Merge-and-Shrink for Stochastic Shortest-Path Problems with Pruning Transformations — Technical Report

Thorsten Klößner¹, Álvaro Torralba², Marcel Steinmetz¹, Silvan Sievers³

¹Saarland University, Germany, ²Aalborg University, Denmark, ³LAAS-CNRS, France, ⁴Basel University, Switzerland kloessner@cs.uni-saarland.de, marcel.steinmetz@laas.fr, alto@cs.aau.dk, silvan.sievers@unibas.ch

This techincal report contains the full versions of all sketched or omitted proofs of our HSDIP 2024 paper "Merge-and-Shrink for Stochastic Shortest-Path Problems with Pruning Transformations". We follow the same notation as originally introduced in the paper.

For the proofs below, recall again the definition of the transformed policy $\pi_{\tau,s}$ as given in the paper:

Definition 1. Let $\langle \Theta, \Theta', \sigma, \lambda \rangle$ be a transformation, let π be a policy for Θ and let $s \in S_{\Theta}$ be some starting state. The transformed policy $\pi_{\tau,s}$ of π for s is defined by

$$\pi_{\tau,s}(h')(\mathfrak{t}') := \Pr_s^{\pi}[\bigcup_{\substack{h \in ind_{\tau}^{-1}(h')\\ \mathfrak{t} \in ind_{\tau}^{-1}(\mathfrak{t}')}} Cyl(h\mathfrak{t}) \mid \bigcup_{h \in ind_{\tau}^{-1}(h')} Cyl(h)] = \frac{\Pr_s^{\pi}[\bigcup_{\langle h,\mathfrak{t} \rangle \in ind_{\tau}^{-1}(h') \times ind_{\tau}^{-1}(\mathfrak{t}')} Cyl(h\mathfrak{t})]}{\Pr_s^{\pi}[\bigcup_{h \in ind_{\tau}^{-1}(h')} Cyl(h)]}$$

if $\Pr_s^{\pi}[\bigcup_{h \in ind^{-1}(h')} Cyl(h)] > 0$, and $\pi_{\tau,s}(h')(\mathfrak{t}') := 0$ otherwise.

Proof of Lemma 1

Recall the statement made by Lemma 1.

Lemma 1. Let $\tau = \langle \Theta, \Theta', \sigma, \lambda \rangle$ be a transformation, let π be a policy and let $s \in S_{\Theta}$ be a starting state with $s \in dom(\sigma)$. For every abstract history $h' \in Hist(\Theta')$:

$$\Pr_{\sigma(s)}^{\pi_{\tau,s}}[Cyl(h')] = \Pr_s^{\pi} \left[\bigcup_{h \in ind_{\tau}^{-1}(h')} Cyl(h) \right]$$
(1)

$$\Pr_{\sigma(s)}^{\pi_{\tau,s}}[h'] = \Pr_s^{\pi} \left[ind_{\tau}^{-1}(h') \right] + \Pr_s^{\pi} \left[\bigcup_{\langle h, \mathfrak{t} \rangle \in ind_{\tau}^{-1}(h') \times (T_{\Theta} \setminus ind_{\tau}^{-1}(T_{\Theta'}))} Cyl(h\mathfrak{t}) \right]$$
(2)

Proof. Let $h' = s'_0 \mathfrak{t}'_0 \dots s'_n$ in the following.

Proof of Equation (1) First, we show Equation (1). By definition of the probability measure, we have

$$\Pr_{\sigma(s)}^{\pi_{\tau,s}}[Cyl(s'_0\mathfrak{t}'_0\dots s'_n)] = [s'_0 = s'] \cdot \prod_{i=0}^{n-1} \pi_{\tau,s}(s'_0\mathfrak{t}'_0\dots s'_i)(\mathfrak{t}'_i) \cdot \delta_{\mathfrak{t}'_i}(s'_{i+1})$$

If $\Pr_s^{\pi} \left[\bigcup_{h \in ind_{\tau}^{-1}(s'_0 t'_0 \dots s'_i)} Cyl(h) \right] = 0$ for some prefix $s'_0 t'_0 \dots s'_i$ of h', then the right hand side of Equation (1) is $\Pr_s^{\pi} \left[\bigcup_{h \in ind_{\tau}^{-1}(h')} Cyl(h) \right] = 0$ and the equation above has a factor $\pi_{\tau,s}(s'_0 t'_0 \dots s'_i) = 0$ and thus also evaluates to zero. Otherwise we apply the definition of $\pi_{\tau,s}$ and exploit countable additivity of the probability measure to obtain:

$$\dots = [s'_0 = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum_{\langle h, \mathfrak{t} \rangle \in ind_{\tau}^{-1}(s'_0\mathfrak{t}'_0 \dots s'_i) \times ind_{\tau}^{-1}(\mathfrak{t}'_i)}{\Pr_s^{\pi}[\bigcup_{h \in ind_{\tau}^{-1}(s'_0\mathfrak{t}'_0 \dots s'_i)} Cyl(h)]}$$

In the next step, we use the fact that $\Pr_s^{\pi}[Cyl(h\mathfrak{t})] = \Pr_s^{\pi}[Cyl(h)] \cdot \pi(h)(\mathfrak{t})$, and exploit that $\mathfrak{t} \in ind_{\tau}^{-1}(\mathfrak{t}'_i)$ in the sum, from which it follows that $\delta_{\mathfrak{t}'_i} = \sigma_{Dist}(\delta_{\mathfrak{t}})$.

$$\dots = [s'_{0} = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum_{\langle h, \mathfrak{t} \rangle \in ind_{\tau}^{-1}(s'_{0}\mathfrak{t}'_{0}\dots s'_{i}) \times ind_{\tau}^{-1}(\mathfrak{t}'_{i})}{\Pr_{s}^{\pi}[\bigcup_{h \in ind_{\tau}^{-1}(s'_{0}\mathfrak{t}'_{0}\dots s'_{i})} Cyl(h)]} Cyl(h)]$$

We now apply the definition of σ_{Dist} , leading to:

$$\dots = [s'_{0} = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum_{\langle h, \mathfrak{t} \rangle \in ind_{\tau}^{-1}(s'_{0}\mathfrak{t}'_{0}\dots s'_{i}) \times ind_{\tau}^{-1}(\mathfrak{t}'_{i})}{\Pr_{s}^{\pi}[\bigcup_{h \in ind_{\tau}^{-1}(s'_{0}\mathfrak{t}'_{0}\dots s'_{i})} Cyl(h)]}$$

$$= [s'_{0} = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum_{\langle h, \mathfrak{t}, s \rangle \in ind_{\tau}^{-1}(s'_{0}\mathfrak{t}'_{0}\dots s'_{i}) \times ind_{\tau}^{-1}(\mathfrak{t}'_{i}) \times \sigma^{-1}(s'_{i+1})}{\Pr_{s}^{\pi}[\bigcup_{h \in ind_{\tau}^{-1}(s'_{0}\mathfrak{t}'_{0}\dots s'_{i})} Cyl(h)]}$$

Finally, we make use of the fact $\Pr_s^{\pi}[Cyl(h)] \cdot \pi(h)(\mathfrak{t}) \cdot \delta_{\mathfrak{t}}(s) = \Pr_s^{\pi}[Cyl(h\mathfrak{t}s)]$ and simplify:

$$\begin{split} &= [s'_{0} = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum_{\langle h, \mathfrak{t}, s \rangle \in ind_{\tau}^{-1}(s'_{0}\mathfrak{t}'_{0}\dots s'_{i}) \times ind_{\tau}^{-1}(\mathfrak{t}'_{i}) \times \sigma^{-1}(s'_{i+1})}{\Pr_{s}^{\pi}[\bigcup_{h \in ind_{\tau}^{-1}(s'_{0}\mathfrak{t}'_{0}\dots s'_{i})} Cyl(h)]} \\ &= [s'_{0} = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum_{h \in ind_{\tau}^{-1}(s'_{0}\mathfrak{t}'_{0}\dots s'_{i}\mathfrak{t}'_{i}s'_{i+1})}{\Pr_{s}^{\pi}[\bigcup_{h \in ind_{\tau}^{-1}(s'_{0}\mathfrak{t}'_{0}\dots s'_{i})} Cyl(h)]} \\ &= [s'_{0} = s'] \cdot \prod_{i=0}^{n-1} \frac{\Pr_{s}^{\pi}[\bigcup_{h \in ind_{\tau}^{-1}(s'_{0}\mathfrak{t}'_{0}\dots s'_{i+1})} Cyl(h)]}{\Pr_{s}^{\pi}[\bigcup_{h \in ind_{\tau}^{-1}(s'_{0}\mathfrak{t}'_{0}\dots s'_{i+1})} Cyl(h)]} \end{split}$$

This is a telescoping product, in which every numerator cancels with the following denominator, and only the final numerator for i = n - 1 remains. Note in particular that $[s'_0 = s'] = \Pr_s^{\pi}[\bigcup_{s_0 \in \sigma^{-1}(s'_0)} Cyl(s_0)]$. Therefore:

$$\ldots = \Pr_s^{\pi} \left[\bigcup_{h \in ind_{\tau}^{-1}(h')} Cyl(h) \right]$$

This concludes the proof of Equation (1).

Proof of Equation (2) Before we show Equation (2), note that by definition of $\pi_{\tau,s}$ and Equation (1):

$$\Pr_{\sigma(s)}^{\pi_{\tau,s}}[Cyl(h'\mathfrak{t}')] = \Pr_{\sigma(s)}^{\pi_{\tau,s}}[Cyl(h')] \cdot \pi_{\tau,s}(h')(\mathfrak{t}') = \Pr_{s}^{\pi} \left[\bigcup_{\langle h,\mathfrak{t} \rangle \in ind_{\tau}^{-1}(h') \times ind_{\tau}^{-1}(\mathfrak{t}')} Cyl(h\mathfrak{t}) \right]$$
(3)

To prove Equation (2), we first express the event $\{h'\}$ as the event of all executions with prefix h', without those which continue with some transition:

$$\begin{aligned} \Pr_{\sigma(s)}^{\pi_{\tau,s}}[h'] &= \Pr_{\sigma(s)}^{\pi_{\tau,s}} \left[Cyl(h') \setminus \left(\bigcup_{\mathfrak{t}' \in T_{\Theta'}} Cyl(h'\mathfrak{t}') \right) \right] \\ &= \Pr_{\sigma(s)}^{\pi_{\tau,s}} [Cyl(h')] - \Pr_{\sigma(s)}^{\pi_{\tau,s}} \left[\bigcup_{\mathfrak{t}' \in T_{\Theta'}} Cyl(h'\mathfrak{t}') \right] \end{aligned}$$

Next, we apply Equation (1) and Equation (3), and simplify.

$$= \Pr_{s}^{\pi} \left[\bigcup_{h \in ind_{\tau}^{-1}(h')} Cyl(h)\right] - \Pr_{s}^{\pi} \left[\bigcup_{\mathfrak{t}' \in T_{\Theta'}} \bigcup_{\langle h, \mathfrak{t} \rangle \in ind_{\tau}^{-1}(h') \times ind_{\tau}^{-1}(\mathfrak{t}')} Cyl(h\mathfrak{t})\right]$$
$$= \Pr_{s}^{\pi} \left[\bigcup_{h \in ind_{\tau}^{-1}(h')} Cyl(h)\right] - \Pr_{s}^{\pi} \left[\bigcup_{\mathfrak{t} \in ind_{\tau}^{-1}(T_{\Theta'})} \bigcup_{h \in ind_{\tau}^{-1}(h')} Cyl(h\mathfrak{t})\right]$$
$$= \Pr_{s}^{\pi} \left[\bigcup_{h \in ind_{\tau}^{-1}(h')} Cyl(h) \setminus \left(\bigcup_{\mathfrak{t} \in ind_{\tau}^{-1}(T_{\Theta'})} \bigcup_{h \in ind_{\tau}^{-1}(h')} Cyl(h\mathfrak{t})\right)\right]$$

The event above considers all executions with a prefix $h \in ind_{\tau}^{-1}(h')$, excluding those continuing with an induced transition $\mathfrak{t} \in ind_{\tau}^{-1}(T_{\Theta'})$. In other words, we consider exactly terminating executions $h \in ind_{\tau}^{-1}(h')$, and the executions that start with a prefix $h \in ind_{\tau}^{-1}(h')$ and then continue with a transition $\mathfrak{t} \notin ind_{\tau}^{-1}(T_{\Theta'})$. Rewriting the event accordingly:

$$= \Pr_{s}^{\pi} \left[ind_{\tau}^{-1}(h') \cup \left(\bigcup_{\substack{h \in ind_{\tau}^{-1}(h') \\ \mathfrak{t} \notin ind_{\tau}^{-1}(T_{\Theta'})}} Cyl(h\mathfrak{t}) \right) \right]$$
$$= \Pr_{s}^{\pi} \left[ind_{\tau}^{-1}(h') \right] + \Pr_{s}^{\pi} \left[\left(\bigcup_{\substack{h \in ind_{\tau}^{-1}(h') \\ \mathfrak{t} \notin ind_{\tau}^{-1}(T_{\Theta'})}} Cyl(h\mathfrak{t}) \right) \right]$$

This shows the claim.

Proof of Proposition 1

Proposition 1 made the following statement.

Proposition 1. Let $\tau = \langle \Theta, \Theta', \sigma, \lambda \rangle \in \text{CONS}_{L+T}$ and let π be a policy. For all states $s \in S_{\Theta}$ with $\text{Reach}_{\Theta,\pi}^{\rightarrow}(s) \subseteq \text{dom}(\sigma)$ and every set of target states $T \subseteq S_{\Theta}$:

- (i) $\operatorname{Reach}_{\Theta,\pi_{\tau,s}}^{\rightarrow}(\sigma(s)) = \sigma(\operatorname{Reach}_{\Theta,\pi}^{\rightarrow}(s))$ and
- (ii) If $\pi \in Sols_{\Theta}(s,T)$, then $\pi_{\tau,s} \in Sols_{\Theta'}(\sigma(s),\sigma(T))$.

Proof. To show claim (i), recall Equation (1):

$$\Pr_{\sigma(s)}^{\pi_{\tau,s}}[Cyl(h')] = \Pr_s^{\pi} \left[\bigcup_{h \in ind_{\tau}^{-1}(h')} Cyl(h) \right]$$

The inclusion $\operatorname{Reach}_{\Theta,\pi_{\tau,s}}^{\rightarrow}(\sigma(s)) \subseteq \sigma(\operatorname{Reach}_{\Theta,\pi}^{\rightarrow}(s))$ holds without any assumptions, since by this equation, $\operatorname{Pr}_{\sigma(s)}^{\pi_{\tau,s}}[\operatorname{Cyl}(h')] > 0$ for some history $h' \in \operatorname{Hist}(\Theta')$ implies that there is a concrete history $h \in \operatorname{ind}_{\tau}^{-1}(h')$ with $\operatorname{Pr}_{s}^{\pi}[\operatorname{Cyl}(h)] > 0$, and we have $\operatorname{last}(h') = \sigma(\operatorname{last}(h))$ in particular.

For the other direction, acknowledge that under the assumptions $Reach_{\Theta,\pi}^{\rightarrow}(s) \subseteq dom(\sigma)$ and $\tau \in \mathbf{CONS}_{\mathbf{L}}$, every possible history $h \in Hist(\Theta)$ with $\Pr_s^{\pi}[Cyl(h)] > 0$ induces an abstract history, i.e., $h \in dom(ind_{\tau})$. With $\tau \in \mathbf{CONS}_{\mathbf{T}}$ we even have $ind_{\tau}(h) \in Hist(\Theta')$. Therefore, $0 < \Pr_s^{\pi}[Cyl(h)] \leq \Pr_s^{\pi}\left[\bigcup_{h \in ind_{\tau}^{-1}(ind_{\tau}(h))} Cyl(h)\right] = \Pr_{\sigma(s)}^{\pi_{\tau,s}}[Cyl(ind_{\tau}(h))]$ and in particular, $\sigma(last(h)) = last(ind_{\tau}(h))$.

For the claim (ii), consider Equation (2) for a history $h' \in Finish_{\Theta'}(\sigma(T))$. In the event of the right summand, since $\mathfrak{t} \notin ind_{\tau}^{-1}(T_{\Theta'})$, we also have $htu \notin ind_{\tau}^{-1}(Hist(\Theta'))$ and in particular $\Pr_s^{\pi_{\tau,s}}[Cyl(htu)] = 0$ by contraposition of the argument above. Hence, the right summand vanishes and we obtain $\Pr_{\sigma(s)}^{\pi_{\tau,s}}[h'] = \Pr_s^{\pi}[ind_{\tau}^{-1}(h')]$. Concludingly:

$$\Pr_{\sigma(s)}^{\pi_{\tau,s}}[Finish_{\Theta'}(\sigma(T))] = \Pr_{s}^{\pi}[ind_{\tau}^{-1}(Finish_{\Theta'}(\sigma(T)))]$$
$$\geq \Pr_{s}^{\pi}[Finish_{\Theta}(T)] = 1.$$

Note here that $Finish_{\Theta}(T) \subseteq ind_{\tau}^{-1}(Finish_{\Theta'}(\sigma(T)))$ if we only consider possible histories $h \in Finish_{\Theta}(T)$, as then $h \in dom(ind_{\tau})$ and $ind_{\tau}(h) \in Finish_{\Theta'}(\sigma(T))$.