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Thorsten Klößner1, Álvaro Torralba2, Marcel Steinmetz1, Silvan Sievers3

1Saarland University, Germany, 2Aalborg University, Denmark, 3LAAS-CNRS, France, 4Basel University, Switzerland
kloessner@cs.uni-saarland.de, marcel.steinmetz@laas.fr, alto@cs.aau.dk, silvan.sievers@unibas.ch

This techincal report contains the full versions of all sketched or omitted proofs of our HSDIP 2024 paper “Merge-and-Shrink
for Stochastic Shortest-Path Problems with Pruning Transformations”. We follow the same notation as originally introduced in
the paper.

For the proofs below, recall again the definition of the transformed policy πτ,s as given in the paper:

Definition 1. Let ⟨Θ,Θ′, σ, λ⟩ be a transformation, let π be a policy for Θ and let s ∈ SΘ be some starting state. The
transformed policy πτ,s of π for s is defined by

πτ,s(h
′)(t′) := Prπs [

⋃
·

h∈ind−1
τ (h′)

t∈ind−1
τ (t′)

Cyl(ht) |
⋃
·

h∈ind−1
τ (h′)

Cyl(h)] =
Prπs [

⋃
· ⟨h,t⟩∈ind−1

τ (h′)×ind−1
τ (t′) Cyl(ht)]

Prπs [
⋃
· h∈ind−1

τ (h′) Cyl(h)]

if Prπs [
⋃
· h∈ind−1

τ (h′) Cyl(h)] > 0, and πτ,s(h
′)(t′) := 0 otherwise.

Proof of Lemma 1
Recall the statement made by Lemma 1.

Lemma 1. Let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation, let π be a policy and let s ∈ SΘ be a starting state with s ∈ dom(σ).
For every abstract history h′ ∈ Hist(Θ′):

Pr
πτ,s

σ(s)[Cyl(h
′)] = Prπs

[⋃
·
h∈ind−1

τ (h′)
Cyl(h)

]
(1)

Pr
πτ,s

σ(s)[h
′] = Prπs

[
ind−1

τ (h′)
]
+ Prπs

[⋃
·
⟨h,t⟩∈ind−1

τ (h′)×(TΘ\ind−1
τ (TΘ′ ))

Cyl(ht)
]

(2)

Proof. Let h′ = s′0t
′
0 . . . s

′
n in the following.

Proof of Equation (1) First, we show Equation (1). By definition of the probability measure, we have

Pr
πτ,s

σ(s)[Cyl(s
′
0t

′
0 . . . s

′
n)] = [s′0 = s′] ·

n−1∏
i=0

πτ,s(s
′
0t

′
0 . . . s

′
i)(t

′
i) · δt′i(s

′
i+1).

If Prπs
[⋃

h∈ind−1
τ (s′0t

′
0...s

′
i)
Cyl(h)

]
= 0 for some prefix s′0t

′
0 . . . s

′
i of h′, then the right hand side of Equation (1) is

Prπs
[⋃

h∈ind−1
τ (h′) Cyl(h)

]
= 0 and the equation above has a factor πτ,s(s

′
0t

′
0 . . . s

′
i) = 0 and thus also evaluates to zero.

Otherwise we apply the definition of πτ,s and exploit countable additivity of the probability measure to obtain:

. . . = [s′0 = s′] ·
n−1∏
i=0

∑
⟨h,t⟩∈ind−1

τ (s′0t
′
0...s

′
i)×ind−1

τ (t′i)
Prπs [Cyl(ht)] · δt′i(s

′
i+1)

Prπs [
⋃

h∈ind−1
τ (s′0t

′
0...s

′
i)
Cyl(h)]

In the next step, we use the fact that Prπs [Cyl(ht)] = Prπs [Cyl(h)] · π(h)(t), and exploit that t ∈ ind−1
τ (t′i) in the sum, from

which it follows that δt′i = σDist(δt).

. . . = [s′0 = s′] ·
n−1∏
i=0

∑
⟨h,t⟩∈ind−1

τ (s′0t
′
0...s

′
i)×ind−1

τ (t′i)
Prπs [Cyl(h)] · π(h)(t) · σDist(δt)(s

′
i+1)

Prπs [
⋃

h∈ind−1
τ (s′0t

′
0...s

′
i)
Cyl(h)]



We now apply the definition of σDist, leading to:

. . . = [s′0 = s′] ·
n−1∏
i=0

∑
⟨h,t⟩∈ind−1

τ (s′0t
′
0...s

′
i)×ind−1

τ (t′i)
Prπs [Cyl(h)] · π(h)(t) ·

∑
s∈σ−1(s′i+1)

δt(s)

Prπs [
⋃

h∈ind−1
τ (s′0t

′
0...s

′
i)
Cyl(h)]

= [s′0 = s′] ·
n−1∏
i=0

∑
⟨h,t,s⟩∈ind−1

τ (s′0t
′
0...s

′
i)×ind−1

τ (t′i)×σ−1(s′i+1)
Prπs [Cyl(h)] · π(h)(t) · δt(s)

Prπs [
⋃

h∈ind−1
τ (s′0t

′
0...s

′
i)
Cyl(h)]

Finally, we make use of the fact Prπs [Cyl(h)] · π(h)(t) · δt(s) = Prπs [Cyl(hts)] and simplify:

= [s′0 = s′] ·
n−1∏
i=0

∑
⟨h,t,s⟩∈ind−1

τ (s′0t
′
0...s

′
i)×ind−1

τ (t′i)×σ−1(s′i+1)
Prπs [Cyl(hts)]

Prπs [
⋃

h∈ind−1
τ (s′0t

′
0...s

′
i)
Cyl(h)]

= [s′0 = s′] ·
n−1∏
i=0

∑
h∈ind−1

τ (s′0t
′
0...s

′
it

′
is

′
i+1)

Prπs [Cyl(h)]

Prπs [
⋃

h∈ind−1
τ (s′0t

′
0...s

′
i)
Cyl(h)]

= [s′0 = s′] ·
n−1∏
i=0

Prπs [
⋃

h∈ind−1
τ (s′0t

′
0...s

′
i+1)

Cyl(h)]

Prπs [
⋃

h∈ind−1
τ (s′0t

′
0...s

′
i)
Cyl(h)]

This is a telescoping product, in which every numerator cancels with the following denominator, and only the final numerator
for i = n− 1 remains. Note in particular that [s′0 = s′] = Prπs [

⋃
s0∈σ−1(s′0)

Cyl(s0)]. Therefore:

. . . = Prπs [
⋃

h∈ind−1
τ (h′)

Cyl(h)]

This concludes the proof of Equation (1).

Proof of Equation (2) Before we show Equation (2), note that by definition of πτ,s and Equation (1):

Pr
πτ,s

σ(s)[Cyl(h
′t′)] = Pr

πτ,s

σ(s)[Cyl(h
′)] · πτ,s(h

′)(t′) = Prπs
[⋃

⟨h,t⟩∈ind−1
τ (h′)×ind−1

τ (t′)
Cyl(ht)

]
(3)

To prove Equation (2), we first express the event {h′} as the event of all executions with prefix h′, without those which continue
with some transition:

Pr
πτ,s

σ(s)[h
′] = Pr

πτ,s

σ(s)

[
Cyl(h′) \

( ⋃
t′∈TΘ′

Cyl(h′t′)
)]

= Pr
πτ,s

σ(s)[Cyl(h
′)]− Pr

πτ,s

σ(s)

[ ⋃
t′∈TΘ′

Cyl(h′t′)
]

Next, we apply Equation (1) and Equation (3), and simplify.

= Prπs [
⋃

h∈ind−1
τ (h′)

Cyl(h)]− Prπs
[ ⋃
t′∈TΘ′

⋃
⟨h,t⟩∈ind−1

τ (h′)×ind−1
τ (t′)

Cyl(ht)
]

= Prπs [
⋃

h∈ind−1
τ (h′)

Cyl(h)]− Prπs
[ ⋃
t∈ind−1

τ (TΘ′ )

⋃
h∈ind−1

τ (h′)

Cyl(ht)
]

= Prπs
[ ⋃
h∈ind−1

τ (h′)

Cyl(h) \
( ⋃
t∈ind−1

τ (TΘ′ )

⋃
h∈ind−1

τ (h′)

Cyl(ht)
)]

The event above considers all executions with a prefix h ∈ ind−1
τ (h′), excluding those continuing with an induced transition

t ∈ ind−1
τ (TΘ′). In other words, we consider exactly terminating executions h ∈ ind−1

τ (h′), and the executions that start with
a prefix h ∈ ind−1

τ (h′) and then continue with a transition t /∈ ind−1
τ (TΘ′). Rewriting the event accordingly:

= Prπs
[
ind−1

τ (h′) ∪·
( ⋃

h∈ind−1
τ (h′)

t/∈ind−1
τ (TΘ′ )

Cyl(ht)
)]

= Prπs [ind
−1
τ (h′)] + Prπs

[( ⋃
h∈ind−1

τ (h′)
t/∈ind−1

τ (TΘ′ )

Cyl(ht)
)]

This shows the claim.



Proof of Proposition 1
Proposition 1 made the following statement.
Proposition 1. Let τ = ⟨Θ,Θ′, σ, λ⟩ ∈ CONSL+T and let π be a policy. For all states s ∈ SΘ with Reach→

Θ,π(s) ⊆ dom(σ)
and every set of target states T ⊆ SΘ:

(i) Reach→
Θ,πτ,s

(σ(s)) = σ(Reach→
Θ,π(s)) and

(ii) If π ∈ SolsΘ(s, T ), then πτ,s ∈ SolsΘ′(σ(s), σ(T )).

Proof. To show claim (i), recall Equation (1):

Pr
πτ,s

σ(s)[Cyl(h
′)] = Prπs

[⋃
·
h∈ind−1

τ (h′)
Cyl(h)

]
The inclusion Reach→

Θ,πτ,s
(σ(s)) ⊆ σ(Reach→

Θ,π(s)) holds without any assumptions, since by this equation, Prπτ,s

σ(s)[Cyl(h
′)] >

0 for some history h′ ∈ Hist(Θ′) implies that there is a concrete history h ∈ ind−1
τ (h′) with Prπs [Cyl(h)] > 0, and we have

last(h′) = σ(last(h)) in particular.
For the other direction, acknowledge that under the assumptions Reach→

Θ,π(s) ⊆ dom(σ) and τ ∈ CONSL, every possible
history h ∈ Hist(Θ) with Prπs [Cyl(h)] > 0 induces an abstract history, i.e., h ∈ dom(indτ ). With τ ∈ CONST we even
have indτ (h) ∈ Hist(Θ′). Therefore, 0 < Prπs [Cyl(h)] ≤ Prπs

[⋃
· h∈ind−1

τ (indτ (h))
Cyl(h)

]
= Pr

πτ,s

σ(s)[Cyl(indτ (h))] and in
particular, σ(last(h)) = last(indτ (h)).

For the claim (ii), consider Equation (2) for a history h′ ∈ FinishΘ′(σ(T )). In the event of the right summand, since
t /∈ ind−1

τ (TΘ′), we also have htu /∈ ind−1
τ (Hist(Θ′)) and in particular Prπs [Cyl(htu)] = 0 by contraposition of the argument

above. Hence, the right summand vanishes and we obtain Pr
πτ,s

σ(s)[h
′] = Prπs [ind

−1
τ (h′)]. Concludingly:

Pr
πτ,s

σ(s)[FinishΘ′(σ(T ))] = Prπs [ind
−1
τ (FinishΘ′(σ(T )))]

≥ Prπs [FinishΘ(T )] = 1.

Note here that FinishΘ(T ) ⊆ ind−1
τ (FinishΘ′(σ(T ))) if we only consider possible histories h ∈ FinishΘ(T ), as then

h ∈ dom(indτ ) and indτ (h) ∈ FinishΘ′(σ(T )).


