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Running Example: Childsnack

buns︷ ︸︸ ︷
standard, whole wheat patties︷ ︸︸ ︷

meat, veggie

rest︷ ︸︸ ︷

make(?burger, ?bun, ?patty, ?rest) serve(?burger, ?bun, ?patty, ?rest, ?child)
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Encoding the Actions into PDDL

make(?bun, ?patty, ?rest):

pre : {inKitchen(?bun), inKitchen(?patty), inKitchen(?rest)}

add : {burger(?bun, ?patty, ?rest)}

del : {inKitchen(?bun), inKitchen(?patty), inKitchen(?rest)}

serve(?child, ?bun, ?patty, ?rest):

pre : {burger(?bun, ?patty, ?rest),

likes(?child, ?bun), likes(?child, ?patty), likes(?child, ?rest)}

add : {served(?child)}

del : {burger(?bun, ?patty, ?rest)}
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Encoding the Planning Task

inKitchen(bunW1)︸ ︷︷ ︸
(grounded) atom / fact

predicate object

Planning task encoding formal and concrete

(Lifted) Plannings task (P,A,O, I,G)

• P is a set of predicates.
{ inKitchen, likes, burger, served }

• O is a set of objects.

{ bunW1, bunW2, ..., pattyM1, ..., c1 }
• A is a set of actions.

{ make, serve }
• I is a state, called initial state.

{ likes(c1, pattyM1), ..., inKitchen(bunW1, ...) }
• G is a set of grounded atoms.

{ served(c1) }
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Grounding not Possible

n contents

burger(?c1,...,?cn)
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The Search Setting

Search by grounding only the applicable actions per state. [Corrêa et al. 2020]

Examples of existing heuristics to guide the search:

• hUR [Lauer et al. 2021]

• hmax, hadd [Corrêa et al. 2021]

• hFF [Corrêa et al. 2022]

• Landmark Heuristics [Wichlacz et al. 2022; 2023]

Here: hadd
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hadd [Bonet and Geffner, 2001]

∑
f∈G

hadd (f)

inKitchen(...) ... likes(...) ... burger(...) ... burger(...) served(c1)

0 ... 0 .. ∞ ... ∞ ∞
0 ... 0 .. 1 ... 1 ∞
0 ... 0 .. 1 ... 1 2

burger(?c1,...,?cn)

[Helmert, 2009; Corrêa et al., 2021]

Determine achievable facts without enumerating all actions.
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Complexity Analysis

Complexity of computing hadd

• In general: EXPTIME-complete

• Bounded predicate arity*: in P

Question: Are there more tractable subclasses?

• If hadd is bounded (per goal fact)*: in P

*Assuming all evaluated queries to be acyclic
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Scaling Task vs. Scaling hadd value

Childsnack

Blocksworld

1 2 3 4 ... 10k

1

2

3

4 ...

10k-1

10k
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Satisfiability vs. Generating Output

pre(make) = {inKitchen(?bun), inKitchen(?patty), inKitchen(?rest)}

?bun

inKitchen

?patty
inKitchen

?bun,?patty

▷◁

?bun,?patty ?rest
inKitchen

?bun,?patty,?rest

?bun,?patty,?rest

π{?bun,?patty,?rest}

π{?bun,?patty}

▷◁
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ALifted Backward Computation of hadd

(Backward is a necessity.)
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Approach

served(c1)

burger(?bun, ?patty, ?rest),

likes(c1, ?bun), likes(c1, ?patty), likes(c1, ?rest)

serve

inKitchen(?bun), inKitchen(?patty), inKitchen(?rest),

likes(c1, ?bun), likes(c1, ?patty), likes(c1, ?rest)

make

cost: 2

cost: 1

cost: 0
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Equality to hadd

hadd (...) = 0

iff satisfied in current state

recursive step: For a multiset of atoms S (starting with G)

original (grounded): different repl. order: lifted:

If S = {f}:

min
a achieves f

c(a) + hadd (f)

else: ∑
f∈S

hadd (f)

min
a achieves f∈S

c(a)+

hadd (S \ {f}

∪ pre(a))

min
a achieves p(?x⃗)∈S

c(a)+

hadd (S \ {p(?x⃗)}

∪ pre(remap(p(?x⃗))))
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More Goals

served(c1) 1
, served(c2) 2

served(c1), served(c2)

repl(served(c1)), served(c2) served(c1), repl(served(c2))

repl2(served(c1)), served(c2)

repl(served(c1)), repl(served(c2)) repl(served(c1)), repl(served(c2))

served(c1), repl2(served(c2))
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Optimizations

served(c1) 1
, served(c2) 2

Opt. 1: Split subsets with disconnected

parameters

∧

served(c1) served(c2)

repl(served(c1)) repl(served(c2))

Opt. 2: Replace only elements of unsatis-

fied subset

served(c1),served(c2)

repl(served(c1)), served(c2)
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Coverage

Backward (BW) FW COMB

— Opt. 1 Opt. 2 Opt. 1+2

Blocksworld (40) 0.0 2.5 5.0 7.5 2.5 7.5

Childsnack(144) 0.0 7.64 20.83 24.31 23.61 22.92

GED (312) 0.0 0.0 0.0 0.0 43.27 42.63

Logistics (40) 10.0 20.0 10.0 90.0 17.5 87.5

Org.-Synthesis (56) 0.0 0.0 5.36 7.14 80.36 80.36

Pipesworld (50) 0.0 0.0 0.0 0.0 40.0 40.0

Rovers (40) 0.0 0.0 0.0 0.0 27.5 27.5

Visitall (180) 7.78 10.0 17.78 20.56 65.0 64.44

Sum (862) 17.78 40.14 58.97 149.5 299.74 372.85

Sum orig. (862) 18 38 71 115 370 396
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Thank you :)

17


