Merge-and-Shrink for SSPs with Prune Transformations — Proof Appendix

Thorsten Klößner $\mathrm{a},\mathrm{Álvaro}$ Torralba $\mathrm{^{b},~Marc}$ el Steinmetz $\mathrm{^{c}}$ and Silvan Sievers $\mathrm{^{d}}$

aSaarland University, Germany **b**Aalborg University, Denmark ^cLAAS-CNRS, Université de Toulouse, France ^dUniversity of Basel, Switzerland

Abstract

This proof appendix contains the sketched or omitted proofs of the ECAI 2024 paper "Merge-and-Shrink for SSPs with Pruning Transformations" by Klößner et al. The notation follows the original paper.

For the proofs below, recall again the definition of the transformed policy $tpol_{\tau,s}(\pi)$ as given in the paper:

Definition 6. Let $(\Theta, \Theta', \sigma, \lambda)$ be a transformation, let π be a policy for Θ and let $s \in S_\Theta$ be some starting state. The *transformed policy* $tpol_{\tau,s}(\pi)$ *of* π *for s is defined by*

$$
tpol_{\tau,s}(\pi)(p')(\mathfrak{T}') := \frac{\sum\limits_{p \in tpath_{\tau}^{-1}(p')} \Pr_s^{\pi}[Cyl(p)] \cdot \sum\limits_{\mathfrak{T} \in tr_{\tau}^{-1}(\mathfrak{T}')} \pi(p)(\mathfrak{T})}{\sum\limits_{p \in tpath_{\tau}^{-1}(p')} \Pr_s^{\pi}[Cyl(p)]}
$$

 $if Pr_s^{\pi}[\bigcup_{p \in \text{tpath}_{\tau}^{-1}(p')} Cyl(p)] > 0$, and $\text{tpol}_{\tau,s}(\pi)(p')(\mathfrak{T}') := 0$ otherwise.

In the paper, the following theorem was stated without being formally shown. We will prove it in the following.

Theorem 2. Let $\tau = \langle \Theta, \Theta', \sigma, \lambda \rangle \in \mathbf{CONS_{L+T}}$ and let $s \in S_{\Theta}$. For all policies π with $Reach_{\Theta,\pi}^{\rightarrow}(s) \subseteq \text{dom}(\sigma)$ and every *set of target states* $T \subseteq S_{\Theta}$ *:*

- *a*) $Reach_{\Theta, \text{tpol}_{\tau, s}(\pi)}^{\rightarrow} (\sigma(s)) = \sigma(Reach_{\Theta, \pi}^{\rightarrow}(s))$ *and*
- *b)* If $\pi \in Sols_{\Theta}(s,T)$, then $tpol_{\pi(s)}(\pi) \in Sols_{\Theta'}(\sigma(s), \sigma(T))$.

To show this theorem, we first start with two lemmata. In the following, let $Prefs_{\pi}(s) := \{p \mid Pr_{s}^{\pi}[Cyl(p)] > 0\}$ be the set of execution prefixes that can possibly be generated by a policy π with starting state s. Loosely speaking, the first lemma states that under the assumption CONS_L and CONS_T, as well as the assumption that every reachable state of the policy π with starting state s is kept by the transformation ($Reach_{\Theta,\pi}^{\rightarrow}(s) \subseteq dom(\sigma)$), every intermediate path p that can potentially be generated by π can be mapped to a transformed path $tpath_{\tau}(p)$ that exists within the transformed transition system Θ' . Additionally, if the original path reached a set of target states T , then the transformed path reaches the corresponding set of target states $\sigma(T)$.

Lemma 1. Let $\tau = \langle \Theta, \Theta', \sigma, \lambda \rangle$ be a transformation, let π be a policy, let $s \in S_{\Theta}$ be a starting state and let $p \in S_{\Theta}$ $FPaths(\Theta)$ *.*

a) If $\tau \in \text{CONS}_{L+T}$, $Reach_{\Theta,\pi}^{\rightarrow}(s) \subseteq \text{dom}(\sigma)$ *and* $p \in \text{Prefs}_{\pi}(s)$, *then* $p \in \text{dom}(\text{tpath}_{\tau})$ *and* $\text{tpath}_{\tau}(p) \in \text{FPaths}(\Theta')$. *b)* Let $T \subseteq S_{\Theta}$ be a set of target states. If the assumptions of Lemma 1a) hold and additionally $p \in F \in \mathcal{F}$ in $s \mapsto \Theta(T)$, then $tpath_{\tau}(FPaths(\Theta')) \in Finish_{\Theta'}(T').$

Proof. Let $p = s_0 \mathfrak{T}_0 \dots s_n$ in the following.

We consider Lemma 1a) first. First of all, we have $s_0, \ldots, s_n \in Reach_{\Theta, \pi}^{\rightarrow}(s)$ and also $supp(\mathfrak{T}_i) \subseteq Reach_{\Theta, \pi}^{\rightarrow}(s)$ for $0 \leq i < n$. Since $Reach_{\Theta,\pi}^{\rightarrow}(s) \subseteq dom(\sigma)$ by assumption and $\tau \in CONS_{L}$, we conclude that $s_0, \ldots, s_n \in dom(\sigma)$ and $\mathfrak{T}_0,\ldots,\mathfrak{T}_{n-1}\in dom(ttr_{\tau})$. In particular, p is transformable, i.e., $p\in dom(tpath_{\tau})$. Moreover, because of $\tau \in \mathbf{CONF}_{\tau}$. we also have $tr_{\tau}(\mathfrak{T}_0), \ldots, tr_{\tau}(\mathfrak{T}_{n-1}) \in T_{\Theta'}$ and therefore $tpath_{\tau}(p) \in FPaths(\Theta').$

For Lemma 1b), we additionally have $p \in Finish_{\Theta}(T)$ so we have $s_n \in T$. As noted above, $s_n \in dom(\sigma)$, so we conclude $\sigma(s_n) \in \sigma(T)$ and $p \in Finish_{\Theta'}(\sigma(T))$ in particular. \Box

Next, we prove that, under the same assumptions as stated earlier, there is a nice relationship between the probability measures of the original policy with starting state s and the transformed policy with starting state $\sigma(s)$. Namely, the probability that the transformed policy generates an intermediate transformed path p' is equal to the probability that π generates *some* corresponding intermediate concrete path $p \in \text{tpath}_\tau^{-1}(p')$. The same also holds for the final path generated upon termination.

Lemma 2. Let $\tau = \langle \Theta, \Theta', \sigma, \lambda \rangle$ be a transformation, let π be a policy and let $s \in S_\Theta$ be a starting state. Moreover, let $p' \in FPaths(\Theta')$ *be a path of* Θ' . If $\tau \in \mathbf{CONS_{L+T}}$ *and* $Reach_{\Theta,\pi}^{\rightarrow}(s) \subseteq dom(\sigma)$ *, then:*

$$
\Pr_{\sigma(s)}^{tpol_{\tau,s}(\pi)}[Cyl(p')] = \sum_{p \in tpath_{\tau}^{-1}(p')} \Pr_s^{\pi}[Cyl(p)] \tag{1}
$$

$$
\Pr^{tpol_{\tau,s}(\pi)}_{\sigma(s)}[p'] = \Pr^{\pi}_s[tpath^{-1}_{\tau}(p')]
$$
\n(2)

Proof. Let $p' = s'_0 \mathfrak{T}'_0 \dots s'_n$ in the following.

Proof of Equation (1) First, we show Equation (1). By definition of the probability measure, we have

$$
\Pr^{tpol_{\tau,s}(\pi)}_{\sigma(s)}[Cyl(p')] = [s'_0 = s'] \cdot \prod_{i=0}^{n-1} tpol_{\tau,s}(\pi)(s'_0 \mathfrak{T}'_0 \dots s'_i)(\mathfrak{T}'_i) \cdot \delta_{\mathfrak{T}'_i}(s'_{i+1}).
$$

If $\sum_{p \in \text{tpath}_{\tau}^{-1}(s'_0 \mathfrak{T}'_0 \dots s'_i)} \Pr^{\pi}_{s}[Cyl(p)] = 0$ for some prefix $s'_0 \mathfrak{T}'_0 \dots s'_i$ of p', then for the right hand side of Equation (1) we have $\sum_{p \in \text{tpath}_\tau^{-1}(p')} \Pr^{\pi}_s[Cyl(p)] \leq \sum_{p \in \text{tpath}_\tau^{-1}(s_0' \mathfrak{T}'_0 \dots s_i')} \Pr^{\pi}_s[Cyl(p)] = 0$ and the right hand side must be zero. The equation above has a factor $tpol_{\tau,s}(\pi)(s_0'\mathfrak{T}_0'\dots s_i')=0$ in this case by definition of $tpol_{s,\pi}(\tau)$, thus the left hand side also evaluates to zero. All in all, both sides are zero under this assumption and the claim is shown.

Now assume $\sum_{p \in \text{tpath}_\tau^{-1}(s_0' \mathfrak{T}_0' \ldots s_i')} \Pr_s^{\pi}[Cyl(p)] > 0$. We apply the definition of $\text{tpol}_{\tau,s}(\pi)$ and obtain:

$$
\Pr^{tpol_{\tau,s}(\pi)}_{\sigma(s)}[Cyl(p')] = [s'_0 = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum\limits_{p \in tpath_{\tau}^{-1}(s'_0 \mathfrak{T}'_0...s'_i)} \Pr^{\pi}_s[Cyl(p)] \cdot \sum\limits_{\mathfrak{T} \in tr_{\tau}^{-1}(\mathfrak{T}'_i)} \pi(p)(\mathfrak{T}) \cdot \delta_{\mathfrak{T}'_i}(s'_{i+1})}{\sum\limits_{p \in tpath_{\tau}^{-1}(s'_0 \mathfrak{T}'_0...s'_i)} \Pr^{\pi}_s[Cyl(p)]}
$$

In the next step, we exploit that $\mathfrak{T} \in \text{tr}^{-1}_\tau(\mathfrak{T}'_i)$ in the sum, from which it follows that $\delta_{\mathfrak{T}'_i} = \text{lift}[\sigma](\delta_{\mathfrak{T}})$.

$$
\ldots = [s'_0 = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum\limits_{p \in tpath_{\tau}^{-1}(s'_0 \mathfrak{T}'_0 \ldots s'_i)} \Pr^{\pi}_s[Cyl(p)] \cdot \sum\limits_{\mathfrak{T} \in tr_{\tau}^{-1}(\mathfrak{T}'_i)} \pi(p)(\mathfrak{T}) \cdot \mathit{lift}[\sigma](\delta_{\mathfrak{T}})(s'_{i+1})}{\sum\limits_{p \in tpath_{\tau}^{-1}(s'_0 \mathfrak{T}'_0 \ldots s'_i)} \Pr^{\pi}_s[Cyl(p)]}
$$

We now apply the definition of $lift[\sigma]$, leading to:

$$
\ldots = [s'_0 = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum\limits_{p \in tpath_{\tau}^{-1}(s'_0 \mathfrak{T}'_0 \ldots s'_i)} \Pr_s^{\pi}[Cyl(p)] \cdot \sum\limits_{\mathfrak{T} \in ttr_{\tau}^{-1}(\mathfrak{T}'_i)} \pi(p)(\mathfrak{T}) \cdot \sum\limits_{s \in \sigma^{-1}(s'_{i+1})} \delta_{\mathfrak{T}}(s)}
$$
\n
$$
\ldots = [s'_0 = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum\limits_{(p, \mathfrak{T}, s) \in tpath_{\tau}^{-1}(s'_0 \mathfrak{T}'_0 \ldots s'_i)} \sum\limits_{k \in twh_{\tau}^{-1}(\mathfrak{T}'_i) \times \sigma^{-1}(s'_{i+1})} \Pr_s^{\pi}[Cyl(p)] \cdot \pi(p)(\mathfrak{T}) \cdot \delta_{\mathfrak{T}}(s)}
$$
\n
$$
\ldots = [s'_0 = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum\limits_{(p, \mathfrak{T}, s) \in tpath_{\tau}^{-1}(s'_0 \mathfrak{T}'_0 \ldots s'_i) \times tr_{\tau}^{-1}(\mathfrak{T}'_i) \times \sigma^{-1}(s'_{i+1})}{\sum\limits_{p \in tpath_{\tau}^{-1}(s'_0 \mathfrak{T}'_0 \ldots s'_i)} \Pr_s^{\pi}[Cyl(p)]}
$$

Finally, we make use of the fact $\Pr_s^{\pi}[Cyl(p)] \cdot \pi(p)(\mathfrak{T}) \cdot \delta_{\mathfrak{T}}(s) = \Pr_s^{\pi}[Cyl(p\mathfrak{T}s)]$ and simplify:

$$
\ldots = [s'_0 = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum_{\langle p, \mathfrak{T}, s \rangle \in \mathit{tpath}_\tau^{-1}(s'_0 \mathfrak{T}'_0 \ldots s'_i) \times \mathit{thr}_\tau^{-1}(\mathfrak{T}'_i) \times \sigma^{-1}(s'_{i+1})} \Pr^{\pi}_{s}[Cyl(p\mathfrak{T}s)]}{\sum_{p \in \mathit{tpath}_\tau^{-1}(s'_0 \mathfrak{T}'_0 \ldots s'_i)} \Pr^{\pi}_{s}[Cyl(p)]}
$$

$$
\ldots = [s'_0 = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum_{p \in \mathit{tpath}_\tau^{-1}(s'_0 \mathfrak{T}'_0 \ldots s'_i \mathfrak{T}'_i s_{i+1})'} \Pr^{\pi}_{s}[Cyl(p)]}{\sum_{p \in \mathit{tpath}_\tau^{-1}(s'_0 \mathfrak{T}'_0 \ldots s'_i)} \Pr^{\pi}_{s}[Cyl(p)]}
$$

This is a telescoping product, in which every numerator cancels with the following denominator, and only the final numerator for $i = n - 1$ remains. Note in particular that $[s'_0 = s'] = \Pr_s^{\pi}[\bigcup_{s_0 \in \sigma^{-1}(s'_0)} Cyl(s_0)]$. Therefore:

$$
\ldots = \sum_{p \in \mathit{tpath}_\tau^{-1}(p')} \Pr^{\pi}_s[\mathit{Cyl}(p)]
$$

This concludes the proof of Equation (1).

Proof of Equation (2) To prove Equation (2), we first express the event $\{p'\}$ as the event of all executions with prefix p' , without those which continue along some transition to some state. Then we simplify the equations using our assumptions and Equation (1).

$$
\Pr_{\sigma(s)}^{tpol_{\tau,s}(\pi)}[p'] = \Pr_{\sigma(s)}^{tpol_{\tau,s}(\pi)} [Cyl(p') \setminus (\bigcup_{\tau' \in T_{\Theta'}} \bigcup_{t' \in S_{\Theta'}} Cyl(p'\mathfrak{T}'t'))]
$$
\n
$$
= \Pr_{\sigma(s)}^{tpol_{\tau,s}(\pi)} [Cyl(p')] - \sum_{\tau' \in T_{\Theta'}} \sum_{t' \in S_{\Theta'}} \Pr_{\sigma(s)}^{tpol_{\tau,s}(\pi)} [Cyl(p'\mathfrak{T}'t')]
$$
\n
$$
= \sum_{p \in tpath_{\tau}^{-1}(p')} \Pr_{s}^{\pi} [Cyl(p)] - \sum_{\tau' \in T_{\Theta'}} \sum_{t' \in S_{\Theta'}} \sum_{p \in tpath_{\tau}^{-1}(p')} \Pr_{s}^{\pi} [Cyl(p\mathfrak{T}t)] \qquad \text{(by Equation (1))}
$$
\n
$$
= \sum_{p \in tpath_{\tau}^{-1}(p')} \Pr_{s}^{\pi} [Cyl(p)] - \sum_{\tau \in tr_{\tau}^{-1}(T_{\Theta'})} \sum_{t \in \sigma^{-1}(t')} \Pr_{s}^{\pi} [Cyl(p\mathfrak{T}t)] \qquad \text{(by Equation (1))}
$$
\n
$$
= \sum_{p \in tpath_{\tau}^{-1}(p')} \Pr_{s}^{\pi} [Cyl(p)] - \sum_{\tau \in T_{\Theta}} \sum_{t \in S_{\Theta}} \Pr_{s}^{\pi} [Cyl(p\mathfrak{T}t)] \qquad \text{(by Lemma 1a)}
$$
\n
$$
= \sum_{p \in tpath_{\tau}^{-1}(p')} \Pr_{s}^{\pi} [Cyl(p)] - \Pr_{s}^{\pi} \Bigcup_{t \in \sigma^{-1}(S_{\Theta})} Cyl(p\mathfrak{T}t)] \qquad \text{(by Lemma 1a)}
$$
\n
$$
= \sum_{p \in tpath_{\tau}^{-1}(p')} \Pr_{s}^{\pi} [Cyl(p) \setminus (\bigcup_{\tau \in T_{\Theta}} \bigcup_{t \in S_{\Theta}} Cyl(p\mathfrak{T}t)] \qquad \text{(by Lemma 1a)}
$$
\n
$$
= \Pr_{s}^{\pi} [tpath_{\tau}^{-1}(p')}
$$
\n
$$
= \Pr_{s}^{\pi} [ptath_{\tau}^{-1}(p')]
$$

This shows the claim.

We now use both of these lemmata to prove the initial claim.

Theorem 2. Let $\tau = \langle \Theta, \Theta', \sigma, \lambda \rangle \in \mathbf{CONS_{L+T}}$ and let $s \in S_{\Theta}$. For all policies π with $Reach_{\Theta,\pi}^{\rightarrow}(s) \subseteq \text{dom}(\sigma)$ and every *set of target states* $T \subseteq S_{\Theta}$ *:*

- *a*) $Reach_{\Theta, \text{tpol}_{\tau, s}(\pi)}^{\rightarrow} (\sigma(s)) = \sigma(Reach_{\Theta, \pi}^{\rightarrow}(s))$ *and*
- *b)* If $\pi \in Sols_{\Theta}(s, T)$ *, then* $tpol_{\tau, s}(\pi) \in Sols_{\Theta'}(\sigma(s), \sigma(T))$ *.*

Proof. The inclusion from left to right holds without any assumptions, since $\Pr_{\sigma(s)}^{tpol_{\tau,s}(\pi)}[Cyl(p')] > 0$ for some path $p' \in FPaths(\Theta')$ implies that there is a concrete path $p \in tpath_{\tau}^{-1}(p')$ with $\Pr_{s}^{\pi}[Cyl(p)] > 0$ by Equation (1), where we have $last(p) \in dom(\sigma)$ and $last(p') = \sigma (last(p))$ in particular.

For the other direction, acknowledge that for every path $p \in \text{Prefs}_{\pi}(s)$, we have $p \in \text{dom}(\text{tpath}_{\tau})$ and $\text{tpath}_{\tau}(p) \in$ $FPaths(\Theta')$ by Lemma 1a) in the context of our assumptions. Therefore,

$$
0 < \Pr_s^{\pi}[Cyl(p)] \le \sum_{p \in \tpath_\tau^{-1}(\tpath_\tau(p))} \Pr_s^{\pi}[Cyl(p)] = \Pr_{\sigma(s)}^{\text{tpol}_{\tau,s}(\pi)}[Cyl(\text{tpath}_\tau(p))]
$$

where the last equality follows from Equation (1) and $\sigma (last(p)) = last(tpath_{\tau}(p))$ in particular.

For Theorem 2b), we use Equation (2), followed by Lemma 1b). In particular, from Lemma 1b) we obtain the fact that $tpath_{\tau}^{-1}(Finish_{\Theta'}(\sigma(T))) \supseteq Finish_{\Theta}(T) \cap Prefs_{\pi}(s)$ in the context of our assumptions. Hence:

$$
\mathrm{Pr}_{\sigma(s)}^{\mathit{tpol}_{\tau,s}(\pi)}[\mathit{Finish}_{\Theta'}(\sigma(T))] = \mathrm{Pr}_{s}^{\pi}[\mathit{tpath}_{\tau}^{-1}(\mathit{Finish}_{\Theta'}(\sigma(T)))] \geq \mathrm{Pr}_{s}^{\pi}[\mathit{Finish}_{\Theta}(T) \cap \mathit{Prefs}_{\pi}(s)] = 1.
$$

Thus, $tpol_{s,\pi}(\tau) \in \text{Sols}_{\Theta'}(\sigma(s), \sigma(T)).$

 \Box