pp. 2057–2066 (2019)

18. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statis-
tical approximation of optimal schedulers for probabilistic timed
automata. In: IFM, LNCS 9681, pp. 99–114 (2016)

19. David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist,
J.H.: Uppaal stratego. In: Baier, C., Tinelli, C. (eds.) Tools and

123

https://perspicuous-computing.science
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://aaai.org/ocs/index.php/KR/KR18/paper/view/17991
https://aaai.org/ocs/index.php/KR/KR18/paper/view/17991
https://doi.org/10.1609/aaai.v33i01.33016006
https://doi.org/10.1609/aaai.v33i01.33016006
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_21
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_21
https://doi.org/10.1007/978-3-030-30281-8_9
https://doi.org/10.1007/978-3-030-25540-4_36
https://doi.org/10.1007/978-3-030-25540-4_36
https://doi.org/10.1007/978-3-030-61362-4_13
https://doi.org/10.1007/978-3-030-61362-4_13
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.24963/ijcai.2019/768
https://doi.org/10.24963/ijcai.2019/768
https://doi.org/10.1007/978-3-030-81685-8_9
https://doi.org/10.1007/978-3-030-81685-8_9

Analyzing neural network behavior... 425

Algorithms for the Construction and Analysis of Systems—21st
International Conference, TACAS 2015, Held as Part of the Euro-
pean JointConferences onTheory andPractice ofSoftware,ETAPS
2015, London, UK,April 11–18, 2015. Proceedings, LectureNotes
in Computer Science, vol. 9035, pp. 206–211. Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0_16

20. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.:
Time for statistical model checking of real-time systems. In: CAV,
LNCS 6806, pp. 349–355 (2011)

21. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming:
A modern probabilistic model checker. In: CAV, LNCS 10427, pp.
592–600 (2017)

22. Ehlers, R.: Formal verification of piece-wise linear feed-forward
neural networks. In: ATVA, LNCS 10482, pp. 269–286 (2017)

23. Gardner, M.: Mathematical games. Sci. Am. 229, 118–121 (1973)
24. Gardner, M., Dorling, S.: Artificial neural networks (the multilayer

perceptron)-a review of applications in the atmospheric sciences.
Atmos. Environ. 32(14), 2627–2636 (1998)

25. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaud-
huri, S., Vechev, M.T.: AI2: Safety and robustness certification of
neural networks with abstract interpretation. In: IEEE Symposium
on Security and Privacy 2018, pp. 3–18 (2018)

26. Groß, D., Klauck, M., Gros, T.P., Steinmetz, M., Hoffmann, J.,
Gumhold, S.: Glyph-based visual analysis of q-learning based
action policy ensembles on racetrack. In: 26th International Con-
ference on Information Visualisation (IV) (2022)

27. Gros, T.P.: Tracking the race: Analyzing racetrack agents trained
with imitation learning and deep reinforcement learning. Master’s
thesis, Saarland University (2021)

28. Gros, T.P., Groß,D., Gumhold, S., Hoffmann, J., Klauck,M., Stein-
metz, M.: TraceVis: Towards Visualization for Deep Statistical
Model Checking. In: Proceedings of the 9th International Sympo-
sium on Leveraging Applications of Formal Methods, Verification
and Validation. From Verification to Explanation. (2020)

29. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Köhl, M.A.,
Wolf, V.: Mogym: Using formal models for training and verifying
decision-making agents. In: Shoham, S., Vizel, Y. (eds.) Computer
Aided Verification—34th International Conference, CAV 2022,
Haifa, Israel, August 7–10, 2022, Proceedings, Part II, Lecture
Notes in Computer Science, vol. 13372, pp. 430–443. Springer
(2022). https://doi.org/10.1007/978-3-031-13188-2_21

30. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz,
M.: Deep Statistical Model Checking In: Proceedings of the 40th
International Conference on Formal Techniques for Distributed
Objects, Components, and Systems (FORTE’20) (2020). Available
at https://doi.org/10.1007/978-3-030-50086-3_6

31. Gros, T.P.,Hermanns,H.,Hoffmann, J., Klauck,M., Steinmetz,M.:
Models and Infrastructure used inDeep StatisticalModel Checking
(2020). Available at https://doi.org/10.5281/zenodo.3760098

32. Gros, T.P., Höller, D., Hoffmann, J., Klauck, M., Meerkamp, H.,
Wolf,V.:DSMCevaluation stages: Fostering robust and safe behav-
ior in deep reinforcement learning. In: Abate, A., Marin, A. (eds.)
Quantitative Evaluation of Systems—18th International Confer-
ence,QEST2021, Paris, France,August 23–27, 2021, Proceedings,
Lecture Notes in Computer Science, vol. 12846, pp. 197–216.
Springer (2021). https://doi.org/10.1007/978-3-030-85172-9_11

33. Gros, T.P., Höller, D., Hoffmann, J., Wolf, V.: Tracking the race
between deep reinforcement learning and imitation learning. In:
International Conference on Quantitative Evaluation of Systems,
pp. 11–17. Springer (2020)

34. Haesaert, S., Soudjani, S.,Abate,A.: Temporal logic control of gen-
eral markov decision processes by approximate policy refinement.
In: Abate, A., Girard, A., Heemels, M. (eds.) 6th IFAC Conference
on Analysis and Design of Hybrid Systems, ADHS 2018, Oxford,
UK, July 11–13, 2018, IFAC-PapersOnLine, vol. 51, pp. 73–78.
Elsevier (2018). https://doi.org/10.1016/j.ifacol.2018.08.013

35. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: A
web-based probabilistic model checker. In: FM 2014, LNCS 8442,
pp. 312–317 (2014)

36. Hansson, H., Jonsson, B.: A logic for reasoning about time and
reliability. Form. Asp. Comput. 6(5), 512–535 (1994)

37. Hartmanns, A.: On the analysis of stochastic timed systems. Ph.D.
thesis, Saarland University, Germany (2015)

38. Hartmanns, A., Hermanns, H.: The Modest toolset: An inte-
grated environment for quantitative modelling and verification. In:
TACAS, LNCS 8413, pp. 593–598 (2014)

39. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.:
The quantitative verification benchmark set. In: TACAS (1), LNCS
11427, pp. 344–350 (2019)

40. Hasanbeig, M., Abate, A., Kroening, D.: Logically-correct rein-
forcement learning. CoRR (2018). arxiv:1801.08099

41. Hausknecht, M.J., Stone, P.: Deep recurrent q-learning for
partially observable MDPs. In: 2015 AAAI Fall Symposia,
Arlington, Virginia, USA, November 12–14, 2015, pp. 29–
37. AAAI Press (2015). http://www.aaai.org/ocs/index.php/FSS/
FSS15/paper/view/11673

42. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approxi-
mate probabilistic model checking. In: VMCAI, LNCS 2937, pp.
73–84 (2004)

43. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A., Jaitly, N.,
Senior,A.,Vanhoucke,V.,Nguyen, P., Sainath,T.N.,Kingsbury,B.:
Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Signal Process.
Mag. 29(6), 82–97 (2012)

44. Hornik, K., Stinchcombe,M.B.,White, H.:Multilayer feedforward
networks are universal approximators. Neural Netw. 2, 359–366
(1989)

45. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verifica-
tion of deep neural networks. In: CAV (1), LNCS 10426, pp. 3–29
(2017)

46. Jaeger, M., Jensen, P.G., Larsen, K.G., Legay, A., Sedwards, S.,
Taankvist, J.H.: Teaching stratego to play ball: Optimal synthesis
for continuous space MDPs. In: Chen, Y., Cheng, C., Esparza, J.
(eds.) Automated Technology for Verification and Analysis—17th
International Symposium, ATVA 2019, Taipei, Taiwan, October
28–31, 2019, Proceedings, Lecture Notes in Computer Science,
vol. 11781, pp. 81–97. Springer (2019). https://doi.org/10.1007/
978-3-030-31784-3_5

47. The JANI specification. http://www.jani-spec.org/. Accessed on
28/02/2020

48. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.: Safety-
constrained reinforcement learning for MDPs. In: Chechik, M.,
Raskin, J. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems—22nd International Conference, TACAS
2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Nether-
lands, April 2-8, 2016, Proceedings, Lecture Notes in Computer
Science, vol. 9636, pp. 130–146. Springer (2016). https://doi.org/
10.1007/978-3-662-49674-9_8

49. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.:
Reluplex: An efficient SMT solver for verifying deep neural net-
works. In: CAV (1), LNCS 10426, pp. 97–117 (2017)

50. Klauck, M., Steinmetz, M., Hoffmann, J., Hermanns, H.: Compil-
ing probabilistic model checking into probabilistic planning. In:
ICAPS, pp. 150–154 (2018)

51. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification
with deep convolutional neural networks. In: NIPS, pp. 1097–1105
(2012)

52. Kwiatkowska,M.,Norman,G., Parker,D.: PRISM4.0:Verification
of probabilistic real-time systems. In: CAV, LNCS 6806, pp. 585–
591 (2011)

123

https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-031-13188-2_21
https://doi.org/10.1007/978-3-030-50086-3_6
https://doi.org/10.5281/zenodo.3760098
https://doi.org/10.1007/978-3-030-85172-9_11
https://doi.org/10.1016/j.ifacol.2018.08.013
http://arxiv.org/abs/1801.08099
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.1007/978-3-030-31784-3_5
http://www.jani-spec.org/
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-662-49674-9_8

426 T. P. Gros et al.

53. Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model
checking. In: SFM 2007, Advanced Lectures, LNCS 4486, pp.
220–270 (2007)

54. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing.
Inf. Comput. 94(1), 1–28 (1991). https://doi.org/10.1016/0890-
5401(91)90030-6

55. Legay, A., Lukina, A., Traonouez, L., Yang, J., Smolka, S.A.,
Grosu, R.: Statistical model checking. In: Steffen, B., Woegin-
ger, G.J. (eds.) Computing and Software Science—State of the Art
and Perspectives, Lecture Notes in Computer Science, vol. 10000,
pp. 478–504. Springer (2019). https://doi.org/10.1007/978-3-319-
91908-9_23

56. Legay, A., Sedwards, S., Traonouez, L.: Scalable verification of
Markov decision processes. In: SEFM Workshops, LNCS 8938,
pp. 350–362 (2014)

57. Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing
deep neural networks with symbolic propagation: Towards higher
precision and faster verification. In: SAS, LNCS 11822, pp. 296–
319 (2019)

58. McMahan,H.B., Gordon,G.J.: Fast exact planning inMarkov deci-
sion processes. In: ICAPS, pp. 151–160 (2005)

59. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J.,
Bellemare, M.G., Graves, A., Riedmiller, M.A., Fidjeland, A.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.:
Human-level control through deep reinforcement learning. Nature
518, 529–533 (2015)

60. Okamoto,M.: Some inequalities relating to the partial sum of bino-
mial probabilities. Ann. Inst. Stat. Math. 10(1), 29–35 (1959)

61. Parker, D.A.: Implementation of symbolic model checking for
probabilistic systems. Ph.D. thesis, University of Birmingham, UK
(2003)

62. Pineda, L.E., Lu, Y., Zilberstein, S., Goldman, C.V.: Fault-tolerant
planning under uncertainty. In: IJCAI, pp. 2350–2356 (2013)

63. Pineda, L.E., Zilberstein, S.: Planning under uncertainty using
reduced models: Revisiting determinization. In: ICAPS (2014)

64. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley, Hoboken (1994)

65. Sarle, W.S.: Neural networks and statistical models (1994)
66. Schilling, C., Forets, M., Guadalupe, S.: Verification of neural-

network control systems by integrating Taylor models and zono-
topes. In: Thirty-SixthAAAIConference onArtificial Intelligence,
AAAI 2022, Thirty-Fourth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on
EducationalAdvances inArtificial Intelligence, EAAI 2022Virtual
Event, February 22–March 1, 2022, pp. 8169–8177. AAAI Press
(2022). https://ojs.aaai.org/index.php/AAAI/article/view/20790

67. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M.,
Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lil-
licrap, T., Simonyan, K., Hassabis, D.: A general reinforcement
learning algorithm that masters chess, shogi, and go through self-
play. Science 362(6419), 1140–1144 (2018)

68. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduc-
tion In: Adaptive Computation and Machine Learning, 2nd edn.
The MIT Press (2018)

69. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math.
Stat. 16(2), 117–186 (1945)

70. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-
box safety testing of deep neural networks. In: TACAS (1), LNCS
10805, pp. 408–426 (2018)

71. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of dis-
crete event systems using acceptance sampling. In: CAV, LNCS
2404, pp. 223–235 (2002)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://ojs.aaai.org/index.php/AAAI/article/view/20790

	Analyzing neural network behavior through deep statistical model checking
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Markov decision processes
	3.2 Probabilistic and statistical model checking
	3.3 Deep Q-learning

	4 Neural networks as MDP action policies
	4.1 Connecting MDP and action oracle
	4.2 DSMC implementation

	5 Racetrack
	5.1 Background on Racetrack
	5.2 Jani framework
	5.3 Racetrack model in Jani
	5.4 Scaling Racetrack
	5.5 Learning neural networks for Racetrack

	6 NN quality analysis using DSMC
	6.1 Quality assurance in system approval
	6.2 Learning pipeline analysis and revision

	7 Computational performance of DSMC
	7.1 NN versus engineered policy
	7.2 Scalability study: setup
	7.3 Scalability as a function of training episodes
	7.4 Scalability as a function of instance size

	8 Conclusion
	References

