Merge-and-Shrink for SSPs with Prune Transformations — Proof Appendix

Thorsten Klößner^a, Álvaro Torralba^b, Marcel Steinmetz^c and Silvan Sievers^d

^aSaarland University, Germany ^bAalborg University, Denmark ^cLAAS-CNRS, Université de Toulouse, France ^dUniversity of Basel, Switzerland

Abstract

This proof appendix contains the sketched or omitted proofs of the ECAI 2024 paper "Merge-and-Shrink for SSPs with Pruning Transformations" by Klößner et al. The notation follows the original paper.

For the proofs below, recall again the definition of the transformed policy $tpol_{\tau,s}(\pi)$ as given in the paper:

Definition 6. Let $\langle \Theta, \Theta', \sigma, \lambda \rangle$ be a transformation, let π be a policy for Θ and let $s \in S_{\Theta}$ be some starting state. The transformed policy $tpol_{\tau,s}(\pi)$ of π for s is defined by

$$tpol_{\tau,s}(\pi)(p')(\mathfrak{T}') := \frac{\sum\limits_{p \in tpath_{\tau}^{-1}(p')} \Pr_s^{\tau}[Cyl(p)] \cdot \sum\limits_{\mathfrak{T} \in ttr_{\tau}^{-1}(\mathfrak{T}')} \pi(p)(\mathfrak{T})}{\sum\limits_{p \in tpath_{\tau}^{-1}(p')} \Pr_s^{\tau}[Cyl(p)]}$$

if $\operatorname{Pr}_{s}^{\pi}[\bigcup_{p \in tpath_{\tau}^{-1}(p')} Cyl(p)] > 0$, and $tpol_{\tau,s}(\pi)(p')(\mathfrak{T}') := 0$ otherwise.

In the paper, the following theorem was stated without being formally shown. We will prove it in the following.

Theorem 2. Let $\tau = \langle \Theta, \Theta', \sigma, \lambda \rangle \in \text{CONS}_{L+T}$ and let $s \in S_{\Theta}$. For all policies π with $\text{Reach}_{\Theta,\pi}^{\rightarrow}(s) \subseteq \text{dom}(\sigma)$ and every set of target states $T \subseteq S_{\Theta}$:

- a) $\operatorname{Reach}_{\Theta,\operatorname{tpol}_{\tau,s}(\pi)}^{\rightarrow}(\sigma(s)) = \sigma(\operatorname{Reach}_{\Theta,\pi}^{\rightarrow}(s))$ and
- b) If $\pi \in Sols_{\Theta}(s, T)$, then $tpol_{\tau,s}(\pi) \in Sols_{\Theta'}(\sigma(s), \sigma(T))$.

To show this theorem, we first start with two lemmata. In the following, let $Prefs_{\pi}(s) := \{p \mid \Pr_{s}^{\pi}[Cyl(p)] > 0\}$ be the set of execution prefixes that can possibly be generated by a policy π with starting state s. Loosely speaking, the first lemma states that under the assumption **CONS**_L and **CONS**_T, as well as the assumption that every reachable state of the policy π with starting state s is kept by the transformation ($Reach_{\Theta,\pi}^{\rightarrow}(s) \subseteq dom(\sigma)$), every intermediate path p that can potentially be generated by π can be mapped to a transformed path $tpath_{\pi}(p)$ that exists within the transformed transition system Θ' . Additionally, if the original path reached a set of target states T, then the transformed path reaches the corresponding set of target states $\sigma(T)$.

Lemma 1. Let $\tau = \langle \Theta, \Theta', \sigma, \lambda \rangle$ be a transformation, let π be a policy, let $s \in S_{\Theta}$ be a starting state and let $p \in FPaths(\Theta)$.

a) If τ ∈ CONS_{L+T}, Reach_{Θ,π}^(π)(s) ⊆ dom(σ) and p ∈ Prefs_π(s), then p ∈ dom(tpath_τ) and tpath_τ(p) ∈ FPaths(Θ').
b) Let T ⊆ S_Θ be a set of target states. If the assumptions of Lemma 1a) hold and additionally p ∈ Finish_Θ(T), then tpath_τ(FPaths(Θ')) ∈ Finish_{Θ'}(T').

Proof. Let $p = s_0 \mathfrak{T}_0 \dots s_n$ in the following.

We consider Lemma 1a) first. First of all, we have $s_0, \ldots, s_n \in \operatorname{Reach}_{\Theta,\pi}^{\rightarrow}(s)$ and also $\operatorname{supp}(\mathfrak{T}_i) \subseteq \operatorname{Reach}_{\Theta,\pi}^{\rightarrow}(s)$ for $0 \leq i < n$. Since $\operatorname{Reach}_{\Theta,\pi}^{\rightarrow}(s) \subseteq \operatorname{dom}(\sigma)$ by assumption and $\tau \in \operatorname{CONS}_{\mathbf{L}}$, we conclude that $s_0, \ldots, s_n \in \operatorname{dom}(\sigma)$ and $\mathfrak{T}_0, \ldots, \mathfrak{T}_{n-1} \in \operatorname{dom}(\operatorname{ttr}_{\tau})$. In particular, p is transformable, i.e., $p \in \operatorname{dom}(\operatorname{tpath}_{\tau})$. Moreover, because of $\tau \in \operatorname{CONS}_{\mathbf{T}}$, we also have $\operatorname{ttr}_{\tau}(\mathfrak{T}_0), \ldots, \operatorname{ttr}_{\tau}(\mathfrak{T}_{n-1}) \in T_{\Theta'}$ and therefore $\operatorname{tpath}_{\tau}(p) \in \operatorname{FPaths}(\Theta')$.

For Lemma 1b), we additionally have $p \in Finish_{\Theta}(T)$ so we have $s_n \in T$. As noted above, $s_n \in dom(\sigma)$, so we conclude $\sigma(s_n) \in \sigma(T)$ and $p \in Finish_{\Theta'}(\sigma(T))$ in particular.

Next, we prove that, under the same assumptions as stated earlier, there is a nice relationship between the probability measures of the original policy with starting state s and the transformed policy with starting state $\sigma(s)$. Namely, the probability that the transformed policy generates an intermediate transformed path p' is equal to the probability that π generates some corresponding intermediate concrete path $p \in tpath_{\tau}^{-1}(p')$. The same also holds for the final path generated upon termination.

Lemma 2. Let $\tau = \langle \Theta, \Theta', \sigma, \lambda \rangle$ be a transformation, let π be a policy and let $s \in S_{\Theta}$ be a starting state. Moreover, let $p' \in FPaths(\Theta')$ be a path of Θ' . If $\tau \in \mathbf{CONS_{L+T}}$ and $Reach_{\Theta,\pi}^{\rightarrow}(s) \subseteq dom(\sigma)$, then:

$$\Pr_{\sigma(s)}^{tpol_{\tau,s}(\pi)}[Cyl(p')] = \sum_{p \in tpath_{\tau}^{-1}(p')} \Pr_s^{\pi}[Cyl(p)]$$
(1)

$$\operatorname{Pr}_{\sigma(s)}^{tpol_{\tau,s}(\pi)}[p'] = \operatorname{Pr}_{s}^{\pi} \left[tpath_{\tau}^{-1}(p') \right]$$
⁽²⁾

Proof. Let $p' = s'_0 \mathfrak{T}'_0 \dots s'_n$ in the following.

Proof of Equation (1) First, we show Equation (1). By definition of the probability measure, we have

$$\Pr_{\sigma(s)}^{tpol_{\tau,s}(\pi)}[Cyl(p')] = [s'_0 = s'] \cdot \prod_{i=0}^{n-1} tpol_{\tau,s}(\pi)(s'_0\mathfrak{T}'_0 \dots s'_i)(\mathfrak{T}'_i) \cdot \delta_{\mathfrak{T}'_i}(s'_{i+1}).$$

If $\sum_{p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0}...s'_{i})} \Pr_{s}^{\pi}[Cyl(p)] = 0$ for some prefix $s'_{0}\mathfrak{T}'_{0}...s'_{i}$ of p', then for the right hand side of Equation (1) we have $\sum_{p \in tpath_{\tau}^{-1}(p')} \Pr_{s}^{\pi}[Cyl(p)] \leq \sum_{p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0}...s'_{i})} \Pr_{s}^{\pi}[Cyl(p)] = 0$ and the right hand side must be zero. The equation above has a factor $tpol_{\tau,s}(\pi)(s'_{0}\mathfrak{T}'_{0}...s'_{i}) = 0$ in this case by definition of $tpol_{s,\pi}(\tau)$, thus the left hand side also evaluates to zero. All in all, both sides are zero under this assumption and the claim is shown.

Now assume $\sum_{p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0}...s'_{s})} \Pr_{s}^{\pi}[Cyl(p)] > 0$. We apply the definition of $tpol_{\tau,s}(\pi)$ and obtain:

$$\Pr_{\sigma(s)}^{tpol_{\tau,s}(\pi)}[Cyl(p')] = [s'_{0} = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum_{p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0}\dots s'_{i})} \Pr_{s}^{\pi}[Cyl(p)] \cdot \sum_{\mathfrak{T} \in ttr_{\tau}^{-1}(\mathfrak{T}'_{i})} \pi(p)(\mathfrak{T}) \cdot \delta_{\mathfrak{T}'_{i}}(s'_{i+1})}{\sum_{p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0}\dots s'_{i})} \Pr_{s}^{\pi}[Cyl(p)]}$$

In the next step, we exploit that $\mathfrak{T} \in ttr_{\tau}^{-1}(\mathfrak{T}'_i)$ in the sum, from which it follows that $\delta_{\mathfrak{T}'_i} = lift[\sigma](\delta_{\mathfrak{T}})$.

$$\dots = [s'_0 = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum\limits_{p \in tpath_{\tau}^{-1}(s'_0\mathfrak{T}'_0 \dots s'_i)} \Pr_s^{\pi}[Cyl(p)] \cdot \sum\limits_{\mathfrak{T} \in ttr_{\tau}^{-1}(\mathfrak{T}'_i)} \pi(p)(\mathfrak{T}) \cdot lift[\sigma](\delta_{\mathfrak{T}})(s'_{i+1})}{\sum\limits_{p \in tpath_{\tau}^{-1}(s'_0\mathfrak{T}'_0 \dots s'_i)} \Pr_s^{\pi}[Cyl(p)]}$$

We now apply the definition of $lift[\sigma]$, leading to:

$$\dots = [s'_{0} = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum_{\substack{p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0}\dots s'_{i}) \\ p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0}\dots s'_{i})}}{\sum_{\substack{p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0}\dots s'_{i}) \\ p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0}\dots s'_{i})}} \Pr_{s}^{\pi}[Cyl(p)] \cdot \pi(p)(\mathfrak{T}) \cdot \delta_{\mathfrak{T}}(s)}$$
$$\dots = [s'_{0} = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum_{\substack{p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0}\dots s'_{i}) \\ p \in tpath_{\tau}^{-1}(\mathfrak{T}'_{0}\mathfrak{T}'_{0}\dots s'_{i})}}{\sum_{\substack{p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0}\dots s'_{i}) \\ p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0}\dots s'_{i})}}} \Pr_{s}^{\pi}[Cyl(p)]$$

Finally, we make use of the fact $\Pr_s^{\pi}[Cyl(p)] \cdot \pi(p)(\mathfrak{T}) \cdot \delta_{\mathfrak{T}}(s) = \Pr_s^{\pi}[Cyl(p\mathfrak{T}s)]$ and simplify:

$$\dots = [s'_{0} = s'] \cdot \prod_{i=0}^{n-1} \frac{\langle p, \mathfrak{T}, s \rangle \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0} \dots s'_{i}) \times ttr_{\tau}^{-1}(\mathfrak{T}'_{i}) \times \sigma^{-1}(s'_{i+1})}{\sum_{p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0} \dots s'_{i})} \Pr_{s}^{\pi}[Cyl(p)]}$$
$$\dots = [s'_{0} = s'] \cdot \prod_{i=0}^{n-1} \frac{\sum_{p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0} \dots s'_{i}\mathfrak{T}'_{s}i_{i+1})'}{\sum_{p \in tpath_{\tau}^{-1}(s'_{0}\mathfrak{T}'_{0} \dots s'_{i})} \Pr_{s}^{\pi}[Cyl(p)]}$$

This is a telescoping product, in which every numerator cancels with the following denominator, and only the final numerator for i = n - 1 remains. Note in particular that $[s'_0 = s'] = \Pr_s^{\pi}[\bigcup_{s_0 \in \sigma^{-1}(s'_0)} Cyl(s_0)]$. Therefore:

$$\ldots = \sum_{p \in tpath_{\tau}^{-1}(p')} \Pr_{s}^{\pi} [Cyl(p)]$$

This concludes the proof of Equation (1).

Proof of Equation (2) To prove Equation (2), we first express the event $\{p'\}$ as the event of all executions with prefix p', without those which continue along some transition to some state. Then we simplify the equations using our assumptions and Equation (1).

$$\begin{aligned} \operatorname{Pr}_{\sigma(s)}^{\operatorname{tpol}_{\tau,s}(\pi)}[p'] &= \operatorname{Pr}_{\sigma(s)}^{\operatorname{tpol}_{\tau,s}(\pi)} \left[Cyl(p') \setminus \left(\bigcup_{\mathfrak{T}' \in T_{\Theta'}} \bigcup_{t' \in S_{\Theta'}} Cyl(p'\mathfrak{T}'t') \right) \right] \\ &= \operatorname{Pr}_{\sigma(s)}^{\operatorname{tpol}_{\tau,s}(\pi)} \left[Cyl(p') \right] - \sum_{\mathfrak{T}' \in T_{\Theta'}} \sum_{t' \in S_{\Theta'}} \operatorname{Pr}_{\sigma(s)}^{\operatorname{tpol}_{\tau,s}(\pi)} \left[Cyl(p'\mathfrak{T}'t') \right] \\ &= \sum_{p \in \operatorname{tpath}_{\tau}^{-1}(p')} \operatorname{Pr}_{s}^{\pi} \left[Cyl(p) \right] - \sum_{\mathfrak{T}' \in T_{\Theta'}} \sum_{t' \in S_{\Theta'}} \sum_{p \in \operatorname{tpath}_{\tau}^{-1}(p')} \operatorname{Pr}_{s}^{\pi} \left[Cyl(p\mathfrak{T}t) \right] \\ &= \sum_{p \in \operatorname{tpath}_{\tau}^{-1}(p')} \left(\operatorname{Pr}_{s}^{\pi} \left[Cyl(p) \right] - \sum_{\mathfrak{T} \in \operatorname{tr}_{\tau}^{-1}(T_{\Theta'})} \sum_{t \in \sigma^{-1}(t')} \operatorname{Pr}_{s}^{\pi} \left[Cyl(p\mathfrak{T}t) \right] \right) \\ &= \sum_{p \in \operatorname{tpath}_{\tau}^{-1}(p')} \left(\operatorname{Pr}_{s}^{\pi} \left[Cyl(p) \right] - \sum_{\mathfrak{T} \in \mathcal{T}_{\Theta}} \sum_{t \in S_{\Theta}} \operatorname{Pr}_{s}^{\pi} \left[Cyl(p\mathfrak{T}t) \right] \right) \\ &= \sum_{p \in \operatorname{tpath}_{\tau}^{-1}(p')} \left(\operatorname{Pr}_{s}^{\pi} \left[Cyl(p) \right] - \operatorname{Pr}_{s}^{\pi} \left[\bigcup_{t \in S_{\Theta}} \operatorname{Cyl}(p\mathfrak{T}t) \right] \right) \\ &= \sum_{p \in \operatorname{tpath}_{\tau}^{-1}(p')} \left(\operatorname{Pr}_{s}^{\pi} \left[Cyl(p) \right] - \operatorname{Pr}_{s}^{\pi} \left[\bigcup_{t \in S_{\Theta}} \operatorname{Cyl}(p\mathfrak{T}t) \right] \right) \\ &= \sum_{p \in \operatorname{tpath}_{\tau}^{-1}(p')} \operatorname{Pr}_{s}^{\pi} \left[Cyl(p) \setminus \left(\bigcup_{\mathfrak{T} \in T_{\Theta}} \bigcup_{t \in S_{\Theta}} Cyl(p\mathfrak{T}t) \right) \right] \\ &= \sum_{p \in \operatorname{tpath}_{\tau}^{-1}(p')} \operatorname{Pr}_{s}^{\pi} \left[Pl_{p} \right] \\ &= \operatorname{Pr}_{s}^{\pi} \left[\operatorname{tpath}_{\tau}^{-1}(p') \right] \end{aligned}$$

This shows the claim.

We now use both of these lemmata to prove the initial claim.

Theorem 2. Let $\tau = \langle \Theta, \Theta', \sigma, \lambda \rangle \in \mathbf{CONS}_{\mathbf{L}+\mathbf{T}}$ and let $s \in S_{\Theta}$. For all policies π with $\operatorname{Reach}_{\Theta,\pi}^{\rightarrow}(s) \subseteq \operatorname{dom}(\sigma)$ and every set of target states $T \subseteq S_{\Theta}$:

a) $Reach_{\sigma,tpol_{\tau,s}(\pi)}^{\rightarrow}(\sigma(s)) = \sigma(Reach_{\sigma,\pi}^{\rightarrow}(s))$ and

b) If $\pi \in Sols_{\Theta}(s, T)$, then $tpol_{\tau,s}(\pi) \in Sols_{\Theta'}(\sigma(s), \sigma(T))$.

Proof. The inclusion from left to right holds without any assumptions, since $\Pr_{\sigma(s)}^{tpol_{\tau,s}(\pi)}[Cyl(p')] > 0$ for some path $p' \in FPaths(\Theta')$ implies that there is a concrete path $p \in tpath_{\tau}^{-1}(p')$ with $\Pr_{\sigma}^{s}[Cyl(p)] > 0$ by Equation (1), where we have $last(p) \in dom(\sigma)$ and $last(p') = \sigma(last(p))$ in particular.

For the other direction, acknowledge that for every path $p \in Prefs_{\pi}(s)$, we have $p \in dom(tpath_{\tau})$ and $tpath_{\tau}(p) \in FPaths(\Theta')$ by Lemma 1a) in the context of our assumptions. Therefore,

$$0 < \Pr_s^{\pi}[Cyl(p)] \le \sum_{p \in tpath_{\tau}^{-1}(tpath_{\tau}(p))} \Pr_s^{\pi}\left[Cyl(p)\right] = \Pr_{\sigma(s)}^{tpol_{\tau,s}(\pi)}[Cyl(tpath_{\tau}(p))]$$

where the last equality follows from Equation (1) and $\sigma(last(p)) = last(tpath_{\tau}(p))$ in particular.

For Theorem 2b), we use Equation (2), followed by Lemma 1b). In particular, from Lemma 1b) we obtain the fact that $tpath_{\tau}^{-1}(Finish_{\Theta'}(\sigma(T))) \supseteq Finish_{\Theta}(T) \cap Prefs_{\pi}(s)$ in the context of our assumptions. Hence:

$$\Pr_{\sigma(s)}^{tpol_{\tau,s}(\pi)}[Finish_{\Theta'}(\sigma(T))] = \Pr_{s}^{\pi}[tpath_{\tau}^{-1}(Finish_{\Theta'}(\sigma(T)))] \ge \Pr_{s}^{\pi}[Finish_{\Theta}(T) \cap Prefs_{\pi}(s)] = 1$$

Thus, $tpol_{s,\pi}(\tau) \in Sols_{\Theta'}(\sigma(s), \sigma(T))$.