
Cost Partitioning Heuristics for Stochastic Shortest Path Problems

Thorsten Klößner1, Florian Pommerening2, Thomas Keller2, Gabriele Röger2

1Saarland University, Saarland Informatics Campus, Germany
2University of Basel, Switzerland

kloessner@cs.uni-saarland.de, {florian.pommerening, tho.keller, gabriele.roeger}@unibas.ch

Abstract
In classical planning, cost partitioning is a powerful method
which allows to combine multiple admissible heuristics while
retaining an admissible bound. In this paper, we extend the
theory of cost partitioning to probabilistic planning by gen-
eralizing from deterministic transition systems to stochas-
tic shortest path problems (SSPs). We show that fundamen-
tal results related to cost partitioning still hold in our ex-
tended theory. We also investigate how to optimally parti-
tion costs for a large class of abstraction heuristics for SSPs.
Lastly, we analyze occupation measure heuristics for SSPs
as well as the theory of approximate linear programming for
reward-oriented Markov decision processes. All of these fit
our framework and can be seen as cost-partitioned heuristics.

Introduction
In classical planning, the aim is to determine a sequence of
deterministic actions that leads from the given initial state to
a goal state. Applying action a in state s always leads to the
same successor state, which is known in advance.

Stochastic shortest path problems (SSPs) are a class of
Markov decision processes that generalize the classical plan-
ning setting to probabilistic action outcomes: applying an
action in a state can lead to different successor states. The
agent cannot control the successor state but only knows the
probability distribution from which it is drawn by the envi-
ronment. Since successor states are not deterministic, a solu-
tion is not simply a sequence of actions but instead a policy
that maps each reachable state to the action to apply.

In both settings, we are only interested in optimal solu-
tions that minimize the (expected) cost accumulated before
reaching the goal. In classical planning, this can be achieved
by using the A∗ algorithm (Hart, Nilsson, and Raphael 1968)
with an admissible heuristic, i.e. a distance estimator that
maps every state to a lower bound of its actual goal dis-
tance. For SSPs, suitable search algorithms that guarantee
optimality if combined with an admissible heuristic include
RTDP (Barto, Bradtke, and Singh 1995), Labeled RTDP
(Bonet and Geffner 2003) and LAO∗ (Hansen and Zilber-
stein 2001).

Operator cost partitioning (Katz and Domshlak 2010) is
a technique to combine multiple admissible heuristics while

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

retaining an admissible bound. The idea is to distribute the
original action costs among several cost functions, one for
each heuristic. Each heuristic is then evaluated wrt. its asso-
ciated cost function and the sum of these estimates is an ad-
missible estimate wrt. the true cost function. Operator cost
partitioning has been generalized to support negative costs
(Pommerening et al. 2015) and to the more fine-grained
transition cost partitioning (Keller et al. 2016).

The SSP heuristics by Trevizan, Thiébaux, and Haslum
(2017) can likewise be perceived as heuristic combination:
the projection occupation measure heuristic hpom consid-
ers occupation measures from several projections to sin-
gle variables and combines them in a single linear program
by means of tying constraints. The regrouped operator-
counting heuristic hroc combines net-change constraints
from several projections by means of regrouping constraints.

Klößner and Hoffmann (2021) transferred PDB abstrac-
tion heuristics (Korf 1997; Culberson and Schaeffer 1998)
to SSPs. They identified an additivity criterion that guaran-
tees that the sum of estimates of certain PDBs is admissible.
In contrast to cost partitioning in the classical setting, this
does not allow to admissibly sum up arbitrary PDB heuris-
tics but requires orthogonality of the individual heuristics
for additivity in the spirit of the work of Edelkamp (2001)
and Korf and Felner (2002) in classical planning.

Approximate linear programming (ALP) (Guestrin et al.
2003) is a technique for infinite-horizon discounted-reward
MDPs, which can be cast as SSPs. ALP approximates the
optimal value function with a linear weighted sum of ba-
sis functions, which is structurally very similar to the poten-
tial heuristics (Pommerening et al. 2015) known in classical
planning. Potential heuristics over indicator functions of ab-
stract states can be related to a cost partitioning over these
abstractions (Pommerening, Helmert, and Bonet 2017).

The aim of this paper is to transfer the idea of cost parti-
tioning to SSPs and to gain a better understanding of the the-
oretical connections between the different SSP techniques.

To support negative costs in cost partitions, we suitably
extend some SSP notions. We show that cost partitioning
for SSPs preserves fundamental results from classical plan-
ning. In classical planning, we can efficiently compute an
optimal cost partition for abstractions (Katz and Domshlak
2010). We establish an analogous result for a class of ab-
straction heuristics for SSPs. Afterwards we analyze exist-

ing SSP heuristics in the light of cost partitioning. We show
that hpom is an optimal cost partitioning heuristic over atomic
projections and contribute to the open question whether
hroc = hpom. For ALP we show an analogous relationship
as known for potential heuristics and cost partitioning.

Background
Probabilistic Planning Tasks
We consider planning tasks with stochastic effects in finite-
domain representation (Trevizan, Thiébaux, and Haslum
2017). A probabilistic planning task is given by a 5-tuple
⟨V,A, s0, s⋆, c⟩, where V is a finite and non-empty set of
variables and each variable v has a finite domain Dv of at
least two values. W.l.o.g. we assume that all variable do-
mains are disjoint. A partial state is an assignment s that
maps each variable v ∈ V to s(v) ∈ Dv ∪{⊥}. If s(v) ̸= ⊥
we say s is defined on v. We define V (s) as the variables for
which s is defined. A state s is a partial state with V (s) = V .
For partial states s, t, we write t ⊆ s if s(v) = t(v) for
all V (t). The application of partial state e on partial state
s is defined as appl(s, e)(v) = s(v) if e(v) = ⊥ and
appl(s, e)(v) = e(v) otherwise. For the finite and non-
empty set A of actions, each a ∈ A is associated with a
precondition pre(a), which is a partial state, a finite, non-
empty set Eff(a) of effects, which are partial states, and an
effect probability distribution Pra : Eff(a) → [0, 1]. State
s0 is the initial state and state s⋆ the single goal state. Fi-
nally, c : S × A → R+

0 is a state-dependent, non-negative
action cost function.

Stochastic Shortest Path Problems
A stochastic shortest path problem (SSP, Bertsekas and Tsit-
siklis 1991) is a 6-tuple ⟨S,A, T, s0, s⋆, c⟩ where S is a finite
and non-empty set of states, A is a finite and non-empty set
of actions, T : S×A×S → [0, 1] is a transition probability
function, s0 ∈ S is the initial state, s⋆ is the goal state, and
c : S×A → R+

0 is a state-dependent action cost assignment.
For all state action pairs (s, a), either T (s, a, t) = 0 for all

t ∈ S, or
∑

t∈S T (s, a, t) = 1 in which case a is applicable
in s. We denote the set of actions applicable in s by A(s),
and the set of states in which a is applicable by A−1(a). We
assume A(s) ̸= ∅ for every s for simplicity and without loss
of generality (for states without applicable actions, we can
add zero-cost self loops).1

A probabilistic planning task Π = ⟨V,A, s0, s⋆, c⟩ in-
duces the SSP ⟨S,A, T, s0, s⋆, c⟩ in which S are the states of
Π, and the transition function T is defined by T (s, a, t) = 0
if pre(a) ⊈ s and otherwise by

T (s, a, t) :=
∑

e∈Eff(a)
appl(s,e)=t

Pra(e).

1Compared to other definitions (e.g., Guillot and Stauffer
2020), we do not require an absorbing goal state, which can be sim-
ulated by a goal state where the only applicable action is a zero-cost
self loop. We discuss the reasons for this in the next section.

In other words, a is not applicable in s if s does not satisfy
the precondition of a, otherwise T (s, a, t) is the total proba-
bility of an outcome which leads to t when applied on s.

A (deterministic and stationary) policy π : S → A maps
each state s to an applicable action π(s) ∈ A(s). It is s-
proper if the probability of reaching the goal s⋆ from s is 1
when selecting actions according to π.

The policy state-value function Jπ maps each state s to
the expected cost of reaching the goal state when following
policy π. If π is not s-proper, we define Jπ(s) := ∞. The
policy state-value for the states S′ ⊆ S where π is s-proper
is defined through the operator Bπ : (S′ → R) → (S′ → R)
specified as (Bπx)(s) := 0 if s = s⋆, and otherwise as

(Bπx)(s) := c(s, π(s)) +
∑
t∈S

T (s, π(s), t) · x(t).

This operator is a contraction mapping and thus has a unique
fixpoint x̄. For any x, we have limk→∞(Bπ)kx = x̄. For
s ∈ S′, the policy state-value is defined by Jπ(s) := x̄(s).

The optimal state-value function is the point-wise mini-
mum J⋆ = minπ J

π , which always exists. Policy π is opti-
mal if Jπ = J⋆. Based on the Bellman optimality equation
(Bellman 1957), the optimal state-value J⋆(s̃) for some state
of interest s̃ ∈ S can be expressed as the optimal objective
value of LP 1, if we treat the optimal objective value of an
unbounded linear program (LP) as ∞. The LP is always fea-
sible, but is unbounded if there is no s̃-proper policy.

Maximize ys̃ subject to (LP 1)
ys⋆ = 0 (1)

ys ≤ c(s, a) +
∑
t∈S

T (s, a, t) · yt

for all s ∈ S and a ∈ A(s)

(2)

where all variables (ys)s∈S are unrestricted.

Occasionally, we will need to refer to the values of J⋆ and
Jπ under a different cost function c′, and write J⋆

c′ and Jπ
c′ .

SSPs with Negative Costs
In this paper, we also consider heuristics that are evaluated
on probabilistic planning tasks with negative costs, but the
SSPs defined so far only support non-negative costs. We will
now discuss why this is a problem and how we generalize
SSPs to general real-valued cost functions c : S ×A → R.

With non-negative costs, it can be shown that there al-
ways is an optimal stationary, deterministic policy, in con-
trast to non-stationary policies that permit taking different
actions when encountering the same state several times. The
intuition is that with non-negative costs one always wants to
pursue the same “expected most direct path” to the goal to
avoid incurring unnecessary costs. In the presence of neg-
ative costs, there can be areas of the state space where the
agent can remain indefinitely, accumulating unbounded neg-
ative costs before eventually changing the behaviour to reach
the goal. Depending on the cost function it might even pay
off to leave the goal state, incur some negative costs and then
return to the goal state, which is why we do not consider an

absorbing goal state. The expected cost of a non-stationary
policy that exploits such a cycle can be made arbitrarily low.

Guillot and Stauffer (2020) also consider SSPs with neg-
ative costs but exclude SSPs with transition cycles with neg-
ative cost, which capture this behaviour. A transition cycle
is a solution x to the probabilistic flow equations∑

s∈S,a∈A(s)

T (s, a, t)xs,a =
∑

a∈A(t)

xt,a for all t ∈ S (3)

over non-negative variables xs,a for s ∈ S and a ∈ A(s),
where xs,a > 0 at least once. The equations enforce that the
incoming (left) and outgoing (right) flow is balanced for all
states. Given a solution x, all states s where an action a with
xs,a > 0 exists are part of a cycle, as all flow that leaves s
must come back to s again. We denote the set of these states
by Sx. Analogously, the actions a which transport flow for a
state s are those with xs,a > 0, denoted Ax(s).

Figure 1 shows an example (ignore that parts are dashed
for now) containing several transition cycles. For example
{1, 2} and {14, 15} are the states of a transition cycle, but
so are {3, 4, 5} and {s⋆, 7, 10}. The last example shows that
the states of a transition cycle do not have to be connected,
because a solution may contain several disconnected flows.

A simple transition cycle (or just simple cycle) prevents
this behaviour and requires (i) A positive amount of flow
is transmitted between every two states participating in the
flow exchange. In other words, the graph with vertices Sx

and edges according to Ax(s) for vertex s is strongly con-
nected. (ii) |Ax(s)| = 1 for every state s ∈ Sx, so only one
action may be used to forward the flow. Essentially, sim-
ple cycles capture a stationary policy πx which chooses the
unique action a ∈ Ax(s) for all s ∈ Sx. In doing so, πx

stays in Sx forever, and is always able to reach any state in
the simple cycle with positive probability.

Guillot and Stauffer forbid SSPs with negative-cost sim-
ple cycles, which satisfy∑

s∈S,a∈A(s)

c(s, a) · xs,a < 0. (4)

Intuitively, this inequality tells us that the expected cost paid
by πx in the long run is negative, so πx accumulates un-
bounded negative costs. Guillot and Stauffer show that one
can decompose any transition cycle into simple cycles, so it
is sufficient to handle simple cycles with negative cost.

This exclusion is not possible with the approaches we
consider since we allow arbitrary cost functions for the same
SSP. This SSP can have no negative-cost simple cycles un-
der one cost function, but these may exist under another cost
function. For this reason, we allow negative-cost simple cy-
cles, but define J⋆(s) := −∞ if there is a stationary s-
proper policy that reaches (a state in) a negative-cost simple
cycle with non-zero probability and J⋆(s) := minπ J

π(s)
otherwise.

We define JLP(s̃) as the objective value of LP 1 if it is
bounded feasible, as ∞ if it is unbounded, and as −∞ if it
is infeasible. When we consider a cost function c′ different
from c in this LP, we use the notation JLP

c′ (s̃). Unfortunately,
the characterization of J⋆(s̃) as the objective value of LP 1

s0 s⋆

1

2

3

4 5 6

7

8

9

10 11

12

13

14

15

Figure 1: Example SSP with irrelevant states and actions
marked with dashes.

is not correct anymore when negative-cost simple cycles are
allowed, as the following theorem shows.

Theorem 1 JLP(s̃) = −∞ if and only if there exists any
negative-cost simple cycle.

Proof. First of all, if there is a variable assignment y sat-
isfying constraints (2) but not (1), then we can construct a
solution y′s := ys − ys⋆ satisfying both. We can therefore
ignore (1) when arguing about feasibility. Likewise, we can
treat the objective as constant zero which also does not in-
fluence feasibility. Consider the dual of this modified LP:

Minimize
∑

s∈S,a∈A(s)

c(s, a) · xs,a subject to (LP 2)

∑
s∈S,a∈A(s)

T (s, a, t)xs,a =
∑

a∈A(t)

xt,a for all t ∈ S

where all variables (xs,a)s∈S,a∈A(s) are non-negative.

The constraints of this LP are exactly equation (3) used
to define transition cycles, and the objective is exactly the
left hand side of (4). This LP is feasible because setting all
variables to zero is a solution. Since this dualization is fea-
sible, LP 1 is infeasible exactly when this dualization is un-
bounded. It is easy to see that the above dualization is un-
bounded if and only if there is a negative-cost transition cy-
cle. Guillot and Stauffer show that every negative-cost tran-
sition cycle can be decomposed into simple cycles, one of
which has to have negative cost. □

This is problematic, as J⋆(s̃) is only equal to −∞ if a
negative-cost simple cycle is actually reachable from s̃ along
a stationary s̃-proper policy. Fortunately, we can strengthen
the formulation to recover J⋆(s̃) as the objective value. To
this end, we define the set of states relevant for state s as
those states which are reachable from s by a non-stationary
s-proper policy. Note that we deviate from stationary poli-
cies for this definition. Likewise, we define the applicable
actions of state t relevant for s as those actions that never
transition to a state irrelevant for s. Figure 1 shows an exam-
ple of an SSP where irrelevant states and actions for s0 are

pruned. For example, state 10 has no 10-proper policy, so it
is irrelevant. While there are 11-proper and 13-proper poli-
cies, there is no s0-proper policy that reaches those states,
so they are also irrelevant. Note that there is no stationary
s0-proper policy that reaches state 7, but there is a non-
stationary one, so this state is relevant.

Intuitively, relevant states can be reached with non-zero
probability “on the way to the goal”, i.e., there is a non-
stationary policy that reaches the relevant state and reaches
the goal with probability 1. Irrelevant states and irrelevant
applicable actions do not affect possible solutions for s̃, so
we can safely prune these states and transitions from the LP.

Theorem 2 The objective value of LP 1 in which irrelevant
states and irrelevant applicable actions are pruned is J⋆(s̃).

Proof. Let J⋆(s̃) = ∞. Then there is no stationary s̃-proper
policy. There is no non-stationary s̃-proper policy either, as
stationary policies are sufficient in terms of goal probabil-
ity maximization. No state is relevant by definition, so the
pruned LP has no constraints left and must be unbounded.

Let J⋆(s̃) = −∞. Then there is a stationary s̃-proper pol-
icy π which can reach a state t in a negative-cost simple
cycle x. We can construct a non-stationary s̃-proper policy
from π which initially uses πx for the states in the cycle in-
stead. Eventually, the policy reverts back to π for t so the
cycle is eventually left. Therefore, all states and actions in
this cycle are relevant and the LP remains infeasible.

Let J⋆(s̃) ∈ R. Consider the SSP in which irrelevant
states and actions are pruned. In this case, all negative-cost
simple cycles are pruned, and every remaining state t must
have a t-proper policy, as the state can be visited by an s̃-
proper policy from s̃. For this class of SSPs, Guillot and
Stauffer show that LP 1 computes J⋆(s̃), so it is left to argue
that this SSP transformation preserves J⋆(s̃). By definition
of relevance, any s̃-proper policy π can only reach relevant
states from s̃, so the value Jπ(s̃) can by definition not de-
pend on irrelevant states or actions. □

To see how our definition deals with negative-cost simple
cycles, consider the example in Figure 1 again. Assume all
irrelevant states have been removed (the dashed parts) and
all remaining actions have a cost of −1. Then the stationary
policy π that reaches s⋆ via state 6 has the value Jπ(s0) =
−2. However, the value J⋆(s0) is −∞ because s⋆ is part of
a negative-cost simple cycle {s⋆, 7}, so the stationary policy
π, which has finite cost, could be extended to non-stationary
ones of arbitrarily low costs which also reach the state s⋆.

Heuristics
A heuristic for an SSP with general costs is a function h
which accepts a state s ∈ S and a cost function c′ and pro-
vides an estimate h(s, c′) ∈ R ∪ {−∞,∞} for J⋆

c′(s). If c′
is the original cost function c, we will simply write h(s) in-
stead of h(s, c). In definitions, this means the defined heuris-
tic is only defined for the original cost function.

We define addition over R∪{−∞,∞} such that a sum is
∞ if one of its parts is ∞ (even if another is −∞) and that a

sum is −∞ if one of its parts is −∞ and no part is ∞; and
the multiplication over R ∪ {−∞,∞} such that c · ∞ = ∞
and c · (−∞) = −∞ for any finite constant c > 0.

We say that the heuristic h is admissible iff h(s) ≤ J⋆(s)
for every state s ∈ S. Furthermore, h is generally admissible
if h(s, c′) ≤ J⋆

c′(s) for every state s ∈ S and cost function
c′. Lastly, h is π-admissible if h(s) ≤ Jπ(s) for all s ∈ S.

Abstraction Heuristics
An important class of heuristics is based on abstractions of
the SSP. In classical planning, an abstraction is commonly
induced by a surjective abstraction mapping α : S → Sα,
where Sα is a finite set, establishing the abstract states. To
define the semantics of such an abstraction mapping for
SSPs, we need to specify the abstract SSP which is induced
by the abstraction mapping. Contrary to classical planning
this is not possible for all abstraction mappings. For ex-
ample, say α maps s to σ and both t1 and t2 to τ . If
T (s, a, t1) ̸= T (s, a, t2) then T (σ, a, τ) is not well-defined.

Klößner and Hoffmann (2021) show that the transition
probability is well-behaved in the special case of projec-
tions of probabilistic planning tasks. A projection function
for a subset of variables P ⊆ V maps a state s to its pro-
jection on P . We consider a class of abstractions that is
more general and, for example, also covers Cartesian ab-
stractions. We only require that the abstraction mapping α
is such that for each abstract state σ ∈ Sα, the expression∑

t∈α−1(τ) T (s, a, t) evaluates to the same value for any
concrete state s ∈ α−1(σ) in which a is applicable. This im-
plies that the following transition function Tα is well-defined
on states σ, τ ∈ Sα and actions a ∈ A:

Tα(σ, a, τ) :=


∑

t∈α−1(τ)

T (s, a, t) ∃s ∈ α−1(σ).a ∈ A(s)

0 otherwise

where the state s ∈ α−1(σ) is chosen as any concrete state
satisfying a ∈ A(s). Such an abstraction function induces
the abstract SSP ⟨Sα, A, Tα, α(s0), α(s⋆), α(c)⟩, where

α(c)(σ, a) := min
s∈α−1(σ)
s.t. a∈A(s)

c(s, a)

This definition is equivalent to the definition for projections
given by Klößner and Hoffmann when α is a projection map-
ping and c is state-independent.

We can define two heuristics based on an abstraction func-
tion α: the abstraction heuristic hα(s, c′) := J⋆

α(c′)(α(s))

maps each state to the optimal value of its abstract state in
the induced abstract SSP where the cost function is α(c′),
while the LP heuristic hα

LP(s, c
′) := JLP

α(c′)(α(s)) maps
each state to the objective value computed by LP 1 for the
abstract SSP with cost function α(c′). As we have seen,
hα(s, c′) ≥ hα

LP(s, c
′) in general because hα

LP(s, c
′) be-

comes −∞ in the presence of any negative-cost transition
cycle in the abstraction. However, as seen in Theorem 2, we
can compute hα(s, c′) using the version of LP 1 where irrel-
evant abstract states and actions are pruned.

We claim that hα (and by extension also hα
LP) is generally

admissible. Essentially, we can prove that a solution for the
pruned version of LP 1 for the abstract SSP and α(s) can be
transformed to a solution with equal objective value for the
pruned version of LP 1 for the original SSP and s. We refer
to the technical report (Klößner et al. 2022) for the proof
details.

General Cost-Partitioning for SSPs
In classical planning, general cost-partitioning (Katz and
Domshlak 2010; Pommerening et al. 2015) is an approach
that allows to admissibly sum up arbitrary generally admis-
sible heuristics. Here, the participating heuristics are com-
puted under alternative cost functions which have the prop-
erty that the sum of the costs of each operator in the alterna-
tive cost functions is below the original operator cost. In the
following, we generalize the concepts behind general cost
partitioning to SSPs and verify that basic results from classi-
cal planning still hold. Afterwards, we investigate the special
case of optimal cost-partitioning for SSPs and abstraction
heuristics. We start with the formal definition of transition
and operator cost partitions.

Definition 1 A transition cost partition (for cost function c)
is a finite family of cost functions ci : S × A → R for i ∈ I
(where I is an index set) satisfying

∑
i∈I ci(s, a) ≤ c(s, a)

for all s ∈ S and a ∈ A. An operator cost partition is a tran-
sition cost partition which additionally satisfies ci(s, a) =
ci(t, a) for every s, t ∈ S, a ∈ A and i ∈ I . We define PI as
the set of transition cost partitions over the index set I .

Given a finite family of heuristics H = (hi)i∈I and a cost
partition P ∈ PI , we define the transition cost partitioning
heuristic hH,P (s) for H and P by

hH,P (s) :=
∑
i∈I

hi(s, ci).

Recall that sums involving ∞ evaluate to ∞ and sums
involving −∞ but no ∞ evaluate to −∞. Structurally,
this definition matches the corresponding definitions known
from classical planning. We now show that if H is a fam-
ily of generally admissible heuristics, hH,P (s) is admissi-
ble, which generalizes the same result established in classi-
cal planning. In this setting, we can make use of the fact that
the cost of a plan in the original problem is greater or equal
than the summed up costs of the same plan in the versions
of the problem with alternative costs. We first formulate the
analogous statement for policies and verify its correctness.

Lemma 1 Let (ci)i∈I be a transition cost partition and let
π be any policy. Then h(s) :=

∑
i∈I J

π
ci(s) is π-admissible.

Proof. Let S′ ⊆ S be the set of states s for which π is s-
proper. If s /∈ S′, we have Jπ(s) = ∞ ≥ h(s). It is left
to show that h(s) ≤ Jπ(s) for s ∈ S′. To this end, let us
denote the restriction of h to S′ by h′.

First of all, note that h′ must be real-valued. We conclude
the proof by showing that h′ ≤ Bπh′. Because Bπ is a
contraction mapping and increases monotonically, we then

have h′ ≤ limk→∞(Bπ)kh′ = Jπ|S′ . Now let s ∈ S′. For
s = s⋆, we have h(s) = 0 = (Bπh)(s). Otherwise:

h(s) =
∑
i∈I

Jπ
ci(s)

=
∑
i∈I

[
ci(s, π(s)) +

∑
t∈S

T (s, π(s), t)Jπ
ci(t)

]
=

∑
i∈I

ci(s, π(s)) +
∑
t∈S

T (s, π(s), t)h(t)

≤ c(s, π(s)) +
∑
t∈S

T (s, π(s), t)h(t)

□

With this lemma, we now advance to prove our claim.

Theorem 3 Let P = (ci)i∈I be a transition cost partition
and let H = (hi)i∈I be a finite family of generally admissi-
ble heuristics. Then the heuristic hH,P is admissible.

Proof. Let s ∈ S. If J⋆(s) = ∞ the claim is trivial. Now
assume J⋆(s) = −∞. By definition, there is (a state in) a
negative-cost simple cycle x that is reachable by an s-proper
policy π with non-zero probability. The existence and reach-
ability of the cycle is independent of the cost function. Since
ci is a cost partition and x has negative cost under the origi-
nal cost function, we have∑

i∈I

∑
t∈S,a∈A(t)

ci(t, a)xt,a ≤
∑

t∈S,a∈A(t)

c(t, a)xt,a < 0.

Consequentially,
∑

t∈S,a∈A(t) ci(t, a)xt,a < 0 for at least
one i ∈ I , which means that J⋆

ci(s) = −∞. Since hi is
generally admissible, also hi(s, ci) = −∞. For all j ̸= i
we know that hj(s, cj) ̸= ∞ because π is s-proper (inde-
pendent of the cost function) and hj is generally admissible.
Therefore, hH,P (s) = −∞.

Lastly, let J⋆(s) ∈ R and let π⋆ ∈ argminπ J
π(s) be an

optimal policy for s. First of all, we have

hH,P (s) =
∑
i∈I

hi(s, ci) ≤
∑
i∈I

J⋆
ci(s) ≤

∑
i∈I

Jπ⋆

ci (s)

by general admissibility of the heuristics. Note the last step
is an inequality because π⋆ may be optimal for the cost func-
tion c, but may become suboptimal when the cost function
is changed. By Lemma 1, hH,P (s) ≤ Jπ⋆

(s) = J⋆(s). □

Naturally, we are interested in transition cost partitions P
which maximize the heuristic estimates for a state s. Given
the family of heuristics H = (hi)i∈I , we define the optimal
transition cost partitioning heuristic as

hOTCP
H (s) := max

P∈PI

{hH,P (s)}.

We note that the set might not have a maximum if transi-
tion cost partitions for arbitrarily high heuristic values ex-
ist. In that case, we define hOTCP

H (s) := ∞. However, if
hH,P (s) = hOTCP

H (s), we say that P is an optimal tran-
sition cost partition for s. Likewise, we define the optimal
operator cost partitioning heuristic hOOCP

H (s).

Optimal Cost Partitioning for Abstractions
In classical planning, optimal (transition) cost partitioning
can be pursued for many classes of heuristics by solving
a linear program, including abstraction heuristics. We now
consider the following linear program for a set of abstrac-
tions A and a state of interest s̃ for which we want an es-
timate for the optimal state value. We will analyze this LP
and sketch the required modifications such that it computes
the value of the optimal transition cost partitioning heuristic
hOTCP
H (s̃) for the abstraction heuristics H = (hα

LP)α∈A.

Maximize
∑
α∈A

yα(s̃) subject to (LP 3)

yα(s⋆) = 0 for all α ∈ A (5)

yα(s) ≤ cαsa +
∑
t∈S

T (s, a, t)yα(t)

for all α ∈ A, s ∈ S, a ∈ A(α(s))

(6)

∑
α∈A

cαsa ≤ c(s, a) for all a ∈ A (7)

where all variables are unrestricted.
In this linear program, the variables cαsa model the part

of c(s, a) that is attributed to abstraction α. Constraints (7)
ensure that these values form a transition cost partition. If
the cost variables are fixed, the remaining constraints for
different abstractions do not depend on each other, so the
remaining LP can be seen as a sum of independent LPs (one
for each abstraction). These LPs (constraints (5) and (6) for
one abstraction α with the objective value yα(s̃)) compute
exactly JLP(α(s̃)) under the cost function encoded in cαsa.

As we have seen in Theorem 1, JLP(α(s̃)) is not neces-
sarily equal to J⋆(α(s̃)), as the former becomes −∞ also
if the corresponding abstract SSP for α contains a negative-
cost cycle which is irrelevant for s̃. Thus, not every transi-
tion cost partition, even if it induces a finite heuristic value,
corresponds to an assignment of cαsa which is part of a so-
lution. This is only the case if the transition cost partition
introduces no negative-cost cycles in any abstract SSP. We
call such transition cost partitions feasible.

To illustrate why this is an issue, consider the example
shown in Figure 2 with initial state s0 = ⟨1, 1⟩. There is
no α(s0)-proper policy for both of the abstractions, so both
of them have hα(s0, c

′) = ∞ under any cost function c′

and we get hH,P (s0) = ∞ for any transition cost partition
P . Hence, we also have hOTCP

H (s0) = ∞. But no matter
how we distribute the costs for a, one abstraction will have a
negative-cost simple cycle, so there is no feasible transition
cost partition. Therefore, the respective instantiation of LP 3
is infeasible, which represents a heuristic value of −∞.

Without modifications to it, LP 3 only maximizes over
feasible transition cost partitions. In this sense, the LP above
computes an optimal feasible transition cost partitioning
over the abstraction heuristics. We now consider the LP
where constraints (5) and (6) for the abstract SSPs are re-
stricted to the relevant actions and states of the correspond-
ing abstractions. If the LP is evaluated for such pruned ab-
stractions, it computes the optimal transition cost partition-
ing of the abstraction heuristics hα.

1, 1 2, 1

1, 2 2, 2

a

1 2

1

2

a

a

Figure 2: A deterministic SSP with variables v, w ∈ {1, 2}
and action costs c(⟨1, 2⟩, a) = −1 (top), and its projections
onto {v} (bottom left) and {w} (bottom right).

To see why this is the case, note that a transition cost par-
tition P with hH,P (s̃) ∈ R does not introduce a relevant
negative-cost transition cycle in any of the abstract SSPs.
Therefore, the LP will now have a corresponding solution
with the same objective value as hH,P (s̃). In the case where
hH,P (s̃) = ∞, one abstraction α has no s̃-proper policy,
so all its transitions are irrelevant and would be pruned. The
transition cost partition that assigns all costs to this abstrac-
tion and zero costs elsewhere then induces a solution. Be-
cause the variable yα(s̃) is in the objective and left without
constraints, the objective value can always be increased and
the LP is unbounded.

Note that the transition cost partitioning LP contains
O(|S||A||A|) constraints, so it is generally not practical to
evaluate it. The constraints can be simplified if we parti-
tion operator costs instead of transition costs, i.e., if we
further require that all costs of one action in one abstrac-
tion are the same. We can do so by replacing the vari-
ables cαsa with state-independent variables cαa. As we re-
quired that

∑
t∈α−1(τ) T (s, a, t) is constant for any concrete

state s ∈ α−1(σ), we can then replace
∑

t∈S T (s, a, t)yα(t)
with

∑
τ∈Sα

Tα(σ, a, τ)yτ for σ = α(s). In this case, only
a single constraint of type (6) for every abstract non-goal
state is introduced. The number of constraints then is in
Θ(

∑
α∈A |Sα||A|) and the size of the LP is polynomial in

the size of the abstract SSPs.

Relationship to Occupation Measure
Heuristics

We now establish a link between optimal operator cost
partitioning and the LP-based occupation measure heuris-
tics (Trevizan, Thiébaux, and Haslum 2017), which are the
equivalent of operator-counting constraints (Pommerening
et al. 2014) for SSPs. An occupation measure gives the ex-
pected number of times an action is executed by a policy.

Since these heuristics were only formulated on planning
tasks with state-independent action costs, we assume in this
section that for action a, c(s, a) is the same for every state s

and use c(a) as an abbreviation for this common value.
The projection occupation measure heuristic hpom utilizes

atomic projections, which are the projections onto the single
variable sets, and the dual LP formulation for solving SSPs
(d’Epenoux 1963; Altman 1999), which essentially casts the
problem of finding the optimal value function to a proba-
bilistic flow problem in which the flow leaving the abstract
state d via action a ∈ A(d) is represented by the LP variable
xpom
d,a . The inflow and outflow of the abstract state d ∈ Dv of

variable v ∈ V in this problem are defined as

in(d) :=
∑

d′∈Dv

a∈A(d′)

Tv(d
′, a, d)xpom

d′,a out(d) :=
∑

a∈A(d)

xpom
d,a

where Tv denotes the transition function of the atomic pro-
jection with respect to v. With this, hpom(s̃) is defined as the
optimal objective value of LP 4, which uses Iverson brackets
notation.

Minimize
∑
a∈A

Xpom
a c(a) subject to (LP 4)

out(d)− in(d) = [d = s̃(v)]− [d = s⋆(v)]

for all v ∈ V and d ∈ Dv
(8)

Xpom
a =

∑
d∈Dv∩A−1(a)

xpom
d,a for all a ∈ A and v ∈ V (9)

where all variables are non-negative.

The flow constraints (8) enforce that the flow conservation
principle applies for all states except for the initial and goal
state. The initial state produces one unit of flow, which the
goal state absorbs, unless both are equal in which case no
flow is produced at all. Lastly, the tying constraints (9) en-
force that the occupation measure Xpom

a of an action a is the
same across all atomic projections.

At first sight, LP 4 seems to have nothing to do with op-
erator cost partitioning. However, consider the dualization:

Maximize
∑
v∈V

ys̃(v) − ys⋆(v) subject to

ys⋆(v) ≤ 0 for all v ∈ V

yd ≤ cva +
∑

d′∈Dv

Tv(d, a, d
′)yd′

for all v ∈ V, d ∈ Dv and a ∈ A(d)∑
v∈V

cva ≤ c(a) for all a ∈ A

where all variables are unrestricted.

This LP is equivalent to the optimal feasible operator cost
partitioning LP for atomic abstractions, since we can always
enforce ys⋆(v) = 0 through the transformation y′d := yd −
ys⋆(v) without changing the objective value, which shows
Theorem 4 below.

Theorem 4 hpom computes an optimal feasible operator
cost partitioning over atomic projections.

Relationship to Regrouped Operator Counting
Trevizan, Thiébaux, and Haslum also introduce the re-
grouped operator counting heuristic hroc. It uses net-change
constraints known from classical planning (Pommerening
et al. 2014) on the all-outcomes determinization of the task,
in which a possible effect can be freely selected.

We will now show that hroc also computes an optimal fea-
sible operator cost partitioning for a syntactical restriction
of planning tasks called transition normal form (TNF) where
V (pre(a)) = V (e) for all actions a and effects e ∈ Eff(a).
With this assumption, each fact pair ⟨v, d⟩ induces three dis-
joint, exhaustive classes of action-effect pairs: Those which
always consume (AC), those which always produce (AP),
and those which never change the fact (NC):

ACv=d := {(a, e) | e(v) ̸= d,pre(a)(v) = d}
APv=d := {(a, e) | e(v) = d,pre(a)(v) ̸= d}
NCv=d := {(a, e) | e(v) = pre(a)(v)} ∪

{(a, e) | e(v) ̸= d ̸= pre(a)(v)}

The possible net-change of a fact ⟨v, d⟩ when going from
state s̃ to the goal s⋆ is described by pncs̃→s⋆

v=d = [d =
s⋆(v)]− [d = s̃(v)].

With this, the heuristic hroc(s) is defined as the optimal
objective value of LP 5.

Minimize
∑
a∈A

Xroc
a c(a) subject to (LP 5)∑

(a,e)∈APv=d

xroc
a,e −

∑
(a,e)∈ACv=d

xroc
a,e = pncs̃→s⋆

v=d

for all v ∈ V, d ∈ Dv

(10)

Xroc
a =

xroc
a,e

Pra(e)
for all a ∈ A, e ∈ Eff(a) (11)

where all variables are non-negative.

In this LP, the variable xroc
a,e models the expected amount

of times a is applied and the effect e occurs. Constraints (10)
are the net-change constraints, which are divided into lower-
bounding and upper-bounding net-change constraints in the
original formulation of Trevizan, Thiébaux, and Haslum
(2017). The simplified constraints in LP 5 are equivalent for
tasks in transition normal form. The regrouping constraints
(11) enforce that the expected number of times an effect of
an action occurs in a solution is proportional to its probabil-
ity: if the occupation measure of an action a is Xroc

a , then the
effect e occurs Pra(e) · Xroc

a times in expectation.
While Trevizan et al. show that hpom dominates hroc, they

raise the question whether these two heuristics are in fact
equal. We will now show that this conjecture is valid for
tasks in TNF. A similar result was already shown by Pom-
merening et al. (2015) between the optimal operator cost
partitioning heuristic over atomic projections in classical
planning and the state equation heuristic hSEQ (Bonet and
van den Briel 2014), which can be seen as a special case of
hroc for deterministic problems.

Theorem 5 For tasks in TNF, hroc = hpom.

Proof. Let ⟨Xroc, xroc⟩ be a solution for LP 5. We construct a
solution for LP 4 with equal objective value. Define

Xpom
a :=

∑
e∈Eff(a)

xroc
a,e

xpom
d,a :=

{
xroc
a,e

Pra(e)
if d = s0(v) or v ∈ V (pre(a))

0 otherwise
where v is the variable where d ∈ Dv and e is any effect
in Eff(a). Freely choosing e is possible because of the re-
grouping constraints (11).

The objective value is clearly the same. Consider the ty-
ing constraints (9). Let a ∈ A and v ∈ V . If v ∈ V (pre(a)),
then the right hand side

∑
d∈Dv∩A−1(a) x

pom
d,a collapses to the

single value xpom
pre(a)(v),a as a is not applicable in any other

abstract state. Likewise, if v ̸∈ V (pre(a)), then a is applica-
ble in all abstract states but the sum collapses to the single
value xpom

s0(v),a
because xpom

d,a = 0 for all d ̸= s0(v). For this
single value xpom

d,a we derive

xpom
d,a = (

∑
e∈Eff(a)

Pra(e))
xroc
a,e

Pra(e)
=

∑
e∈Eff(a)

xroc
a,e = Xpom

a ,

so the tying constraints are satisfied.
Next, we consider the flow constraints (8). Let v ∈ V

and assume d ∈ Dv \ {s0(v)}. The outgoing flow then
is out(d) =

∑
a∈A(d) x

pom
d,a but for all actions a with v ̸∈

V (pre(a)) the term is 0. This leaves only actions a with
pre(a)(v) = d. For every such action we can then rewrite
xpom
d,a in the same way as before as

∑
e∈Eff(a) x

roc
a,e. We get

out(d) =
∑

a∈A,e∈Eff(a)
pre(a)(v)=d

xroc
a,e =

∑
(a,e)∈ACv=d

xroc
a,e +

∑
(a,e)∈NCv=d

pre(a)(v)=d

xroc
a,e.

For d = s0(v), the outflow is the same, except that we sum
over actions a with pre(a)(v) ∈ {⊥, d} in the respective
sums.

Finally, we consider the inflow in(d) into an abstract state
d ∈ Dv . We denote the inflow coming from a value d′ ̸= d
by in(d′, d) =

∑
a∈A(d′) T (d

′, a, d)xpom
d′,a. Note that we have

T (d′, a, d) = 0 unless there is an effect e ∈ Eff(a) with
e(v) = d. We assume TNF, so we conclude v ∈ V (pre(a)).
This means we can simplify the inflow from value d′ ̸= d to

in(d′, d) =
∑
a∈A

pre(a)(v)=d′

∑
e∈Eff(a)
e(v)=d

Pra(e) · xpom
d′,a.

Now, acknowledge that when we accumulate the inflows of
all d′ ̸= d, we sum over every action effect pair (a, e) ∈
APv=d exactly once. Thus, we have∑
d′∈D(v)
d′ ̸=d

in(d′, d) =
∑

(a,e)∈APv=d

Pra(e) · xpom
d′,a =

∑
(a,e)∈APv=d

xroc
a,e.

For in(d, d), we consider two cases. If d ̸= s0(v), then again
xpom
d,a = 0 unless v ∈ V (pre(a)) and we have

in(d, d) =
∑
a∈A

pre(a)(v)=d

∑
e∈Eff(a)
e(v)=d

xpom
a,e =

∑
(a,e)∈NCv=d

pre(a)(v)=d

xroc
a,e.

In the case s = s0(v), we instead sum over actions a with
pre(a)(v) ∈ {⊥, d} in the sums.

All in all, we obtain that

out(d)− in(d) =
∑

(a,e)∈ACv=d

xroc
a,e −

∑
(a,e)∈APv=d

xroc
a,e

and derive out(d) − in(d) = −pncs
′→s⋆

v=d from the net-
change constraints (10). It is straightforward to show that
the flow constraints (8) are satisfied by enumerating all pos-
sible cases for the flow constraints and pncs

′→s⋆
v=d . We omit

this final step due to lack of space. □

Approximate Linear Programming and
Potential Heuristics

We now analyze the connection of cost partitioning to
approximate linear programming (ALP), a technique in-
troduced for infinite-horizon discounted-reward MDPs by
Guestrin et al. (2003).

ALP approximates the optimal value function J⋆(s) of an
MDP with a weighted sum h(s) =

∑
f∈F wff(s) of some

basis functions f : S → R. It then optimizes the weights
wf instead of optimizing J⋆ directly. The values h(s) are an
admissible estimate for J⋆. The same idea was developed in-
dependently for classical planning under the name potential
heuristics (Pommerening et al. 2015) where the basis func-
tions are called features. Pommerening, Helmert, and Bonet
(2017) showed a connection of potential heuristics where the
features are indicator functions of abstract states to the tran-
sition cost partitioning over these abstractions. Both classi-
cal planning and discounted-reward MDPs are special cases
of SSPs in the sense that they can be compiled into equiv-
alent SSPs (Mausam and Kolobov 2012). We show that the
link between potential heuristics and transition cost parti-
tioning in classical planning extends to SSPs and a corre-
sponding extension of ALP.

The following LP optimizes the weights for approximate
linear programming in an SSP ⟨S,A, T, s0, s⋆, c⟩ with basis
functions F . It optimizes relative to a given state relevance
function ρ, which specifies the importance of a high estimate
for each state.

Maximize
∑
s∈S

ρ(s)
∑
f∈F

wff(s) subject to (LP 6)

∑
f∈F

wff(s⋆) = 0 (12)

∑
f∈F

wff(s) ≤ c(s, a) +
∑
t∈S

T (s, a, t)
∑
f∈F

wff(t)

for all s ∈ S and a ∈ A(s)

(13)

where all variables (wf)f∈F are unrestricted.

In the technical report, we show that the above LP com-
putes equivalent solutions to the LP by Guestrin et al. (2003)
when used on the compilation. When compiling an MDP
into an SSP, a new state is added to serve as the SSP’s goal
state. We thus have to extend the state relevance function ρ

and the basis functions f ∈ F to this new state. The LPs are
equivalent if all functions map the new state to 0.

Both Guestrin et al. (2003) and Pommerening, Helmert,
and Bonet (2017) show how to use bucket elimination to re-
duce the size of this LP in factored state spaces and make the
computation fixed-parameter tractable. The same technique
can be applied for SSPs, but we keep the simpler LP above
as the LP size does not matter for our theoretical analysis.

We now focus our attention to basis functions that are in-
dicator functions of abstract states, i.e., for an abstraction
α : S → Sα, we consider one basis function fσ for each
abstract state σ ∈ Sα that is defined as

fσ(s) =

{
1 if α(s) = σ

0 otherwise.

We consider a set of abstractions A and assume that the sets
of abstract states are pairwise disjoint so an abstract state
uniquely identifies its abstraction. For each state s and each
abstraction α, exactly one of the basis functions associated
with α has the value 1 while all others have 0. This simplifies
the LP computed for ALP as follows (the formal proof for
equivalence can be found in the technical report):

Maximize
∑
s∈S

ρ(s)
∑
α∈A

wα(s) subject to (LP 7)

wα(s⋆) = 0 for all α ∈ A (14)∑
α∈A

wα(s) ≤ c(s, a) +
∑
t∈S

T (s, a, t)
∑
α∈A

wα(t)

for all s ∈ S and a ∈ A(s)

(15)

where all variables (wσ)σ∈Sα,α∈A are unrestricted.

The final step is to show that LP 7 computes an optimal
feasible transition cost partitioning over the abstractions in
A that is optimized according to ρ.

Theorem 6 Let A be a set of abstraction mappings for an
SSP, F = {fσ | α ∈ A, σ ∈ Sα} be a set of basis functions
and ρ be a state-relevance function.

ALP with basis functions F computes a feasible transi-
tion cost partitioning over the heuristics H = (hα

LP)α∈A
that is optimal according to ρ. In particular, ALP computes
hOTCP
H (s̃) if ρ(s̃) = 1 and ρ(s) = 0 for s ̸= s̃.

Proof. For a solution w of LP 7 we can show that v = w and
cαsa = wα(s) −

∑
t∈S T (s, a, t)wα(t) is a solution to LP 3.

Constraint (6) trivializes and constraint (7) follows directly
from (15), while (5) follows from (14).

Likewise, for any solution y, c of LP 3, we can show that
w = y is a solution to LP 7. This can be seen by summing
constraint (6) for all abstractions and then using (7) to show
that (15) is satisfied. Constraint (5) clearly implies (14).

If we maximize the value of LP 3 according to ρ, then both
transformations maintain their objective value. This proves
that the LPs are equivalent for the maximization according
to ρ. If the relevance function ρ simplifies the objective to
just maximize the cost partitioned value of s̃, ALP computes
hOTCP
H (s̃). □

Theorem 6 considers a given set of abstractions so it can
be used to interpret cost-partitioned abstraction heuristics as
ALP. But note that it can also be used in the other direc-
tion: if the basis functions are indicator functions that can be
grouped into classes where in each state exactly one function
in the class is 1 and all others are 0, then these classes can be
seen as abstractions. Each such abstraction has one abstract
state per indicator function in the class and maps concrete
states s to the abstract state of the indicator function f with
f(s) = 1. ALP over such basis functions can then be inter-
preted as a cost partitioning over these abstractions.

These relations are the same as (and can be seen as an
extension of) the relations between potential heuristics and
transition cost partitioning in classical planning. The con-
ceptual difference between ALP and hOTCP

H is that ALP is
only optimized once for the state relevance function ρ, so it
is fast to evaluate but corresponds to a suboptimal cost par-
titioning for s̃ in general.

Conclusion

We developed a theory of cost partitioning applicable to
stochastic shortest path problems. We defined transition cost
partitioning over a set of SSP heuristics and showed that it
inherits admissibility from its input heuristics. We demon-
strated that both occupation measure heuristics (Trevizan,
Thiébaux, and Haslum 2017) and approximate linear pro-
gramming (Guestrin et al. 2003) compute optimal cost par-
titions under certain conditions.

Our contribution opens up a variety of research direc-
tions for future work. Adapting the various cost-partitioning
techniques known from classical planning to the SSP set-
ting could lead to strong SSP heuristics, and it would be in-
teresting to see if the trade-offs between the time spent on
optimizing a cost partition and the time saved by having a
stronger heuristic is similar as in the classical setting. While
we focused on optimal ways to partition the costs here,
suboptimal methods like saturated cost partitioning (Seipp,
Keller, and Helmert 2020) are the state of the art in classical
planning. Extending such suboptimal but fast techniques to
SSPs would be an interesting way forward. Both ALP and
potential heuristics also use bucket-elimination techniques
to efficiently deal with abstractions to more than one vari-
able. Comparing the approaches could potentially lead to
further transfer of knowledge between the two areas.

Acknowledgments

Thorsten Klößner received funding from DFG grant
389792660 as part of TRR 248 (see https://perspicuous-
computing.science). Florian Pommerening, Thomas Keller
and Gabriele Röger have received funding for this work
from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement no. 817639). Moreover, this re-
search was partially supported by TAILOR, a project funded
by the EU Horizon 2020 research and innovation pro-
gramme under grant agreement no. 952215.

References
Altman, E. 1999. Constrained Markov Decision Processes.
Chapman & Hall/CRC.
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning
to Act Using Real-Time Dynamic Programming. Artificial
Intelligence, 72(1–2): 81–138.
Bellman, R. E. 1957. Dynamic Programming. Princeton
University Press.
Bertsekas, D. P.; and Tsitsiklis, J. N. 1991. An Analysis of
Stochastic Shortest Path Problems. Mathematics of Opera-
tions Research, 16: 580–595.
Bonet, B.; and Geffner, H. 2003. Labeled RTDP: Improv-
ing the Convergence of Real-Time Dynamic Programming.
In Giunchiglia, E.; Muscettola, N.; and Nau, D., eds., Pro-
ceedings of the Thirteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2003), 12–21.
AAAI Press.
Bonet, B.; and van den Briel, M. 2014. Flow-based Heuris-
tics for Optimal Planning: Landmarks and Merges. In
(Chien et al. 2014), 47–55.
Chien, S.; Fern, A.; Ruml, W.; and Do, M., eds. 2014. Pro-
ceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS 2014). AAAI
Press.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence, 14(3): 318–334.
d’Epenoux, F. 1963. A Probabilistic Production and Inven-
tory Problem. Management Science, 10(1): 98–108.
Edelkamp, S. 2001. Planning with Pattern Databases. In
Cesta, A.; and Borrajo, D., eds., Proceedings of the Sixth Eu-
ropean Conference on Planning (ECP 2001), 84–90. AAAI
Press.
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient Solution Algorithms for Factored MDPs.
Journal of Artificial Intelligence Research, 19: 399–468.
Guillot, M.; and Stauffer, G. 2020. The Stochastic Shortest
Path Problem: A polyhedral combinatorics perspective. Eu-
ropean Journal of Operational Research, 285(1): 148–158.
Hansen, E. A.; and Zilberstein, S. 2001. LAO∗: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence, 129(1–2): 35–62.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Katz, M.; and Domshlak, C. 2010. Optimal admissible com-
position of abstraction heuristics. Artificial Intelligence,
174(12–13): 767–798.
Keller, T.; Pommerening, F.; Seipp, J.; Geißer, F.; and
Mattmüller, R. 2016. State-dependent Cost Partitionings
for Cartesian Abstractions in Classical Planning. In Kamb-
hampati, S., ed., Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI 2016), 3161–
3169. AAAI Press.

Klößner, T.; and Hoffmann, J. 2021. Pattern Databases for
Stochastic Shortest Path Problems. In Ma, H.; and Serina, I.,
eds., Proceedings of the 14th Annual Symposium on Combi-
natorial Search (SoCS 2021), 131–135. AAAI Press.
Klößner, T.; Pommerening, F.; Keller, T.; and Röger, G.
2022. Cost Partitioning Heuristics for Stochastic Shortest
Path Problems: Technical Report. Technical Report CS-
2022-001, University of Basel, Department of Mathematics
and Computer Science.
Korf, R. E. 1997. Finding Optimal Solutions to Rubik’s
Cube Using Pattern Databases. In Proceedings of the Four-
teenth National Conference on Artificial Intelligence (AAAI
1997), 700–705. AAAI Press.
Korf, R. E.; and Felner, A. 2002. Disjoint Pattern Database
Heuristics. Artificial Intelligence, 134(1–2): 9–22.
Mausam; and Kolobov, A. 2012. Planning with Markov
Decision Processes: An AI Perspective. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers.
Pommerening, F.; Helmert, M.; and Bonet, B. 2017. Higher-
Dimensional Potential Heuristics for Optimal Classical
Planning. In Singh, S.; and Markovitch, S., eds., Proceed-
ings of the Thirty-First AAAI Conference on Artificial Intel-
ligence (AAAI 2017), 3636–3643. AAAI Press.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. In Bonet, B.; and Koenig, S., eds., Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI 2015), 3335–3341. AAAI Press.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based Heuristics for Cost-optimal Planning. In
(Chien et al. 2014), 226–234.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. Journal of Ar-
tificial Intelligence Research, 67: 129–167.
Trevizan, F. W.; Thiébaux, S.; and Haslum, P. 2017. Occupa-
tion Measure Heuristics for Probabilistic Planning. In Bar-
bulescu, L.; Frank, J.; Mausam; and Smith, S. F., eds., Pro-
ceedings of the Twenty-Seventh International Conference on
Automated Planning and Scheduling (ICAPS 2017), 306–
315. AAAI Press.

