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Abstract

This proof appendix contains the sketched or omitted proofs of the ECAI 2024 paper “Merge-and-Shrink
for SSPs with Pruning Transformations” by Klößner et al. The notation follows the original paper.

For the proofs below, recall again the definition of the transformed policy tpolτ,s(π) as given in the paper:

Definition 6. Let ⟨Θ,Θ′, σ, λ⟩ be a transformation, let π be a policy for Θ and let s ∈ SΘ be some starting state. The
transformed policy tpolτ,s(π) of π for s is defined by

tpolτ,s(π)(p
′)(T′) :=

∑
p∈tpath−1

τ (p′)

Prπs [Cyl(p)] ·
∑

T∈ttr−1
τ (T′)

π(p)(T)∑
p∈tpath−1

τ (p′)
Prπs [Cyl(p)]

if Prπs [
⋃
· p∈tpath−1

τ (p′) Cyl(p)] > 0, and tpolτ,s(π)(p
′)(T′) := 0 otherwise.

In the paper, the following theorem was stated without being formally shown. We will prove it in the following.

Theorem 2. Let τ = ⟨Θ,Θ′, σ, λ⟩ ∈ CONSL+T and let s ∈ SΘ. For all policies π with Reach→
Θ,π(s) ⊆ dom(σ) and every

set of target states T ⊆ SΘ:

a) Reach→
Θ,tpolτ,s(π)(σ(s)) = σ(Reach→

Θ,π(s)) and
b) If π ∈ SolsΘ(s, T ), then tpolτ,s(π) ∈ SolsΘ′(σ(s), σ(T )).

To show this theorem, we first start with two lemmata. In the following, let Prefsπ(s) := {p | Prπs [Cyl(p)] > 0} be the
set of execution prefixes that can possibly be generated by a policy π with starting state s. Loosely speaking, the first lemma
states that under the assumption CONSL and CONST, as well as the assumption that every reachable state of the policy π
with starting state s is kept by the transformation (Reach→

Θ,π(s) ⊆ dom(σ)), every intermediate path p that can potentially
be generated by π can be mapped to a transformed path tpathτ (p) that exists within the transformed transition system Θ′.
Additionally, if the original path reached a set of target states T , then the transformed path reaches the corresponding set of
target states σ(T ).

Lemma 1. Let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation, let π be a policy, let s ∈ SΘ be a starting state and let p ∈
FPaths(Θ).

a) If τ ∈ CONSL+T, Reach→
Θ,π(s) ⊆ dom(σ) and p ∈ Prefsπ(s), then p ∈ dom(tpathτ ) and tpathτ (p) ∈ FPaths(Θ′).

b) Let T ⊆ SΘ be a set of target states. If the assumptions of Lemma 1a) hold and additionally p ∈ FinishΘ(T ), then
tpathτ (FPaths(Θ

′)) ∈ FinishΘ′(T ′).

Proof. Let p = s0T0 . . . sn in the following.
We consider Lemma 1a) first. First of all, we have s0, . . . , sn ∈ Reach→

Θ,π(s) and also supp(Ti) ⊆ Reach→
Θ,π(s) for

0 ≤ i < n. Since Reach→
Θ,π(s) ⊆ dom(σ) by assumption and τ ∈ CONSL, we conclude that s0, . . . , sn ∈ dom(σ) and

T0, . . . ,Tn−1 ∈ dom(ttrτ ). In particular, p is transformable, i.e., p ∈ dom(tpathτ ). Moreover, because of τ ∈ CONST,
we also have ttrτ (T0), . . . , ttrτ (Tn−1) ∈ TΘ′ and therefore tpathτ (p) ∈ FPaths(Θ′).

For Lemma 1b), we additionally have p ∈ FinishΘ(T ) so we have sn ∈ T . As noted above, sn ∈ dom(σ), so we
conclude σ(sn) ∈ σ(T ) and p ∈ FinishΘ′(σ(T )) in particular.



Next, we prove that, under the same assumptions as stated earlier, there is a nice relationship between the probability
measures of the original policy with starting state s and the transformed policy with starting state σ(s). Namely, the proba-
bility that the transformed policy generates an intermediate transformed path p′ is equal to the probability that π generates
some corresponding intermediate concrete path p ∈ tpath−1

τ (p′). The same also holds for the final path generated upon
termination.

Lemma 2. Let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation, let π be a policy and let s ∈ SΘ be a starting state. Moreover, let
p′ ∈ FPaths(Θ′) be a path of Θ′. If τ ∈ CONSL+T and Reach→

Θ,π(s) ⊆ dom(σ), then:

Pr
tpolτ,s(π)

σ(s) [Cyl(p′)] =
∑

p∈tpath−1
τ (p′)

Prπs [Cyl(p)] (1)

Pr
tpolτ,s(π)

σ(s) [p′] = Prπs
[
tpath−1

τ (p′)
]

(2)

Proof. Let p′ = s′0T
′
0 . . . s

′
n in the following.

Proof of Equation (1) First, we show Equation (1). By definition of the probability measure, we have

Pr
tpolτ,s(π)

σ(s) [Cyl(p′)] = [s′0 = s′] ·
n−1∏
i=0

tpolτ,s(π)(s
′
0T

′
0 . . . s

′
i)(T

′
i) · δT′

i
(s′i+1).

If
∑

p∈tpath−1
τ (s′0T

′
0...s

′
i)
Prπs [Cyl(p)] = 0 for some prefix s′0T

′
0 . . . s

′
i of p′, then for the right hand side of Equation (1)

we have
∑

p∈tpath−1
τ (p′) Pr

π
s [Cyl(p)] ≤

∑
p∈tpath−1

τ (s′0T
′
0...s

′
i)
Prπs [Cyl(p)] = 0 and the right hand side must be zero. The

equation above has a factor tpolτ,s(π)(s
′
0T

′
0 . . . s

′
i) = 0 in this case by definition of tpols,π(τ), thus the left hand side also

evaluates to zero. All in all, both sides are zero under this assumption and the claim is shown.
Now assume

∑
p∈tpath−1

τ (s′0T
′
0...s

′
i)
Prπs [Cyl(p)] > 0. We apply the definition of tpolτ,s(π) and obtain:

Pr
tpolτ,s(π)

σ(s) [Cyl(p′)] = [s′0 = s′] ·
n−1∏
i=0

∑
p∈tpath−1

τ (s′0T
′
0...s

′
i)

Prπs [Cyl(p)] ·
∑

T∈ttr−1
τ (T′

i)

π(p)(T) · δT′
i
(s′i+1)∑

p∈tpath−1
τ (s′0T

′
0...s

′
i)

Prπs [Cyl(p)]

In the next step, we exploit that T ∈ ttr−1
τ (T′

i) in the sum, from which it follows that δT′
i
= lift [σ](δT).

. . . = [s′0 = s′] ·
n−1∏
i=0

∑
p∈tpath−1

τ (s′0T
′
0...s

′
i)

Prπs [Cyl(p)] ·
∑

T∈ttr−1
τ (T′

i)

π(p)(T) · lift [σ](δT)(s′i+1)∑
p∈tpath−1

τ (s′0T
′
0...s

′
i)

Prπs [Cyl(p)]

We now apply the definition of lift [σ], leading to:

. . . = [s′0 = s′] ·
n−1∏
i=0

∑
p∈tpath−1

τ (s′0T
′
0...s

′
i)

Prπs [Cyl(p)] ·
∑

T∈ttr−1
τ (T′

i)

π(p)(T) ·
∑

s∈σ−1(s′i+1)

δT(s)∑
p∈tpath−1

τ (s′0T
′
0...s

′
i)

Prπs [Cyl(p)]

. . . = [s′0 = s′] ·
n−1∏
i=0

∑
⟨p,T,s⟩∈tpath−1

τ (s′0T
′
0...s

′
i)×ttr−1

τ (T′
i)×σ−1(s′i+1)

Prπs [Cyl(p)] · π(p)(T) · δT(s)∑
p∈tpath−1

τ (s′0T
′
0...s

′
i)

Prπs [Cyl(p)]

Finally, we make use of the fact Prπs [Cyl(p)] · π(p)(T) · δT(s) = Prπs [Cyl(pTs)] and simplify:

. . . = [s′0 = s′] ·
n−1∏
i=0

∑
⟨p,T,s⟩∈tpath−1

τ (s′0T
′
0...s

′
i)×ttr−1

τ (T′
i)×σ−1(s′i+1)

Prπs [Cyl(pTs)]∑
p∈tpath−1

τ (s′0T
′
0...s

′
i)

Prπs [Cyl(p)]

. . . = [s′0 = s′] ·
n−1∏
i=0

∑
p∈tpath−1

τ (s′0T
′
0...s

′
iT

′
isi+1)′

Prπs [Cyl(p)]∑
p∈tpath−1

τ (s′0T
′
0...s

′
i)

Prπs [Cyl(p)]

This is a telescoping product, in which every numerator cancels with the following denominator, and only the final numerator
for i = n− 1 remains. Note in particular that [s′0 = s′] = Prπs [

⋃
s0∈σ−1(s′0)

Cyl(s0)]. Therefore:

. . . =
∑

p∈tpath−1
τ (p′)

Prπs [Cyl(p)]

This concludes the proof of Equation (1).



Proof of Equation (2) To prove Equation (2), we first express the event {p′} as the event of all executions with prefix p′,
without those which continue along some transition to some state. Then we simplify the equations using our assumptions
and Equation (1).

Pr
tpolτ,s(π)

σ(s) [p′] = Pr
tpolτ,s(π)

σ(s)

[
Cyl(p′) \

( ⋃
T′∈TΘ′

⋃
t′∈SΘ′

Cyl(p′T′t′)
)]

= Pr
tpolτ,s(π)

σ(s) [Cyl(p′)]−
∑

T′∈TΘ′

∑
t′∈SΘ′

Pr
tpolτ,s(π)

σ(s) [Cyl(p′T′t′)]

=
∑

p∈tpath−1
τ (p′)

Prπs [Cyl(p)]−
∑

T′∈TΘ′

∑
t′∈SΘ′

∑
p∈tpath−1

τ (p′)
T∈ttr−1

τ (T′)
t∈σ−1(t′)

Prπs [Cyl(pTt)] (by Equation (1))

=
∑

p∈tpath−1
τ (p′)

(
Prπs [Cyl(p)]−

∑
T∈ttr−1

τ (TΘ′ )

∑
t∈σ−1(SΘ′ )

Prπs [Cyl(pTt)]
)

=
∑

p∈tpath−1
τ (p′)

(
Prπs [Cyl(p)]−

∑
T∈TΘ

∑
t∈SΘ

Prπs [Cyl(pTt)]
)

(by Lemma 1a))

=
∑

p∈tpath−1
τ (p′)

(
Prπs [Cyl(p)]− Prπs

[ ⋃
T∈TΘ

⋃
t∈SΘ

Cyl(pTt)
])

=
∑

p∈tpath−1
τ (p′)

Prπs
[
Cyl(p) \

( ⋃
T∈TΘ

⋃
t∈SΘ

Cyl(pTt)
)]

=
∑

p∈tpath−1
τ (p′)

Prπs [p]

= Prπs [tpath
−1
τ (p′)]

This shows the claim.

We now use both of these lemmata to prove the initial claim.

Theorem 2. Let τ = ⟨Θ,Θ′, σ, λ⟩ ∈ CONSL+T and let s ∈ SΘ. For all policies π with Reach→
Θ,π(s) ⊆ dom(σ) and every

set of target states T ⊆ SΘ:

a) Reach→
Θ,tpolτ,s(π)(σ(s)) = σ(Reach→

Θ,π(s)) and
b) If π ∈ SolsΘ(s, T ), then tpolτ,s(π) ∈ SolsΘ′(σ(s), σ(T )).

Proof. The inclusion from left to right holds without any assumptions, since Pr
tpolτ,s(π)

σ(s) [Cyl(p′)] > 0 for some path
p′ ∈ FPaths(Θ′) implies that there is a concrete path p ∈ tpath−1

τ (p′) with Prπs [Cyl(p)] > 0 by Equation (1), where we
have last(p) ∈ dom(σ) and last(p′) = σ(last(p)) in particular.

For the other direction, acknowledge that for every path p ∈ Prefsπ(s), we have p ∈ dom(tpathτ ) and tpathτ (p) ∈
FPaths(Θ′) by Lemma 1a) in the context of our assumptions. Therefore,

0 < Prπs [Cyl(p)] ≤
∑

p∈tpath−1
τ (tpathτ (p))

Prπs
[
Cyl(p)

]
= Pr

tpolτ,s(π)

σ(s) [Cyl(tpathτ (p))]

where the last equality follows from Equation (1) and σ(last(p)) = last(tpathτ (p)) in particular.
For Theorem 2b), we use Equation (2), followed by Lemma 1b). In particular, from Lemma 1b) we obtain the fact that

tpath−1
τ (FinishΘ′(σ(T ))) ⊇ FinishΘ(T ) ∩ Prefsπ(s) in the context of our assumptions. Hence:

Pr
tpolτ,s(π)

σ(s) [FinishΘ′(σ(T ))] = Prπs [tpath
−1
τ (FinishΘ′(σ(T )))] ≥ Prπs [FinishΘ(T ) ∩ Prefsπ(s)] = 1.

Thus, tpols,π(τ) ∈ SolsΘ′(σ(s), σ(T )).


