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Abstract

In this paper we propose a new algorithm for solving general
two-player turn-taking games that performs symbolic search
utilizing binary decision diagrams (BDDs). It consists of two
stages: First, it determines all breadth-first search (BFS) lay-
ers using forward search and omitting duplicate detection,
next, the solving process operates in backward direction only
within these BFS layers thereby partitioning all BDDs ac-
cording to the layers the states reside in.
We provide experimental results for selected games and com-
pare to a previous approach. This comparison shows that in
most cases the new algorithm outperforms the existing one in
terms of runtime and used memory so that it can solve games
that could not be solved before with a general approach.

Introduction
In recent years general game playing has received an in-
creasing amount of attention, especially due to the annual
general game playing competition (Genesereth, Love, and
Pell 2005) that is held at AAAI or IJCAI since 2005. In
general game playing the agents are provided a description
of a game according to certain rules and need to play it.
In case of multi-player games the agents often play against
each other, while in case of single-player games the agent
tries to find a sequence of moves to reach a terminal state
where it can achieve the best reward possible. The authors
of the agents do not know which games will be played, so
no domain specific knowledge can be inserted.

General single-player games match classical action plan-
ning problems (Fikes and Nilsson 1971) as in both the player
(or the planner) intends to find a sequence of moves (or ac-
tions) that transforms the initial state to one of the terminal
states. While nowadays in planning action costs as well as
rewards for achieving soft goals can be combined, in gen-
eral game playing the players only get rewards for achieving
goals: in each possible terminal state the players are awarded
points ranging from 0 (worst) to 100 (best).

Problems from the non-deterministic extension of classi-
cal planning can be translated to a two-player game with
the planner being the player and the environment that con-
trols the non-determinism its opponent (Jensen, Veloso, and
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Bowling 2001; Bercher and Mattmüller 2008), while gen-
eral game playing supports any number of participants, so
that it still is a generalization of action planning.

In this paper we are interested in two-player turn-taking
games, i. e., in games where, in each state, only one player
may decide which move to take. The other one can only
perform a noop, which does not change anything about the
current game state. We also can handle games that are not
strictly alternating, so that one player might be active in sev-
eral consecutive states.

Our goal is to strongly solve the games, which means find-
ing the outcome for each player in any reachable state in
case of optimal play. Using domain dependent solvers, sev-
eral games have been solved, though often only in a weaker
sense, so that the optimal outcome is known for the initial
state and the states along the optimal paths, but not for all
states. One of the latest prominent results was by Schaeffer
et al. (2007), who were able to solve American Checkers af-
ter more than ten years of computation and proved that the
optimal outcome is a draw. Of course, due to the domain
independent scenario, we cannot expect to come up with so-
lutions for such complex games in general game playing.

In explicit representation, many general games are too
complex to fit into RAM or even on a hard disk. So, to solve
them we perform symbolic search, which utilizes binary de-
cision diagrams (BDDs) (Bryant 1986) as they decrease the
memory consumption, if a good variable ordering is found.

In this paper we will present a new approach to solve gen-
eral two-player turn-taking games using an approach that
uses the information of a breadth-first search (BFS) by op-
erating only within the layers of reachable states. For most
games storing only the current and successor layer in mem-
ory and the rest on the hard disk proves to be good for saving
memory as well as runtime compared to our previous ap-
proaches (Edelkamp and Kissmann 2008b). Thanks to the
smaller amount of used memory, we are now able to solve
some more complex instances of games that the previous ap-
proach cannot handle.

The paper is structured as follows. First, we give brief
introductions to general game playing and symbolic search.
Next, we propose our new algorithm to solve general two-
player turn-taking games. Then, we show some experimen-
tal results, and, finally, we present a short discussion, draw
conclusions and point out possible future research avenues.



(role xplayer) (role oplayer) ; names of the players

(init (cell 1 1 b)) ... (init (cell 3 3 b)) ; all cells empty
(init (control xplayer)) ; xplayer is active

(<= (next (cell ?m ?n x)) (does xplayer (mark ?m ?n))) ; effects of marking a cell
(<= (next (cell ?m ?n o)) (does oplayer (mark ?m ?n)))
(<= (next (cell ?m ?n ?w)) ; part of the frame (marked cells remain marked)

(true (cell ?m ?n ?w)) (distinct ?w b))
(<= (next (cell ?m ?n b)) ; part of the frame (untouched empty cells remain empty)

(does ?w (mark ?j ?k)) (true (cell ?m ?n b))
(or (distinct ?m ?j) (distinct ?n ?k)))

(<= (next (control xplayer)) (true (control oplayer))) ; change of the active player
(<= (next (control oplayer)) (true (control xplayer)))

(<= (legal ?w (mark ?x ?y)) ; possible move (empty cell can be marked)
(true (cell ?x ?y b)) (true (control ?w)))

(<= (legal xplayer noop) (true (control oplayer))) ; if opponent active, do nothing
(<= (legal oplayer noop) (true (control xplayer)))

; axioms (utility functions) for reducing the complexity of the description
(<= (row ?m ?x)

(true (cell ?m 1 ?x)) (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x)

(true (cell 1 ?n ?x)) (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x)

(true (cell 1 1 ?x)) (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x)

(true (cell 1 3 ?x)) (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x)) (<= (line ?x) (column ?m ?x)) (<= (line ?x) (diagonal ?x))

(<= (goal xplayer 100) (line x)) ; rewards for xplayer (oplayer analogously )
(<= (goal xplayer 50) (not (line x)) (not (line o)))
(<= (goal xplayer 0) (line o))

; terminal states
(<= terminal (line x)) (<= terminal (line o)) (<= terminal (not (true(cell ?m ?n b))))

Figure 1: GDL description of the game Tic-Tac-Toe.

General Game Playing
General game playing is concerned with playing games that
need to be finite, discrete, and deterministic and must con-
tain full information for all the players. It is possible to
model single- as well as multi-player games, which by de-
fault are games with simultaneous moves by all players.
They can be made turn-taking by adding a predicate that de-
notes whose turn it is to choose the next move and by allow-
ing the other players to perform only noops, i. e., moves that
do not change the game’s current state. To describe these
games, the logic-based game description language GDL
(Love, Hinrichs, and Genesereth 2006) is used.

A general game is a tuple G = 〈S,P,M, I, T ,R〉 with
S being the set of reachable states, P the set of participating
players,M⊆ S×S the set of possible moves for each state,
I ∈ S the initial state, T ⊆ S the set of terminal states, and
R : T ×P 7→ {0, . . . , 100} the reward for each player in all
terminal states. General games are defined implicitly, i. e.,
only the initial state I is provided and we can calculate the
set of reachable states S using the applicable moves. For
turn-taking games there are subsets Si ⊆ S of states where
player i ∈ {1, . . . , |P|} is active as well as subsets Mi ⊆

M denoting those moves, where player i ∈ {1, . . . , |P|} is
the only one to choose a move other than a noop.

Figure 1 shows the description of the game Tic-Tac-Toe.
The players are denoted by the role keyword; the initial
state I by the init keyword, the terminal states T by the
terminal keyword and the rewards R by the goal key-
word. The moves M are split into two parts, the legal
formulas describing the preconditions necessary for a player
to perform the corresponding moves, and the next formu-
las, which determine the successor state.

Playing a general game always starts at I. All players
choose one applicable move in the current state. These
moves are combined and using the rules for this combined
move, a successor state is generated. This goes on, until a
terminal state is reached, where the game ends and the play-
ers receive their rewards according toR .

This paper does not address playing general games but
solving them strongly. With this information, we can de-
sign a perfect player, or we can check played games for bad
moves, which might give insight to weaknesses of certain
agents. For some games we are not able to find a solu-
tion in reasonable time. However, we might use what was
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Figure 2: BDDs for the three utility functions of Tic-Tac-Toe used in the terminal states. Each node corresponds to a Boolean
variable (denoted on the left); solid edges mean that it is true, dashed edges mean it is false. The bottom-most node represents
the 1-sink, i. e., all paths leading from the top-most node to this sink represent satisfied assignments. The 0-sink has been
omitted for better readability.

calculated so far as an endgame database for a player, e. g.,
one that utilizes UCT search (Kocsis and Szepesvári 2006),
which is used in many successful players (e. g., in CADI-
APLAYER (Finnsson and Björnsson 2008), the world cham-
pion of 2007 and 2008, as well as in Méhat’s ARY, the cur-
rent world champion).

Unfortunately, except for our precursing work, we are not
aware of any other research in this area. Thus, in this pa-
per we will compare to the better of our previous approaches
(Edelkamp and Kissmann 2008b). Some general game play-
ers, e. g., Schiffel and Thielscher’s FLUXPLAYER (2007),
might also be able to solve simple games, but as they are
designed for playing, we chose not to compare to those.

Symbolic Search
When we speak of symbolic search we mean state space
search using BDDs (Bryant 1986). With these, we can per-
form a set-based search, i. e., we do not expand single states
but sets of states.

BDDs typically have a fixed variable ordering and are re-
duced using two rules (elimination of nodes with both suc-
cessors being identical and merging of nodes having the
same successors), so that only a minimal number of BDD
nodes is needed to represent a given formula / set of states.
The resulting representation also is unique and all duplicates
that might be present in a given set are captured by the BDD
structure, so that each state is stored only once and the BDD
is free of duplicates.

BDDs enable us to completely search some state spaces
that would not be possible in explicit search. E. g., in the

original 7 × 6 version of Connect Four 4,531,985,219,092
states are reachable.1 We use 85 bits to encode each state
(two bits for each cell and an additional one to denote the
active player), so that in case of explicit search we would
need about 43.8TB to store all of them, while with BDDs
16GB are sufficient. If we store only the current BFS layer
and flush the previous one to a hard disk, the largest one even
fits into 12GB.

For symbolic search, we need BDDs to represent the ini-
tial state I, the terminal states T , the formula describing
when the players get which reward R, as well as the moves
M. Unfortunately, most games contain variables, so that we
do not know the exact size of a state, but this information is
mandatory for BDDs. Thus, we instantiate the games (Kiss-
mann and Edelkamp 2009) and come up with a variable-free
format, similar to what most successful action planners in
recent years do before the actual planning starts (Helmert
2008). As all formulas are Boolean, generating BDDs of
these is straight-forward. Figure 2 shows BDDs for some
of the utility functions needed to evaluate the termination of
Tic-Tac-Toe.

To decrease the number of BDD variables, we try to
find groups of mutually exclusive predicates. For this we
perform a simulation-based approach similar to Kuhlmann,
Dresner, and Stone (2006) as well as Schiffel and Thielscher
(2007) who all identify the input and output parameters of
each predicate. Often, input parameters denote the positions

1Recently, John Tromp arrived independently at the same result,
see http://homepages.cwi.nl/˜tromp/c4/c4.html.



on a game board while the output parameters specify its con-
tent. Predicates sharing the same name and the same input
but different output parameters are mutually exclusive. If
we find a group of n mutually exclusive predicates, we need
only dlog ne BDD variables to encode these.

After instantiation, we know the precise number of moves
of all the players and can also generateM, the possible com-
binations of moves of all players. Each move m ∈ M
can be represented by a BDD transm, so that the com-
plete transition relation trans is their disjunction: trans :=∨

m∈M transm.
To perform symbolic search, we need two sets of vari-

ables: one set, S, for the current states, the other one, S′, for
the successor states. To calculate the successors of a state
set from , in symbolic search we use the image operator:

image (from) := ∃S. (trans (S, S′) ∧ from (S)) .

As these successors are represented using only S′, we need
to swap them back to S.2 This way, if we start at the initial
state, each call of the image results in the next BFS layer, so
that the a complete BFS is the iteration of the image until a
fix-point is reached.

As the transition relation trans is the disjunction of a
number of moves, it is equivalent to generate the successors
using one move after the other and afterwards calculate the
disjunction of all these states:

image (from) :=
∨

m∈M
∃S. (transm (S, S′) ∧ from (S)) .

This way, we do not need to calculate a monolithic transition
relation, which takes time and often results in a BDD too
large to fit into RAM.

The inverse operation of the image is also possible. The
pre-image results in a BDD representing all the states that
are predecessors of the given set of states from:

pre-image (from) := ∃S′. (trans (S, S′) ∧ from (S′)) .

This allows us to perform BFS in backward direction.
An additional operator, the strong pre-image spi , which

we needed in previous approaches, returns all those prede-
cessor states of a given set of states from whose successors
are within from . It is defined as

spi (from) := ∀S′. (trans (S, S′)→ from (S′))

and can be derived from the pre-image:

spi (from) = ¬pre-image (¬from) .

Solving General Two-Player Turn-Taking
Games

Our existing approach for solving general two-player turn-
taking games (Edelkamp and Kissmann 2008b) works by
using a 101× 101 matrix M of BDDs. The BDD at M [i, j]

2We omit the explicit mention of this in the pseudo-codes to en-
hance readability. Whenever we write of an image (or pre-image),
we assume such a swapping to be performed immediately after the
image (or pre-image) itself.

Algorithm 1: Calculate Reachable States (reach).
Input: General game description G.
Output: Maximal reached BFS-layer.
curr ← I;1
l← 0;2
while curr 6= ⊥ do3

store curr as layer l on disk;4
prev ← curr ∧ ¬T ;5
curr ← image (prev);6
l← l + 1;7

end while8
return l − 1;9

represents the states where player 1 can achieve a reward
of i and player 2 a reward of j, with i, j ∈ {0, . . . , 100}.
Initially, all terminal states are inserted in the corresponding
buckets. Starting at these, the strong pre-image is used to
calculate those preceding states that can be solved as well, as
all their successors are already solved. These predecessors
are then sorted into the matrix by using the pre-image from
each of the buckets in a certain order.

The new algorithm works in two stages. First, we perform
a symbolic BFS in forward direction (see Algorithm 1) fol-
lowed by the solving in backward direction (see Algorithm
2), which operates within the calculated BFS layers.

Starting at the initial state I, in the forward search we cal-
culate the successors of the current BFS layer by using the
image operator. In contrast to the existing approach where
a BFS was used to calculate the set of reachable states, here
we retain only the BFS layers to partition the BDDs accord-
ing to the layers the states reside in, hoping that the BDDs
will keep smaller. Also, for smaller BDDs the calculation of
the image or pre-image often is faster, so that with this ap-
proach most games should be solved in a shorter time using
less memory and thus more complex games can be solved.

For the game Tic-Tac-Toe we start with the empty board.
After one iteration through the loop, curr contains all states
with one x being placed on the board; after the next iteration
all states with one x and one o being placed and so on.

Unfortunately, for the second step to work correctly we
need to omit duplicate detection (except for the one that im-
plicitly comes with using BDDs). The search will terminate
nonetheless, as the games in general game playing are fi-
nite by definition, but states that appear on different paths in
different layers will be expanded more than once.

To find out when we will have to deal with such duplicate
states, first of all we need to define a progress measure.

Definition 1 ((Incremental) Progress Measure). Let G be a
general two-player turn-taking game and ψ : S 7→ N be a
mapping from states to numbers.

1. If G is not necessarily alternating, ψ is a progress measure
if ψ (s′) > ψ (s) for all (s, s′) ∈ M. It is an incremental
progress measure, if ψ (s′) = ψ (s) + 1.

2. Otherwise, ψ also is a progress measure, if ψ (s′′) >
ψ (s′) = ψ (s) for all (s, s′) ∈M1 and (s′, s′′) ∈M2. It



is an incremental progress measure, if ψ (s′′) = ψ (s′) +
1 = ψ (s) + 1.

For the game of Tic-Tac-Toe the number of tokens placed
on the board is an incremental progress measure: after each
player’s move the number of tokens increases by exactly
one, until either the board is filled or one of the players has
succeeded in constructing a line.

Theorem 1 (Duplicate Avoidance). Whenever there is an
incremental progress measure ψ for a general game G, no
duplicate arises across the layers found by Algorithm 1.

Proof. We need to show this for the two cases:

1. If G is not necessarily alternating, we claim that all states
within one layer have the same progress measurement but
a different one from any state within another layer, which
implies the theorem. This can be shown by induction: The
first layer consists only of I. Let succ (s) be the set of
successor states of s, i. e., succ (s) = {s′| (s, s′) ∈M}.
According to the induction hypothesis, all states in layer
l have the same progress measurement. For all states s in
layer l and successors s′ ∈ succ (s), ψ (s′) = ψ (s) + 1.
All successors s′ ∈ succ (s) are inserted into layer l + 1,
so that all states within layer l+1 have the same progress
measurement. It is also greater than that of any of the
states in previous layers, as it always increases between
layers, so that it differs from the progress measurement of
any state within another layer.

2. If G is alternating, the states within any succeeding lay-
ers differ, as the predicate denoting the active player has
changed. Thus, it remains to show that for all s, s′ ∈ S ,
s1 ∈ S1 and s2 ∈ S2, ψ (s) = ψ (s′) if s and s′ reside in
the same layer and ψ (s1) = ψ (s2) if s1 resides in layer l
and s2 resides in layer l + 1 (i. e., if (s1, s2) ∈ M1). For
all other cases, we claim that the progress measurement of
any two states does not match, which proves the theorem.
The proof is very similar: The first layer consists only of
I. All successors of this state reside in the next layer and
their progress measure equals, according to the definition
of ψ. Let l be a layer that contains only states from S1.
According to the induction hypothesis, all states in this
layer have the same progress measurement. For all states
s in layer l and successors s′ ∈ succ (s), ψ (s) = ψ (s′).
All successors s′ are inserted into layer l+1. For all states
s′ in layer l + 1 and s′′ ∈ succ (s′), ψ (s′′) = ψ (s′) + 1.
All successors s′′ ∈ succ (s′) are inserted in layer l + 2,
so that all states within layer l+2 have the same progress
measurement. It is also greater than that of any of the
states in previous layers, as it never decreases, so that it
differs from the progress measurement of any state within
different layers.

Note that in games that do not incorporate an incremental
progress measure we need to expand each state at most dmax

times, with dmax being the maximal distance from I to one
of the terminal states. This is due the fact that in such a case
each state might reside in every layer.

Algorithm 2: Solving General Two-Player Games
Input: General game description G.
l← reach (G);1
while l ≥ 0 do2

curr ← load BFS layer l from disk;3
currTerminals ← curr ∧ T ;4
curr ← curr ∧ ¬currTerminals;5
for each i, j ∈ {0, . . . , 100} do6

terminals l,i,j ← currTerminals ∧Ri,j ;7
store terminals l,i,j on disk;8
currTerminals ←9
currTerminals ∧ ¬terminals l,i,j ;

end for10
for each i, j ∈ {0, . . . , 100} do in specific order11

succ1 ← load terminals l+1,i,j from disk;12
succ2 ← load rewards l+1,i,j from disk;13
succ ← succ1 ∨ succ2;14
rewards l,i,j ← curr ∧ pre-image (succ);15
store rewards l,i,j on disk;16
curr ← curr ∧ ¬rewards l,i,j ;17

end for18
l← l − 1;19

end while20

Once all BFS layers are calculated we can start the second
stage, the actual solving process, for which we perform a
symbolic retrograde analysis (see Algorithm 2). We start at
the last generated BFS layer l and move upwards layer by
layer until we reach the initial state I (l = 0).

For each layer we perform two solving steps. First, we
calculate all the terminal states that are contained in this
layer (line 4). For these we then determine the rewards
that the players get and store them in the corresponding files
(lines 6 to 10). As each player achieves exactly one reward
for each possible terminal state, no specific order is needed.

In the second step we solve the non-terminal states. For
this we need to proceed through all possible reward combi-
nations in a specific order (line 11). This order corresponds
to an opponent model. The two most reasonable assump-
tions are that an agent either wants to maximize its own
reward or to maximize the difference to the opponent’s re-
ward. The order, in which these reward combinations are
processed, is indicated in Figure 3. For the experiments we
assumed both players to be interested in maximizing the dif-
ference to the opponent’s reward.

The solving of the non-terminal states is depicted in lines
11 to 18. We load the BDDs representing the states that are
terminal states or solved non-terminal states in the succes-
sor layer for which the players can surely achieve the corre-
sponding rewards. From the disjunction of these we calcu-
late their predecessors (using the pre-image). These states
achieve the same rewards (in case of optimal play according
to the opponent model) and thus can be stored on disk and
must be removed from the unsolved states.

For the game Tic-Tac-Toe we start in layer 9, where all
cells are filled. All these states are terminal states, thus we
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Figure 3: Order to process the reward combinations.

can solve them immediately by checking the rewards, so that
we partition this layer into two parts: Those states, where
xplayer gets 100 points and oplayer 0 (the last move
established a line of xs), and those with 50 points for each
player (no line for any player).

In the next iteration we reach those states where four xs
and four os reside on the board and the xplayer has con-
trol. First, we remove the states containing a line of os, as
these are the terminal states, and solve them according to
their rewards (for all these, the xplayer will get 0 points,
while the oplayer gets 100).

Next, we check how to solve the remaining states. We
start by loading the terminal states from layer 9 where the
xplayer achieved 100 points, calculate their predecessors
and verify, if any of these predecessors is present in the set
of the remaining states. If that is the case, we can remove
them and store them in a file that specifies that the xplayer
achieves 100 points and the oplayer 0 points for these
states as well. In the Tic-Tac-Toe example, these are all the
states where the placement of another x finishes a line. The
remaining states of this layer result in a draw.

Theorem 2 (Correctness). The presented algorithm is cor-
rect, i. e., it determines the game theoretical value wrt. the
chosen opponent model.

Proof. The forward search’s correctness comes immediately
from the use of BFS. We generate all reachable states, no
matter if we remove duplicates or not. As the games are
finite by definition, we will find only finitely many layers.

For the second stage we need to show that all states are
correctly solved according to the opponent model. We show
this using induction. We start at the states in the final layer,
which we immediately can solve according to R. When
tracing back towards I, the terminal states again are immedi-
ately solvable by R. The most important observation is that
due to the construction, non-terminal states have successors
only within the next layer. All states within this layer are al-
ready solved. If we check if a state has a successor achieving
a certain reward and look at the rewards in the order accord-
ing to the opponent model, we can be certain that all states
within the current layer can be solved correctly as well.

Note that if we removed the duplicate states within differ-
ent layers, we would reach states whose successors are not in

the next layer but in some layer closer to I and thus not yet
solved, so we could not correctly solve such a state when
reaching it. Also note that due to the layer-wise operation
we can omit the costly strong pre-images of our existing ap-
proach, so that the new one should be faster for those games
that contain an incremental progress measure.

Some games are not strictly alternating, i. e., a player
might perform two or more consecutive moves, so that both
players can be active in different states within the same BFS
layer. To handle this, we split the second step of Algorithm
2 (lines 11 to 18) in two and perform this step once for each
player. Note that both players go through the possible re-
ward combinations in different orders, thus it is not possible
to combine these two steps. Instead, we have to solve the
states once for one player, store the results on disk, solve
the remaining states for the other player, load the previous
results, calculate the disjunction, and store the total results
on disk. The order in which the two players are handled is
irrelevant, as there is no state where both players are active.

Experimental Results
We performed experiments using several games from the
website of the German general game playing server3, which
we instantiated automatically4. Clobber (Albert et al. 2005)
and the two-player version of Chinese Checkers are the only
games for which general rewards are provided, while all
other games are designed to be zero-sum.

We implemented the presented algorithm in Java using
JavaBDD5, which provides a native interface to the CUDD
package6, a BDD library written in C++.

Our system consists of an Intel Core i7 920 CPU with
2.67GHz and 24GB RAM. Some of the detailed runtime
results for our new approach as well as the existing one are
presented in Table 1, while Figure 4 compares the results of
all solved games using the two approaches.

From these we can see that for most games, which contain
an incremental progress measure, the new approach looses
slightly if the runtime is less than one second, as all results
are stored on the hard disk. Omitting this in the cases where
all BDDs easily fit into RAM, however, would speed up the
search. For the larger games the new approach clearly out-
performs the existing one: Due to the partitioning according
to the layers, the BDDs stay smaller and the image thus can
be calculated faster. We also save time as we do not need
to calculate the strong pre-images but get the solvable states
immediately by loading the next layer.

The games Chomp and Nim, which both do not contain an
incremental progress measure, were scaled to different sizes,
to see how well the new approach performs. From these we
see that it takes a longer total runtime until the new appraoch
at least matches the existing one. This is due to the forward

3http://euklid.inf.tu-dresden.de:8180/
ggpserver/public/show_games.jsp

4For Connect Four we adapted the existing GDL description, as
the instantiator’s output was too large for the solver. For Clobber
no GDL description exists, so that we created one from scratch.

5http://javabdd.sourceforge.net
6http://vlsi.colorado.edu/˜fabio/CUDD



Table 1: Results of solving two-player turn-taking games.
All times in m:ss. An entry o.o.m. denotes the fact that the
corresponding appraoch exceeded the available memory.

Time Opt.
Game (New) (Existing) Result
Catch a Mouse 0:19.04 1:14.73 100/0
Chinese Checkers 2 6:45.11 63:52.62 50/50
Chomp (8× 7) 0:04.21 0:01.59 100/0
Chomp (10× 10) 0:48.26 0:58.96 100/0
Clobber 4× 5 7:24.13 55:03.91 30/0
Connect 4 (5× 6) 30:27.85 139:06.55 50/50
Connect 4 (6× 6) 563:48.46 o.o.m. 0/100
Cubi Cup 5 565:36.74 o.o.m. 100/0
Nim 4 0:04.15 0:00.82 100/0
Number Tic-Tac-Toe 1:03.33 3:25.31 100/0
Sheep and Wolf 0:12.90 0:44.88 0/100
Tic-Tac-Toe 0:00.60 0:00.09 50/50
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Figure 4: Comparison of the runtimes for the two ap-
proaches.

search, which takes longer with the new approach, as it finds
more states in more layers (8,498,776 states in 100 layers
opposed to 369,510 states in 10 layers for Chomp (10× 10)
and 64 layers with 2,179,905 states opposed to 5 layers with
149,042 states for Nim 4). Nevertheless, both approaches
perform the same number of backward steps, so that for the
more complex games the total runtime of the new approach
again is smaller, because the loading of a layer then takes
less time than the calculation of a strong pre-image.

The most complex games we can solve are instances of
Cubi Cup7 and Connect Four. In Cubi Cup cubes are stacked
with a corner up on top of each other on a three dimensional
board. A new cube may only be placed in positions where
the three touching cubes on the bottom are already placed. If
one player creates a state where these three neighbours have
the same color, this is called a Cubi Cup. In this case, the
next player has to place the cube in this position and remains

7See http://english.cubiteam.com for a short de-
scription of the game by its authors.

active for another turn. The player to place the last cube wins
– unless the three touching cubes produce a Cubi Cup of the
opponent’s color; in this case the game ends in a draw.

Due to the rule of one player needing to perform several
moves in a row it is clear that in one BFS layer both players
might be active (in different states), so that we need to use
the proposed extension of the algorithm.

We are able to solve an instance of Cubi Cup with an edge
length of 5 cubes.8 Using the existing approach we are not
able to solve this instance, as it needs too much memory:
After nearly ten hours of computation less than 60% of all
states are solved but the program already starts swapping.

For Connect Four, both approaches can solve the game
on a board of size 5 × 6, but on a 6 × 6 board the existing
approach also needs too much memory to be able to solve
it, while the new one finishes it in nearly one day. The
normal version on a 7 × 6 board was originally (weakly)
solved in 1988 independently by James D. Allen and Vic-
tor Allis (Allis 1988). For this instance we are able to per-
form the complete reachability analyis achieving a total of
4,531,985,219,092 reachable states, but unfortunately the
BDDs get too large during the solving steps9.

Discussion
For the 7 × 6 board of Connect Four we noticed that the
sizes for the BDDs representing the terminal states as well
as those representing the rewards are very large. This is due
to the fact that the two rules for the players having achieved
a line are largely independent.

In the terminal state description we have a disjunction
of the case that player 1 has achieved a line, player 2 has
achieved a line, or neither has and the board is filled. So, to
find the terminal states of a layer we first calculated the con-
junctions with each of the BDDs representing only one part
of the disjunction and afterwards calculated the disjunction
of these. Similarly we could partition the reward BDDs.

In both cases, the intermediate BDDs were a lot smaller
and the reachability calculation was sped up by a factor of
about 4. Thus, at least for Connect Four not only partitioning
the BDDs according to the BFS layers but also according
to parts of the terminal and reward descriptions kept them
smaller and thus calculation times lower. It remains yet to
be seen if it is possible to automatically find such partitions
of the BDDs for any given game.

Unfortunately, BDDs are rather unpredictable. Their size
greatly depends on the encoding of the states, though for
some domains, such as the 15-Puzzle, no variable ordering
will save an exponential number of BDD nodes (Ball and
Holte 2008; Edelkamp and Kissmann 2008a).

8Unfortunately, we had to stop the solving several times and
restart with the last not completely solved layer, as somehow the
implementation for loading BDDs using JavaBDD and CUDD
seems to contain a memory leak, which so far we could not lo-
cate. No such leak appears in the existing approach, as it does not
load or store any BDDs.

9We even performed experiments on a machine with 64GB
RAM, but this is still insufficient to solve all states.



An interesting side-remark might be that this approach
can in principle also be used for any turn-taking game. All
we need is the way to pass through the |P|-dimensional ma-
trix of (possible) reward combinations, which gives us an
opponent model. Unfortunately, for multi-player games this
is not found trivially: In general game playing the agents get
no information as to which other agents they plays against,
so that learning such a model seems impossible so far. If
we assume that we can get an opponent model, we are able
to solve all turn-taking games under the assumption that the
model holds. The result is then similar to that of the Maxn

algorithm by Luckhardt and Irani (1986), and thus has the
same shortcomings: If one of the players does not play ac-
cording to the model, the solution might be misleading.

Conclusions and Future Work
We presented a new algorithm for solving general two-
player turn-taking games making use of the information of
the forward BFS. This brings the advantage that no strong
pre-images are applied, as all the successors of a given layer
are solved once this layer is reached. We have shown that
this algorithm can greatly outperform existing approaches.

One shortcoming is that the BFS is mandatory, while this
was not the case for the existing algorithms. Furthermore, it
does not perform any duplicate detection, so that in some
games more BFS layers are generated and states are ex-
panded multiple times.

One of the advantages is that we can stop the solving at
any time and restart with the last partially solved layer later
on. Also, we can use the information we find on the hard
disk as an endgame database, e. g., in combination with a
general game player that uses UCT (Kocsis and Szepesvári
2006) for finding good moves.

A future research avenue is to find a way to further par-
tition the BDDs in a way that improves the approach. So
far, we partitioned the BDDs only according to the BFS lay-
ers and in most cases this results in a great improvement.
For games incorporating a step counter, we partitioned the
BDDs according to the mutually exclusive variables repre-
senting it. This might be generalizable to partitioning the
BDDs according to any of the mutually exclusive variables,
but it is not yet clear how to find the best ones automatically.
Also, it is unclear, if such a partitioning generally helps to
keep the BDDs smaller, so that it is important to find a good
partitioning that will decrease the BDD sizes and speed up
the pre-image calculations.
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Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In ECML, volume 4212 of LNCS, 282–293.
Springer.
Kuhlmann, G.; Dresner, K.; and Stone, P. 2006. Automatic
heuristic construction in a complete general game player. In
AAAI, 1457–1462. AAAI Press.
Love, N. C.; Hinrichs, T. L.; and Genesereth, M. R. 2006.
General game playing: Game description language spec-
ification. Technical Report LG-2006-01, Stanford Logic
Group.
Luckhardt, C. A., and Irani, K. B. 1986. An algorithmic
solution of N-person games. In AAAI, 158–162. Morgan
Kaufmann.
Schaeffer, J.; Burch, N.; Björnsson, Y.; Kishimoto, A.;
Müller, M.; Lake, R.; Lu, P.; and Sutphen, S. 2007. Check-
ers is solved. Science 317(5844):1518–1522.
Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. In AAAI, 1191–1196. AAAI
Press.


