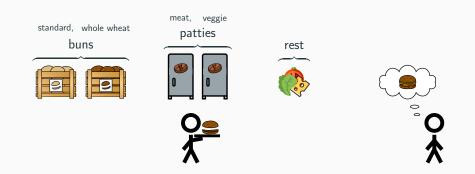
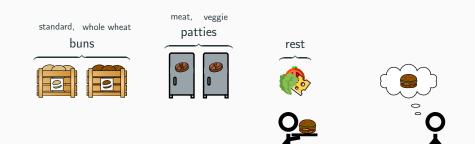
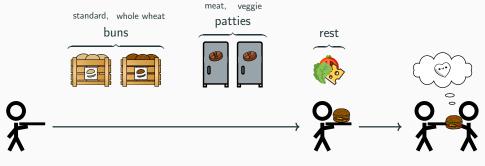
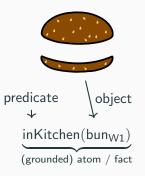


A Lifted Backward Computation of h^{add}


Pascal Lauer¹, Álvaro Torralba², Daniel Höller¹, Jörg Hoffmann¹


 1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany, lastname@cs.uni-saarland.de 2 Aalborg University, Denmark, alto@cs.aau.dk


o ≮



make(?burger, ?bun, ?patty, ?rest)

serve(?burger, ?bun, ?patty, ?rest, ?child)

make(?bun, ?patty, ?rest): pre : {inKitchen(?bun), inKitchen(?patty), inKitchen(?rest)} add : {burger(?bun, ?patty, ?rest)} del : {inKitchen(?bun), inKitchen(?patty), inKitchen(?rest)} serve(?child, ?bun, ?patty, ?rest): pre : {burger(?bun, ?patty, ?rest), likes(?child, ?bun), likes(?child, ?patty), likes(?child, ?rest)} add : {served(?child)} del : {burger(?bun, ?patty, ?rest)}

Encoding the Planning Task

 $\label{eq:planning task encoding formal and concrete} \ensuremath{(Lifted)}\ensuremath{\mbox{Plannings task}\ensuremath{(\mathcal{P},\mathcal{A},\mathcal{O},\mathcal{I},\mathcal{G})}\ensuremath{}$

- *P* is a set of predicates.
 { inKitchen, likes, burger, served }
- \mathcal{O} is a set of objects. { bun_{W1}, bun_{W2}, ..., patty_{M1}, ..., c₁ }
- A is a set of actions.
 { make, serve }
- \mathcal{I} is a state, called initial state. { likes(c₁, patty_{M1}), ..., inKitchen(bun_{W1}, ...) }
- \mathcal{G} is a set of grounded atoms. { served(c₁) }

Grounding not Possible

n contents burger(?c₁,...,?c_n)

Search by grounding only the applicable actions per state. [Corrêa et al. 2020]

Examples of existing heuristics to guide the search:

- h^{UR} [Lauer et al. 2021]
- h^{max} , h^{add} [Corrêa et al. 2021]
- h^{FF} [Corrêa et al. 2022]
- Landmark Heuristics [Wichlacz et al. 2022; 2023]

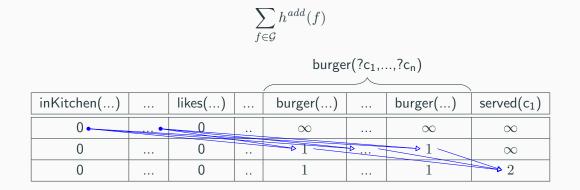
Here: h^{add}

h^{*add*} [Bonet and Geffner, 2001]

 $\sum_{f\in\mathcal{G}}h^{add}(f)$

inKitchen()	 likes()	 burger()	 burger()	$served(c_1)$
0	 0	 ∞	 ∞	∞
0	 0	 1	 1	∞
0	 0	 1	 1	2

h^{*add*} [Bonet and Geffner, 2001]


 $\sum_{f\in\mathcal{G}}h^{add}(f)$

[Helmert, 2009; Corrêa et al., 2021]

Determine achievable facts without enumerating all actions.

h^{*add*} [Bonet and Geffner, 2001]

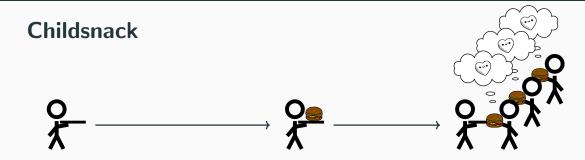
[Helmert, 2009; Corrêa et al., 2021]

Determine achievable facts without enumerating all actions.

Complexity of computing h^{add}

- In general: **EXPTIME**-complete
- Bounded predicate arity*: in ${\bf P}$

Complexity of computing h^{add}

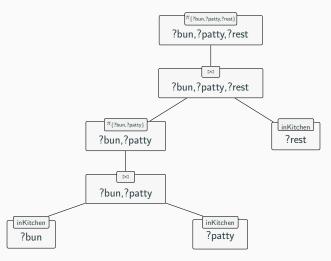

- In general: **EXPTIME**-complete
- Bounded predicate arity*: in ${\bf P}$

Question: Are there more tractable subclasses?

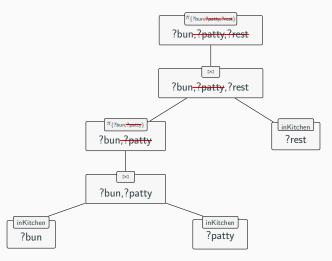

• If h^{add} is bounded (per goal fact)*: in **P**

^{*}Assuming all evaluated queries to be acyclic

Scaling Task vs. Scaling h^{add} value



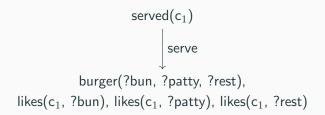
Blocksworld

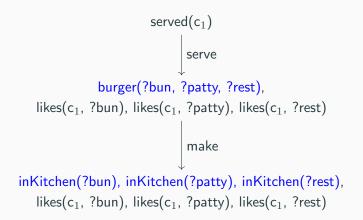

Satisfiability vs. Generating Output

pre(make) = {inKitchen(?bun), inKitchen(?patty), inKitchen(?rest)}

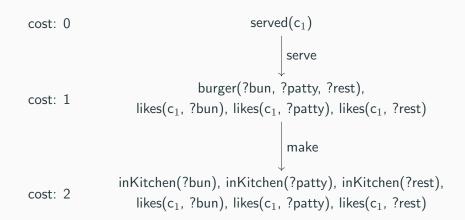
Satisfiability vs. Generating Output

pre(make) = {inKitchen(?bun), inKitchen(?patty), inKitchen(?rest)}



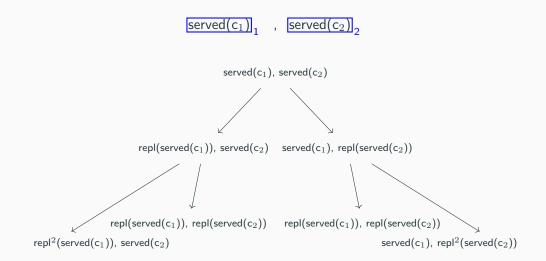

A Lifted Backward Computation of h^{add}

(Backward is a necessity.)


Approach

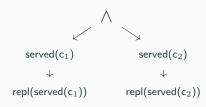
 $served(c_1)$

Approach



Equality to h^{add}

 h^{add} (...) = 0 iff satisfied in current state


recursive step: For a multiset of atoms S (starting with \mathcal{G})

original (grounded):	different repl. order:	lifted:		
If $S = \{f\}$: $\min_{a \text{ achieves } f} c(a) + h^{add}(f)$ else: $\sum_{f \in S} h^{add}(f)$	$\min_{a \text{ achieves } f \in S} c(a) + h^{add}(S \setminus \{f\} \cup \operatorname{pre}(a))$	$\min_{\substack{a \text{ achieves } p(?\vec{x}) \in S \\ c(a)+\\ h^{add}(S \setminus \{p(?\vec{x})\}\\ \cup \operatorname{pre}(remap(p(?\vec{x})))))}$		
-				

Opt. 1: Split subsets with disconnected parameters



Opt. 2: Replace only elements of unsatisfied subset

> served(c₁),served(c₂) \downarrow repl(served(c₁)), served(c₂)

		Backv	FW	COMB		
		Opt. 1	Opt. 2	Opt. 1+2		
Blocksworld (40)	0.0	2.5	5.0	7.5	2.5	7.5
Childsnack(144)	0.0	7.64	20.83	24.31	23.61	22.92
GED (312)	0.0	0.0	0.0	0.0	43.27	42.63
Logistics (40)	10.0	20.0	10.0	90.0	17.5	87.5
OrgSynthesis (56)	0.0	0.0	5.36	7.14	80.36	80.36
Pipesworld (50)	0.0	0.0	0.0	0.0	40.0	40.0
Rovers (40)	0.0	0.0	0.0	0.0	27.5	27.5
Visitall (180)	7.78	10.0	17.78	20.56	65.0	64.44
Sum (862)	17.78	40.14	58.97	149.5	299.74	372.85
Sum orig. (862)	18	38	71	115	370	396

Runtime

Thank you :)