
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Learning Neural Search Policies for Classical Planning

Paweł Gomoluch,1 Dalal Alrajeh,1 Alessandra Russo,1 Antonio Bucchiarone2

1Department of Computing, Imperial College London, 2Fondazione Bruno Kessler, Trento, Italy
{pawel.gomoluch14, dalal.alrajeh, a.russo}@imperial.ac.uk, bucchiarone@fbk.eu

Abstract

Heuristic forward search is currently the dominant paradigm
in classical planning. Forward search algorithms typically
rely on a single, relatively simple variation of best-first search
and remain fixed throughout the process of solving a plan-
ning problem. Existing work combining multiple search tech-
niques usually aims at supporting best-first search with an
additional exploratory mechanism, triggered using a hand-
crafted criterion. A notable exception is very recent work
which combines various search techniques using a trainable
policy. That approach, however, is confined to a discrete ac-
tion space comprising several fixed subroutines.
In this paper, we introduce a parametrized search algorithm
template which combines various search techniques within
a single routine. The template’s parameter space defines an
infinite space of search algorithms, including, among others,
BFS, local and random search. We then propose a neural ar-
chitecture for designating the values of the search parameters
given the state of the search. This enables expressing neural
search policies that change the values of the parameters as
the search progresses. The policies can be learned automat-
ically, with the objective of maximizing the planner’s per-
formance on a given distribution of planning problems. We
consider a training setting based on a stochastic optimization
algorithm known as the cross-entropy method (CEM). Exper-
imental evaluation of our approach shows that it is capable of
finding effective distribution-specific search policies, outper-
forming the relevant baselines.

1 Introduction

Modern classical planners usually rely on heuristic for-
ward search. Much research effort in recent years has
been devoted to the development of advanced domain-
independent heuristic functions (e.g. (Hoffmann and Nebel
2001; Helmert 2006; Richter and Westphal 2010; Domsh-
lak, Hoffmann, and Katz 2015)). In contrast, the search
algorithms at the core of many successful planners have
largely remained simple variations of best-first search, such
as greedy best-first search (Helmert 2006) or weighted A*
(Richter and Westphal 2010). In recent years, some work
has sought to combine best-first search with additional ex-
ploratory mechanisms, such as randomized order of node
expansion (Valenzano et al. 2014; Asai and Fukunaga 2017),

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

random walks and local search (Xie, Müller, and Holte
2014) or novelty search (Lipovetzky and Geffner 2017). The
motivation behind these approaches is to enable the search to
escape local minima and plateaus of the heuristic function.

Introducing even a single auxiliary exploration mecha-
nism necessarily comes with a number of nontrivial design
choices, such as when to switch between the main and aux-
iliary search approach. In addition, many of the exploration
mechanisms come with a number of parameters of their own,
such as the length and number of random walks to perform.
The values of the parameters are typically selected by human
experts. Furthermore, they stay fixed throughout the process
of solving the problem.

The work introduced in this paper aims at automating the
design of multi-technique search algorithms. To achieve it,
we first construct a parametrized search algorithm which
combines multiple search techniques in a flexible manner.
Depending on the values of the parameters, the search algo-
rithm can take form of BFS, iterated local search or random
search, among others. Rather than choosing fixed values of
the parameters, we introduce a trainable model mapping the
current state of the search to an assignment over the parame-
ters. We then train the model using the cross-entropy method
(CEM) to obtain search policies tailored to specific problem
distributions. We also consider a simpler setting, in which
CEM is used to find values for the search parameters di-
rectly, without the state-dependent policy.

To the best of our knowledge, no existing literature has
focused on a similar problem, except for our earlier work
(Gomoluch, Alrajeh, and Russo 2019). That approach, how-
ever, is limited to selecting from a discrete set of several
fixed search routines.

We implement our approach within the Fast Down-
ward planning system (Helmert 2006) and evaluate it us-
ing five domains from the International Planning Competi-
tion (IPC). The learned search policies outperform baselines
built around each the component techniques on their own,
as well as a fixed hand-crafted combination of all the tech-
niques.

2 Related Work

By using learning to improve the performance of a planner,
our work joins the ranks of numerous learning approaches
in classical planning. Over the years, learning has been used

522



to acquire macro operators (Fikes, Hart, and Nilsson 1972;
Coles and Smith 2007; Gerevini, Saetti, and Vallati 2009),
heuristic functions (Yoon, Fern, and Givan 2008; Virseda,
Borrajo, and Alcazar 2013; Garrett, Kaelbling, and Lozano-
Perez 2016) and search control rules (Leckie and Zukerman
1998; Yoon, Fern, and Givan 2008).

Little work has sought to learn directly in the space of pos-
sible search algorithms until our recent approach, in which
policy gradient was used to learn search strategies (Go-
moluch, Alrajeh, and Russo 2019). That work is closely re-
lated to this paper in that it combines various search tech-
niques in a single search run, and it learns how to best do
so, given a particular distribution of planning problems. The
most important difference is the space of possible search
policies. In our previous work, a policy is trained to choose
a search subroutine out of a set of five. While shown to be
effective, this approach imposes somewhat arbitrary restric-
tions on the action and policy spaces. For example, the plan-
ner can choose to perform ε-greedy search, but not the value
of epsilon. It can choose to perform random walks but not set
their length. The span of local search is also effectively de-
termined by one of the hyperparameters. Further, local and
ε-greedy search are made mutually exclusive, although in
some domains it may be beneficial to combine the two, i.e.,
randomize the order of node expansion in local search. In
contrast, in this paper, various search techniques are merged
into a single parametrized search routine that subsumes each
of the subroutines on its own for some specific assignment
of the parameters. In reinforcement learning terms, the pre-
vious work deals with a discrete action space while this one
is close in spirit to continuous action spaces.1

Another important difference is the representation of the
search policies. Our previous work (Gomoluch, Alrajeh, and
Russo 2019) adopts a tabular approach with four states gen-
erated by two binary features. In this work, we use numeric
features and a function approximator mapping them into the
values of search parameters.

A different approach to planning with multiple search
techniques is to divide the available time and perform a
number of separate search runs. The original Fast Forward
planner (Hoffmann and Nebel 2001) first attempts to solve
the problem using enforced hill climbing. If this fails, it
falls back to best-first search. The LAMA planner (Richter
and Westphal 2010) follows greedy search with a num-
ber of weighted A* runs with decreasing weights in order
to find the first solution as quickly as possible and then
keep improving on it while the time permits. The idea is
taken even further in the planner portfolios which run a
number of potentially unrelated solvers independently (e.g.
(Helmert, Röger, and Karpas 2011; Cenamor, De La Rosa,
and Fernández 2016)). Our approach differs from the port-
folios by dealing with a single search run and learning how
to best proceed with the current search frontier. In doing so,
it is complementary to portfolio approaches. For example,
future work could consider building portfolios composed of

1The action space is not strictly continuous as some of the
search parameters take integer values. However, the presence of
real-valued parameters makes the space infinite.

parametrized planners optimized for various problem distri-
butions.

3 Background

Classical Planning Planning is the problem of finding se-
quences of actions leading from an given initial state to state
in which a given goal is satisfied. Classical planning, in par-
ticular, relies on a perfect and deterministic world model
known to the planner. Formally, the classical planning task
is given by a tuple 〈V,O, s0, g〉, where V is a set of finite-
domain variables, O is the set of operators, s0 is the initial
state and g is the goal. The initial state s0 is an assignment
over the variables of V . The goal g is a partial assignment
over V . The operators o ∈ O are themselves defined by
specifying their preconditions pre(o) and effects eff(o), both
of which are partial assignments over V . An operator o can
be applied in state s if and only if its preconditions are satis-
fied in the state, pre(o) ⊆ s. The state resulting from apply-
ing an operator o to state s, o(s) is determined by setting the
values of variables covered by eff(o) to the corresponding
values, and keeping all the other variables unchanged. The
task is to find a sequence of operators o0, o1, on, such that
applying them in order, starting from the initial state, leads
to satisfaction of the goal g: g ⊆ on(on−1(...o0(s0)...)).

The most common approach to classical planning is for-
ward search. Forward search starts by inserting a node con-
taining the initial state s0 in the open list. It proceeds by iter-
atively removing nodes from the list and expanding them by
applying all of the operators applicable in the given state and
adding the resulting nodes to the open list. This is repeated
until a state satisfying the goal g is reached or the open list
becomes empty. Best-first search (BFS) always expands the
node n with the lowest value of some evaluation function
f(n). If f(n) depends solely on the heuristic estimate of the
distance to the goal f(n) = h(n) the search becomes greedy
best-first search (GBFS).

Cross-Entropy Method The cross-entropy method is a
gradient-free stochastic optimization technique originating
from rare event simulation (Rubinstein 1999; de Boer et al.
2005). It belongs to a wider family of population-based op-
timization techniques known as Evolution Strategies (ES),
which also include approaches such as Covariance Matrix
Adaptation (Hansen and Ostermeier 2001) and Natural Evo-
lution Strategies (Wierstra et al. 2014). In recent years, vari-
ous forms of evolution strategies have been successfully ap-
plied as policy search methods in a number of challenging
reinforcement learning domains (Mannor, Rubinstein, and
Gat 2003; Salimans et al. 2017; Chrabaszcz, Loshchilov, and
Hutter 2018; Conti et al. 2018). The common idea underly-
ing ES is to maintain a population of candidate solutions and
iteratively update it towards solutions of higher quality.

Given a (possibly stochastic) function s(x),x ∈ X , the
cross-entropy method introduces an auxiliary distribution
fv(x) over the possible solutions. The distribution is itself
parametrized by a vector v. For example, if the distribution
is a multivariate Gaussian, v can contain its mean and flat-
tened covariance matrix. At each iteration t, n candidate so-
lutions x

(1)
t ,x

(2)
t . . .x

(n)
t are sampled from the distribution

523



and evaluated. The parameters of the distribution are then
updated to maximize the likelihood of the m best candidate
solutions (m < n). To select the best solutions, a perfor-
mance threshold γt is introduced, equal to the m

n ·100-th per-
centile of the candidate scores s(x

(1)
t ), s(x

(2)
t ) . . . s(x

(n)
t ).

The value of v for the next iteration is designated by solv-
ing:

ṽt = argmax
v∈V

1

N

N∑

i=1

I
s(x

(i)
t )>γt

log f(x
(i)
t , v) (1)

where I
s(x

(i)
t )>γt

is the indicator variable of the event

s(x
(i)
t ) > γt, i.e., it is 1 if the score of sample i is higher

than the threshold γt and 0 otherwise.
In the particular case when the auxiliary distribution is a

multivariate Gaussian, solving Equation 1 amounts to setting
ṽt to the mean and covariance of the m samples above the
threshold γt.

Instead of using the solution of Equation 1 directly for the
next iteration’s distribution (vt+1 = ṽt), it is also possible
to perform a smoothed update:

vt+1 = αṽt + (1− α)vt (2)

The process can be repeated for a fixed number of itera-
tions or until a specific stopping criterion is met. After the
final iteration t the result can be obtained by extracting the
mean of the final distribution from vt+1.

4 Parametrized Search

The key idea underlying this work is that multiple for-
ward search techniques can be combined in a single forward
search algorithm. For instance, the algorithm can interleave
between global and local best first search by performing a
number of standard node expansions and then a number of
local expansions. Both local and global expansions can op-
tionally be followed by a number of random walks started
from the expanded node. Additionally, both global and lo-
cal search can randomize the order of node expansion, by
choosing a random node from the open list instead of the
one with lowest h, with the probability of ε.

Pseudocode implementing this idea is presented in Algo-
rithm 1. Typically for a forward approach, the search starts
by initializing the open list to contain the initial state s0 (line
2). The main loop of the algorithm (lines 3-10) performs a
number of search steps using the global open list (lines 5-6).
Then it initializes a new local open list with a single node
removed from the global list (line 7). The local list is used
to perform a number of local search steps (lines 8-9). After
the local search, all the nodes from the local list are merged
into the global one (line 10). The number of global and lo-
cal steps in a single iteration of the main loop is controlled
by two parameters: C is the total number of steps and c is
the proportion of local steps. One iteration of the main loop
consists of (1− c) · C global and c · C local steps.

A search step (lines 12-31) involves a single node expan-
sion (lines 21-26), optionally followed by N random walks
of length L, starting at the expanded node (lines 27-30). One
of the details omitted from Algorithm 1 is keeping track of

the lowest known heuristic value hmin. The value is initial-
ized to the heuristic evaluation of the initial state and then
updated whenever a state with lower evaluation is encoun-
tered. Similarly, the algorithm needs to keep track of the
number of node expansions performed since the last update
of hmin. This value is used to decide whether to follow the
current node expansion with random walks (line 27). The
walks are triggered on condition that no decrease of hmin

has been observed during the last S expansions. The S pa-
rameter plays a role analogous to the STALL SIZE parame-
ter used by (Xie, Müller, and Holte 2014) to decide when to
switch from GBFS to the auxiliary exploration technique.

If the step is using the local list and it turns out to be
empty, another node is moved from the global list to the lo-
cal one (line 20). If the global list becomes empty without
reaching the goal, the search fails (lines 15 and 18).

Overall, the search parameters include:
• ε – the probability of selecting a random node from the

open list;
• S – the number of expansions without progress necessary

to trigger a random walk;
• R – the number of random walks following a single node

expansion;
• L – the length of a random walk;
• C – the number of node expansions in the global-local

cycle;
• c – the proportion of local search in the global-local cycle.

Assigning the values of the parameters positions the re-
sulting algorithm in the space between various search ap-
proaches. For example, with ε = 0, R = 0 and c = 0 the al-
gorithm becomes greedy BFS, independently of the remain-
ing parameters. With ε = 0, R = 0, c = 1 and C = 100, the
algorithm performs iterated local search with a span of 100.
Intermediate values of c result in interleaving of global and
local search, with random walks optionally added in both
phases, as determined by remaining parameters.

The values of the search parameters can be changed dur-
ing execution of the algorithm. It is convenient to update
them at the beginning of every iteration of the main loop
(line 4) and keep them fixed throughout the iteration. In the
following sections we introduce the task of learning search
policies, whose purpose is to set the values of the parame-
ters, given the current state of the search.

5 Search State Representation

To facilitate learning of state-dependent search policies, we
introduce a high-level representation of the state of the plan-
ner. In particular, we consider the following features of the
planner’s state:
• the heuristic value of the initial state h(s0);
• the lowest heuristic value encountered within the search
hmin;

• the time elapsed since the search started;
• the number of node expansions performed since the last

change in the value of hmin;

524



Algorithm 1 Parametrized planner
1: function PLANNER(s0, g, O)
2: global open← [s0]
3: while true do
4: ε, S,R, L,C, c← set search parameters()
5: for i = 1 . . . (1− c) · C do
6: STEP(global open,O, g)
7: local open← [pop(global open)]
8: for i = 1 . . . c · C do
9: STEP(local open,O, g)

10: merge local open into global open

11:
12: function STEP(open,O, g)
13: if open is empty then
14: if open is global open then
15: return failure � return from PLANNER
16: else
17: if global open is empty then
18: return failure � return from PLANNER
19: else
20: local open← [pop(global open)]

21: s← pop(open, ε)
22: if s ∈ g then
23: plan← extract plan(s)
24: return plan � return from PLANNER

25: successor states← expand(s,O)
26: add(open, successor states)
27: if expansions without progress > S then
28: for i = 1 . . . R do
29: walk states← random walk(s, L)
30: add(open,walk states)

31: return in progress � return to the PLANNER loop

• the number of states the search has generated;

• the number of unique states the search has generated;

• the total number of nodes the search has expanded.

Intuitively, the features capture important information about
the state of the search. For example, a large number of node
expansions performed since the last decrease in hmin indi-
cates that the planner is facing a local minimum or a plateau
of the heuristic function. In such a situation, increasing the
amount of exploratory behavior is likely to be beneficial.
Comparing the current value of the heuristic with h(s0) en-
ables estimating the relative progress towards the goal. If the
values are close, the search has likely made little progress to-
wards the goal. On the other hand, a value of hmin close to
0 can suggest that the search frontier is close to the goal.
Naturally, the reliability of such estimates will depend on
how well the heuristic function correlates with actual dis-
tance to the goal in the current domain. This information can
be particularly useful in conjunction with the elapsed time
t. If sufficient progress is being made at early stage of the
search, there may be no incentive to deploy techniques mak-
ing rapid progress towards the goal at the cost of sacrificing
the plan quality (for example random walks in logistics-style

domains). On the other hand, if time is running out while
significant distance remains to be covered, more aggressive
approach may be desirable in order to avoid timeout.

In the following section, these features are used as the
state representation for learning search policies.

6 Learning Search Policies
We consider a search policy to be a vector valued function
mapping the state of the search to the values of the search
parameters. Formally, Y = π(Φ), where Y is a vector of the
search parameters 〈ε, S,R, L,C, c〉, introduced in Section 4,
and Φ is the vector of state features listed in Section 5.

Policy model

We represent the search policies using a parametric function
approximator πθ(Φ), with trainable parameters θ. Specif-
ically, we use a feed-forward neural network. The inputs
of the network are the planner’s state features and its out-
puts are the search parameters. The network contains one
hidden layer of 7 units with sigmoid activation function
f(z) = 1

1+e−z . The treatment of the network’s output de-
pends on the search parameter it represents. For real-valued
search parameters (ε and c) taking values from range (0, 1),
the network outputs are passed through a sigmoid function.
For search parameters taking nonnegative integer values (S,
R, L and C) the outputs are restricted to nonnegative values
yr = max(y, 0) and truncated to the integer part.

Because the planner’s state features differ in order of mag-
nitude, we scale them before passing them through the net-
work. We choose the scaling factors on a per-domain basis,
by running our parametrized planner with fixed parameter
values on a separate batch of problems from the domain and
recording the maximum values φmax of all the features ob-
served in the process. The maximum values are then used to
scale each of the features φscaled = φ

φmax
, so that value 1

of the scaled feature represents the highest value recorded
on the batch of problems. The scales remain unchanged
throughout training and testing of the system.

Similarly, we scale the outputs of the network. With the
exception of ε and c, whose values are put in the range of
(0, 1) by the sigmoid, we scale the outputs so that the value
of 1 results in moderate use of the corresponding search
technique. Concretely, we multiply the number of random
walks R by 5, the length of the walks L by 10, the stall con-
dition S by 10 and the length of the global-local cycle C by
100.

Policy evaluation

To learn search policies in an evolutionary process, it is nec-
essary to establish a way of evaluating candidate policies. In
this work, we adopt an approach based on the scoring func-
tion used in the satisficing track of the International Plan-
ning Competition (IPC) since the 2008 edition2. For a failed
problem, a planner receives a score of 0. For a solved one
the score is defined as:

g =
cmin

c
2http://icaps-conference.org/ipc2008/deterministic/

525



where c is the cost of the found plan, and cmin is the lowest
known cost of a plan solving the problem. In practice, cmin

is often the lowest cost of a plan returned by any of the com-
peting planners. The score obtained on a set of problems is
the sum of scores for each of the problems.

G =
∑

p

gp

In our training setting, detailed in the next section, the
candidate policies are put in competition against each other:
cmin is the lowest solution cost found by any of the candidate
policies. This is convenient since the problems are generated
randomly for each iteration, and so no reference costs are
known a priori. We remark that when training on a fixed set
of problems, the lowest plan cost could be retained between
iterations or designated using a set of reference planners.

Policy learning

To learn search policies best suited to specific problem dis-
tributions, we employ the cross-entropy method (Rubinstein
1999; Mannor, Rubinstein, and Gat 2003). We introduce a
multivariate Gaussian distribution over the policy parame-
ters θ, which is itself parametrized by the mean vector μ and
covariance matrix Σ.

θ ∼ N (μ,Σ)

We initialize μ with a zero vector and Σ with an identity
matrix.

At each iteration t, n samples θ1...θn are drawn from
N (μt,Σt). The resulting policies are evaluated on the set
of training problems. The mean and covariance of the pa-
rameter distribution are then updated towards the mean and
covariance of the m candidate solutions with the best per-
formance:

νt =
1

m

m∑

i=1

θti (3)

μt+1 = (1− α)μt + ανt (4)

Σt+1 = (1− α)Σt + α
1

m− 1

m∑

i=1

(θti − νt)(θ
t
i − νt)

� (5)

where α is a smoothing factor and θt1...θtm are the m best
scoring candidates of iteration t.

The pseudocode of the learning approach is presented in
Algorithm 2. The inputs of the algorithm include a distribu-
tion of planning problems (P), the number of iterations (u),
the number of planning problems sampled at each iteration
(r), the number of policies sampled at each iteration (n) and
the number of elite policies used to update the policy distri-
bution (m).

The main loop of the algorithm starts by randomly gener-
ating a set of problems following the target distribution (line
4). Generally, the problems p1...pr do not have to be inde-
pendently and identically distributed. As detailed in Section
7, in our experiments we use problem distributions resem-
bling the IPC problem sets, which contain problems of vary-
ing difficulty. In the absence of problem generators, this step

could be replaced by sampling from a fixed set of training
problems.

Further, n policies are sampled from the current policy
distribution (line 5). Each of the policies is used to tackle
each of the generated problems (lines 6-8). The results are
used to compute IPC score for each policy (line 9). The poli-
cies are then sorted according to their scores in order to se-
lect the m best performing ones. The new mean of the pol-
icy distribution is obtained by averaging the m samples and
performing a weighted sum with the old mean (line 11). The
algorithm returns the final mean of the policy distribution as
the resulting policy (line 12).

Algorithm 2 Policy learning
1: function TRAIN(P, u, r, n,m)
2: initialize μ and Σ
3: for i = 1...u do
4: p1...pr ← P � sample r problems
5: θ1...θn ← N (μ,Σ) � sample n policies
6: for j = 1...n do
7: for k = 1...r do
8: run policy θj on pk, record plan cost cj,k
9: G1...Gn ← compute IPC score for θ1...θn

10: sort θ1...θn by scores G1...Gn (highest first)
11: update μ and Σ according to Equations 4 and 5
12: return μ

CEM can also be used directly to find the values of
the search parameters best suited to a particular distribu-
tion of planning problems. In this setting, the parameter
vectors θ simply store each of the search parameters θ =
〈ε, S,R, L,C, c〉. There is no state-dependent search pol-
icy and the values of the search parameters remain fixed
throughout the process of solving the planning problem. In
Section 7, we evaluate this approach along with the state-
dependent search policies.

7 Experiments

We have implemented the parametrized planner as a compo-
nent of the Fast Downward (Helmert 2006) planning system.
The source code is available online3.

We evaluate our approach on five IPC domains: Eleva-
tors, Floortile, No-mystery, Parking and Transport. These
are all the domains of the learning track of IPC 2014, with
the exception of the Spanner domain. The latter was de-
signed specifically not to work well with delete-relaxation
heuristics, such as the Fast Forward heuristic (Hoffmann and
Nebel 2001), which we use throughout our experiments. For
problem generation, we use the problem generators pub-
lished by the organizers of the learning track4. In terms of
problem size, we use problem distributions of the satisfic-
ing track of IPC 2011, which is the last edition in which the
domains occurred together. Note that by a problem distri-
bution we mean the values of the parameters passed to the

3https://github.com/pgomoluch/fd-learn
4http://www.cs.colostate.edu/∼ipc2014/

526



0 20 40 60 80 100
0

2

4

6

8

10

12

14

Elevators

0 10 20 30 40 50
0

1

2

3

4

5

Floortile

0 20 40 60 80
0

2

4

6

8

10

12

No-mystery

0 10 20 30 40 50 60
0

2

4

6

8

10

Parking

0 10 20 30 40 50 60
0

1

2

3

4

5

6

Transport

Figure 1: The average IPC score (y-axis) obtained on the
training batch by the n = 50 policies sampled at each train-
ing iteration (x-axis).

problem generators, which do not necessarily give full ac-
count of the difficulty of the actual IPC 2011 problem sets.
This is because the selection of the competition problems
may have involved additional criteria not captured by the
generator parameters, for example manual rejection of prob-
lems that have empirically proven too easy or too hard for
some set of reference planners. For both training and evalu-
ation, we use a time limit of 3 minutes per problem, which
is lower than the 30 minutes traditionally used in IPC. The
primary motivation for this is the training setting, which re-
quires multiple planner runs at every iteration. We remark
that training with a larger time limit is equally possible, al-
though significantly more expensive, as it requires up to 10
times more computation time.

Training

We train a separate model for each of the domains. At every
iteration, we randomly generate 20 problems of difficulty
roughly corresponding to the problem sets of the satisficing
track of IPC. Every batch of randomly generated problems
preserves the generator parameters used for the competition
set. For example, if the Parking set of the 2011 competition
contains 20 problems including two problems with 22, three
problems with 24 cars, three problems with 26 cars and so
on, then the same holds for every of the training batches.

The training setup follows Algorithm 2, with the num-
ber of policies sampled at each iteration n = 50 and the
the number of elite policies m = 10. The smoothing factor
is α = 0.7, as suggested by (Mannor, Rubinstein, and Gat
2003). For each of the domains, we train the model for 48
hours using 32 CPUs. Depending on the domain, this allows
the training process to perform between 41 (Floortile) and
91 (Elevators) iterations. However, most of the policy im-
provement seems to happen in the first several iterations of
the training process. This can be seen in Figure 1. The plots
show the average IPC score obtained by the policies sam-
pled at each iteration. Note that the policies themselves are
not the only source of variability: the training problems are
randomly sampled for each iteration and some of them turn
out to be harder than others despite using the same genera-
tor parameters. Even with this caveat, the plots suggest that
most of the progress is made in the early iterations. In the ex-
treme case of Floortile, it is not clear from the plot whether
the learner makes any progress at all. However, the results
discussed in the next section suggest that a reasonably effec-
tive policy is still learned.

For the case of learning the search parameters directly,
without the state-dependent policy, we use the same training
setup. The only difference is that we limit the training time to
24 hours, which, in this simpler setting, has proven enough
for the parameter distribution to converge.

Quantitative evaluation

We perform two separate evaluations of the trained policies.
In the first evaluation, we use unseen problems generated in
the same manner as the training ones. The motivation for
testing on randomly generated problems is twofold. First,
it allows for performing each of the 10 test runs on a dif-
ferent set of problems and, in doing so, allows us to assess

527



the planners over a total of 200 rather than just 20 problems
per domain. Secondly, by removing any manual filtering of
the problems, it allows us to observe the planners perfor-
mance on problems unseen in training, but still exactly fol-
lowing the training distribution. In the second evaluation, we
use the actual problem sets from the satisficing track of IPC
2011. In this case, for every domain and planner configura-
tion, we perform 10 test runs on the problem set and average
the scores.

We compare the neural search policies (denoted NSP)
and the search parameters optimized directly (denoted Opt)
against four fixed search routines making use of one of the
search techniques available to the parametrized planner. For
greedy best-first search, we use the Fast Downward’s im-
plementation. The other baselines are implemented by set-
ting the parameters of our parametrized planner accordingly.
Overall, the set of baseline planners includes:
• plain greedy BFS (GBFS);
• ε-greedy BFS with ε = 0.5 (R = 0, c = 0) (ε-greedy);
• greedy BFS following node expansion with R = 5 ran-

dom walks of length L = 10 on condition that the low-
est known heuristic value hmin has not changed for last
S = 10 expansions (c = 0) (RW);

• local BFS with a span of C = 200 expansions (R = 0,
c = 1) (Local);

• a combination of all of the above, instantiating the
parametrized planner template with ε = 0.5, S = 10,
R = 5, L = 10, C = 200 and c = 0.5 (Mixed).
The motivation behind the mixed configuration is to as-

sess performance of an algorithm making a balanced use of
all the available techniques. In this configuration, the planner
interleaves between 100 expansions using the global open
list and 100 expansions of local search. It follows the expan-
sions with random walks if the search has not progressed for
the last 10 expansions. A random node is selected for expan-
sion instead of the one with lowest heuristic value with the
probability of 0.5.

We remark that a direct comparison against our previous
work (Gomoluch, Alrajeh, and Russo 2019) would be diffi-
cult due to its requirement to train on substantially smaller
problems, with time limits of the order of 5 seconds.

The IPC scores obtained by each of the considered plan-
ners are reported in Table 1 (generated test sets) and Ta-
ble 2 (IPC problem sets). The learning approaches score
higher than any of the baselines in all cases except No-
mystery set from IPC, where they narrowly trail plain greedy
BFS. In general, in No-mystery, the performance of greedy
and ε-greedy search and the learned policy is very simi-
lar. In Transport and Parking the baseline reaching perfor-
mance closest to the learners is local search. Importantly,
the mixed configuration obtains the lowest overall scores,
clearly showing the advantage of a learned policy over a
naive combination of all the search techniques.

Interestingly, the stateless variant of our approach some-
times performs better than the full state-dependent search
policies. In particular, it achieves higher scores in the Park-
ing and Transport domains. This seems surprising given the

E F N P T Sum
GBFS 14.67 2.24 8.18 9.24 2.6 36.93
ε-greedy 13.07 2.64 8.93 7.44 2.7 34.78
RW 14.63 0.47 6.78 7.95 3.6 33.42
Local 15.97 1.91 7.15 11.85 4.48 41.36
Mixed 11.6 1.25 6.69 6.14 2.9 28.58
Opt 14.64 3.5 8.86 13.81 5.39 46.18
NSP 16.37 3.28 9.04 12.93 5.12 46.74

Table 1: IPC scores for randomly generated test problems
(average over 10 sets). Elevators (E), Floortile (F), No-
mystery (N), Parking (P) and Transport (T).

E F N P T Sum
GBFS 16.11 4.13 8.84 8.08 0 37.16
ε-greedy 13.64 6 8.43 5.91 0 33.98
RW 14.7 2.34 6.58 6.57 0.48 30.66
Local 15.32 4.5 5.79 10.78 0.73 37.12
Mixed 10.93 2.86 7.49 5.4 0.43 27.11
Opt 15.62 6.2 8.78 12.69 2.72 46.01
NSP 16.64 6.44 8.56 11.37 1.01 44.02

Table 2: IPC scores for IPC problem sets (average of 10
runs). Elevators (E), Floortile (F), No-mystery (N), Parking
(P) and Transport (T).

fact that the state-dependent policies are strictly more ex-
pressive. A possible explanation is that, given the same com-
putational resources, the training process is able to better
explore the significantly smaller parameter space (5 param-
eters in the stateless version as opposed to 104 in the neural
search policy). On the other hand, the state-dependent pol-
icy performs much better in the Elevators domain, where it
allows the planner to adopt a different approach depending
on the problem size. For comparison, the stateless approach
in the Elevators case resorts to GBFS and fails to match
the performance of the GBFS baseline. On aggregate, the
state-dependent policy outperforms the stateless variant on
problems following the training distribution, but not on the
problems sourced from IPC. We conjecture that this effect
may be partially due to better generalization of the simpler
model. In the following subsection, we investigate the effec-
tive behaviour of the learned policies in more detail.

Qualitative evaluation

In the following, we examine the search policies learned for
each of the domains. For the stateless variant, we report the
values of the search parameters in Table 3. For the state-
dependent policies, we observe the search parameters desig-
nated by the policies while solving selected validation prob-
lems, interpret the resulting search behaviour and relate it to
the stateless case.

Elevators In this domain, the easiest problems are solved
with GBFS (c = 0, ε ≈ 0.01). This is in line with the
search parameters learned in the stateless case. A large num-
ber (> 15) of relatively short random walks (3 steps) is used
when the search fails to progress for around 30 node ex-
pansions. In larger instances, the value of ε is even smaller

528



ε S R L C c Remarks
Elevators 0.050 0 0 0 3 0.123 ε-GBFS with ε ∼ 0.05
Floortile 0.169 1 0 10 178 0.090 161 global and 17 local expansions, ε ∼ 0.17

No-mystery 0.349 1 2 1 24 0.067 22 global and 2 local expansions, ε ∼ 0.35
Parking 0.030 6 1 0 6 0.654 2 global and 4 local expansions, ε ∼ 0.03

Transport 0.086 5 2 1 33 0.965 ∼ local search with a span of 32 expansions

Table 3: The search parameters optimized for each of the problem distributions.

(ε ≈ 0.001), the random walks get longer (9 steps) and there
is more of them (> 30). This makes sense in the logistics-
style domain of Elevators: random walks may increase the
chance of finding a solution but also increase its cost. Long
random walks are better avoided when the problem is likely
to be solved in time without them. On the other hand, they
are useful when the time limit becomes an issue. For large
problems, a small number of local expansions is performed
towards the end of the search (2 in a cycle of 50), but it is
not clear whether this has substantial effect on the results.

Floortile In Floortile, the policy results mostly in ε-greedy
BFS. It starts with a very high value of ε ≈ 0.8, which means
that the heuristic value is ignored most of the time. This
is not entirely surprising given the performance of baseline
planners guided by the same heuristic. For the largest prob-
lems solved within the time limit, the value of ε gradually
falls towards the end of the search. The policy performs bet-
ter than the baselines, but still fails to solve most of the prob-
lems. In the stateless case, the learned value of ε is smaller
(0.17), but results in quantitatively similar performance.

No-mystery The values of ε in No-mystery are even more
extreme than in Floortile, ranging between 0.75 and 0.98
and increasing as hmin decreases. Neither random walks nor
local search are used. On the one hand, the policy shows that
a delete relaxation heuristic is of limited use. On the other
hand, it also brings up a limitation of the parametrized search
algorithm in its current form. While the value of the heuristic
is virtually unused, it still needs to be computed for every
encountered state, for the purpose of ordering the open list.
We aim to address this issue in future work. As in Floortile,
the ε found directly, without the state-dependent policy, is
lower, at 0.35, but results in similar overall performance.

Parking In small Parking instances, the policy’s be-
haviour is close to GBFS. Interestingly, this is achieved by
setting the cycle length C to a very small value (a cycle
with 0 or 1 local expansion is equivalent to global search).
For larger instances, this approach is mixed with evenly bal-
anced cycles of several global and local expansions. The ε
values are typically around 0.1. Optimizing the parameters
directly leads to more extensive use of local search (4 ex-
pansions in a cycle of 6), which allows the planner to solve,
on average, 1 more problem of each batch of 20.

Transport On smaller Transport problems, the learned
policy’s behaviour is close to global ε-greedy BFS, with the
value ε ranging between 0.08 and 0.2. This is achieved by us-
ing a very short cycle with no local expansions. In larger in-
stances, the policy performs iterated local search of varying

span. The number of expansions in a single cycle typically
varies through the search, between the values of 10 and 150.
Extensive use of local search makes intuitive sense in the
logistics-style Transport domain, where focusing on a subset
of the search space can often allow for faster progress. Oc-
casionally, the search approaches global BFS by decreasing
C to very low values. The value of ε increases as the search
progresses, up to about 0.25. The stateless variant uses local
search with a span of 32. This leads to similar performance
on test problems following the training distribution (Table
1), but allows for solving 2 more problems of the IPC set
(Table 2), which appears harder than the randomly gener-
ated problems of the same size.

8 Conclusion

We have introduced a parametrized search algorithm flexibly
combining multiple search techniques in a way determined
by the values of its parameters. We further constructed a
simple neural policy model for designating the values of the
algorithm’s parameters given a high-level representation of
the current state of the search. Using CEM, we trained the
model on problems from five different planning domains.
The empirical evaluation shows that the learners are able to
discover effective distribution-specific search policies. We
also considered a simpler setting, in which CEM is used
directly to find fixed values for the search parameters. The
simpler approach, learning the search parameters directly is
also effective. However, it can not match the performance
of state-dependent policies on problem sets where changing
the search strategy is beneficial.

Besides the strengths of the approach, the empirical eval-
uation has also shown some of its limitations. In some cases,
the state-dependent policies perform worse than the stateless
approach, despite using a strictly more expressive model.
This suggests that there is scope for improvement in how
the parameters of the model are optimized. One possible ap-
proach is to apply quality-diversity optimization (Cully and
Demiris 2017), so that each iteration of the training process
considers a diverse set of possible solutions, not necessarily
bound by a common Gaussian distribution.

Furthermore, while the current approach has the capac-
ity to ignore the value of a heuristic it finds misleading,
it can not replace it. One possible solution would be to
make to choice of heuristic subject to the learning process,
for example by allowing the algorithm to work with mul-
tiple open lists. It is also possible to extend the algorithm
with other state-of-the-art techniques from classical plan-
ning, such as preferred operators or novelty-based search
(Lipovetzky and Geffner 2017).

529



References

Asai, M., and Fukunaga, A. 2017. Exploration Among and
Within Plateaus in Greedy Best-First Search. In Proceed-
ings of the Twenty-Seventh International Conference on Au-
tomated Planning and Scheduling, ICAPS 2017, 11–19.
Cenamor, I.; De La Rosa, T.; and Fernández, F. 2016. The
IBaCoP planning system: Instance-based configured portfo-
lios. Journal of Artificial Intelligence Research 56:657–691.
Chrabaszcz, P.; Loshchilov, I.; and Hutter, F. 2018. Back
to basics: Benchmarking canonical evolution strategies for
playing atari. In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2018, 1419–1426.
Coles, A., and Smith, A. 2007. Marvin: A Heuristic Search
Planner with Online Macro-Action Learning. Journal of Ar-
tificial Intelligence Research 28:119–156.
Conti, E.; Madhavan, V.; Such, F. P.; Lehman, J.; Stanley,
K. O.; and Clune, J. 2018. Improving Exploration in Evolu-
tion Strategies for Deep Reinforcement Learning via a Pop-
ulation of Novelty-Seeking Agents. In Advances in Neu-
ral Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS
2018, 5032–5043.
Cully, A., and Demiris, Y. 2017. Quality and diver-
sity optimization: A unifying modular framework. CoRR
abs/1708.09251.
de Boer, P.-T.; Kroese, D. P.; Manor, S.; and Rubinstein,
R. Y. 2005. A Tutorial on the Cross-Entropy Method. An-
nals of Operations Research 134(1):19–67.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black
planning: A new systematic approach to partial delete relax-
ation. Artificial Intelligence 221:73–114.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. Artificial Intelligence
3(1972):251–288.
Garrett, C. R.; Kaelbling, L. P.; and Lozano-Perez, T. 2016.
Learning to Rank for Synthesizing Planning Heuristics. In
Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2016, 3089–3095.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An Auto-
matically Configurable Portfolio-based Planner with Macro-
actions: PbP. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling, ICAPS
2009.
Gomoluch, P.; Alrajeh, D.; and Russo, A. 2019. Learn-
ing Classical Planning Strategies with Policy Gradient. In
Proceedings of the Twenty-Ninth International Conference
on Automated Planning and Scheduling, ICAPS 2019, 637–
645.
Hansen, N., and Ostermeier, A. 2001. Completely deran-
domized self-adaptation in evolution strategies. Evolution-
ary Computation 9(2):159–195.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A Baseline for Building Planner Portfo-
lios. ICAPS 2011 Workshop on Planning and Learning 28–
35.

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14:263–312.
Leckie, C., and Zukerman, I. 1998. Inductive learning
of search control rules for planning. Artificial Intelligence
101:63–98.
Lipovetzky, N., and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
Proceedings of the Thirty-First AAAI Conference on Artifi-
cial Intelligence 3590–3596.
Mannor, S.; Rubinstein, R.; and Gat, Y. 2003. The Cross
Entropy Method for Fast Policy Search. In ICML’03 Pro-
ceedings of the Twentieth International Conference on In-
ternational Conference on Machine Learning, 512–519.
Richter, S., and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research 39:127–177.
Rubinstein, R. 1999. The Cross-Entropy Method for Com-
binatorial and Continuous Optimization. Methodology and
Computing in Applied Probability 1:127–190.
Salimans, T.; Ho, J.; Chen, X.; and Sutskever, I. 2017. Evo-
lution strategies as a scalable alternative to reinforcement
learning. CoRR abs/1703.03864.
Valenzano, R.; Sturtevant, N. R.; Schaeffer, J.; and Xie, F.
2014. A Comparison of Knowledge-Based GBFS Enhance-
ments and Knowledge-Free Exploration. In Proceedings of
the Twenty-Fourth International Conference on Automated
Planning and Scheduling, ICAPS 2014.
Virseda, J.; Borrajo, D.; and Alcazar, V. 2013. Learning
heuristic functions for cost-based planning. Preprints of the
ICAPS’13 PAL Workshop on Planning and Learning 6–13.
Wierstra, D.; Schaul, T.; Glasmachers, T.; Sun, Y.; Peters, J.;
and Schmidhuber, J. 2014. Natural evolution strategies. J.
Mach. Learn. Res. 15(1):949–980.
Xie, F.; Müller, M.; and Holte, R. 2014. Adding Local
Exploration to Greedy Best-First Search in Satisficing Plan-
ning. In Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, 2388–2394.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning Control
Knowledge for Forward Search Planning. The Journal of
Machine Learning Research 9:683–718.

530


