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Abstract

Mercury is a sequential satisficing planner that is based
mainly on the red-black planning heuristic. Red-black plan-
ning is a systematic approach to partial delete relaxation, tak-
ing into account some of the delete effects: Red variables take
the relaxed (value-accumulating) semantics, while black vari-
ables take the regular semantics. Prior work on red-black plan
heuristics has identified a powerful tractable fragment requir-
ing the black causal graph – the projection of the causal graph
onto the black variables – to be a DAG; but all implemen-
tations so far use a much simpler fragment where the black
causal graph is required to not contain any arcs at all. We
close that gap here, and we design techniques aimed at mak-
ing red-black plans executable, short-cutting the search. Mer-
cury planner is entered into sequential satisficing and agile
tracks of the competition.

Planner structure
Mercury planner is a sequential satisficing planner that is im-
plemented in the Fast Downward planning system (Helmert
2006). It performs multiple iterations of heuristic search,
starting with a fast and inaccurate greedy best-first search.
Once a solution is found, next iterations run weighted
A∗, gradually decreasing the weight parameter, similarly
to the famous LAMA planning system (Richter and West-
phal 2010). The cost of the best plan found so far is used
in following iterations for search space pruning. Search al-
gorithms are guided by the red-black heuristic (Katz, Hoff-
mann, and Domshlak 2013b; 2013a; Katz and Hoffmann
2013), breaking ties using the landmark count heuristic (Por-
teous, Sebastia, and Hoffmann 2001). In addition, preferred
operators are obtained from each of those heuristics. For
red-black heuristic, which is based on FF (Hoffmann and
Nebel 2001), we decided to use here the preferred opera-
tors of FF heuristic. As the rest of the components are well
known, in what follows, we describe in detail the main nov-
elty of Mercury, red-black heuristic.

Introduction
The delete relaxation, where state variables accumulate their
values rather than switching between them, has played a
key role in the success of satisficing planning systems,
e. g. (Bonet and Geffner 2001; Hoffmann and Nebel 2001;
Richter and Westphal 2010). Still, the delete relaxation

has well-known pitfalls, for example the fundamental in-
ability to account for moves back and forth (as done, e. g.,
by vehicles in transportation). It has thus been an ac-
tively researched question from the outset how to take some
deletes into account, e. g. (Fox and Long 2001; Gerevini,
Saetti, and Serina 2003; Helmert 2004; Helmert and Geffner
2008; Baier and Botea 2009; Cai, Hoffmann, and Helmert
2009; Haslum 2012; Keyder, Hoffmann, and Haslum 2012).
Herein, we continue the most recent attempt, red-black
planning (Katz, Hoffmann, and Domshlak 2013b; 2013a;
Katz and Hoffmann 2013) where a subset of red state vari-
ables takes on the relaxed value-accumulating semantics,
while the other black variables retain the regular semantics.

Katz et al. (2013b) introduced the red-black framework
and conducted a theoretical investigation of tractability. Fol-
lowing up on this (2013a), they devised practical red-black
plan heuristics, non-admissible heuristics generated by re-
pairing fully delete-relaxed plans into red-black plans. Ob-
serving that this technique often suffers from dramatic over-
estimation incurred by following arbitrary decisions taken
in delete-relaxed plans, Katz and Hoffmann (2013) refined
the approach to rely less on such decisions, yielding a more
flexible algorithm delivering better search guidance.

The black causal graph is the projection of the causal
graph onto the black variables only. Both Katz et al.
(2013a) and Katz and Hoffmann (2013) exploit, in theory,
a tractable fragment characterized by DAG black causal
graphs, but confine themselves to arc-empty black causal
graphs – no arcs at all – in practice. Thus current red-
black plan heuristics are based on a simplistic, almost trivial,
tractable fragment of red-black planning. We herein close
that gap, designing red-black DAG heuristics exploiting the
full tractable fragment previously identified. To that end, we
augment Katz and Hoffmann’s implementation with a DAG-
planning algorithm (executed several times within every call
to the heuristic function). We devise some enhancements
targeted at making the resulting red-black plans executable
in the real task, stopping the search if they succeed in reach-
ing the goal.

Background
Our approach is placed in the finite-domain representa-
tion (FDR) framework. We introduce FDR and its delete-
relaxation as special cases of red-black planning. A red-



black (RB) planning task is a tuple Π = 〈V B, V R, A, I,G〉.
V B is a set of black state variables and V R is a set of red
state variables, where V B ∩ V R = ∅ and each v ∈ V :=
V B∪V R is associated with a finite domainD(v). The initial
state I is a complete assignment to V , the goal G is a par-
tial assignment to V . Each action a is a pair 〈pre(a), eff(a)〉
of partial assignments to V called precondition and effect.
We often refer to (partial) assignments as sets of facts, i. e.,
variable-value pairs v = d. For a partial assignment p, V(p)
denotes the subset of V instantiated by p. For V ′ ⊆ V(p),
p[V ′] denotes the value of V ′ in p.

A state s assigns each v ∈ V a non-empty subset
s[v] ⊆ D(v), where |s[v]| = 1 for all v ∈ V B. An ac-
tion a is applicable in state s if pre(a)[v] ∈ s[v] for all
v ∈ V(pre(a)). Applying a in s changes the value of
v ∈ V(eff(a))∩V B to {eff(a)[v]}, and changes the value of
v ∈ V(eff(a))∩V R to s[v]∪{eff(a)[v]}. By sJ〈a1, . . . , ak〉K
we denote the state obtained from sequential application of
a1, . . . , ak. An action sequence 〈a1, . . . , ak〉 is a plan if
G[v] ∈ IJ〈a1, . . . , ak〉K[v] for all v ∈ V(G).

Π is a finite-domain representation (FDR) planning
task if V R = ∅, and is a monotonic finite-domain rep-
resentation (MFDR) planning task if V B = ∅. Plans for
MFDR tasks (i. e., for delete-relaxed tasks) can be generated
in polynomial time. A key part of many satisficing plan-
ning systems is based on exploiting this property for deriv-
ing heuristic estimates, via delete-relaxing the task at hand.
Generalizing this to red-black planning, the red-black re-
laxation of an FDR task Π relative to V R is the RB task
Π∗+V R = 〈V \ V R, V R, A, I,G〉. A plan for Π∗+V R is a red-
black plan for Π, and the length of a shortest possible red-
black plan is denoted h∗+V R(Π). For arbitrary states s, h∗+V R(s)
is defined via the RB task 〈V \V R, V R, A, s,G〉. If V R = V ,
then red-black plans are relaxed plans, and h∗+V R coincides
with the optimal delete relaxation heuristic h+.
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Figure 1: An example (a), and its causal graph (b).

In Figure 1, truck T needs to transport each package X ∈
{A,B,C,D} to its respective goal location x ∈ {a, b, c, d}.
The truck can only carry one package at a time, encoded
by a Boolean variable F (“free”). A real plan has length
15 (8 loads/unloads, 7 drives), a relaxed plan has length 12
(4 drives suffice as there is no need to drive back). If we
paint (only) T black, then h∗+V R(I) = 15 as desired, but red-
black plans may not be applicable in the real task, because
F is still red so we can load several packages consecutively.
Painting T and F black, that possibility disappears.1

1Indeed, all optimal red-black plans (but not some non-optimal
ones) then are real plans. We will get back to this below: As we
shall see, the ability to increase red-black plan applicability is a

Tractable fragments of red-black planning have been
identified using standard structures. The causal graph CGΠ

of Π is a digraph with vertices V . An arc (v, v′) is in
CGΠ if v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a))∪ V(pre(a))]×V(eff(a)). The domain
transition graph DTGΠ(v) of a variable v ∈ V is a labeled
digraph with vertices D(v). The graph has an arc (d, d′) in-
duced by action a if eff(a)[v] = d′, and either pre(a)[v] = d
or v 6∈ V(pre(a)). The arc is labeled with its outside condi-
tion pre(a)[V \ {v}] and its outside effect eff(a)[V \ {v}].

The black causal graph CGB
Π of Π is the sub-graph of

CGΠ induced by V B. An arc (d, d′) is relaxed side effects
invertible, RSE-invertible for short, if there exists an arc
(d′, d) with outside condition φ′ ⊆ φ∪ψ where φ and ψ are
the outside condition respectively outside effect of (d, d′). A
variable v is RSE-invertible if all arcs in DTGΠ(v) are RSE-
invertible, and an RB task is RSE-invertible if all its black
variables are. Prior work on red-black plan heuristics (Katz,
Hoffmann, and Domshlak 2013a; Katz and Hoffmann 2013)
proved that plan generation for RSE-invertible RB tasks with
DAG (acyclic) black causal graphs is tractable, but used the
much simpler fragment restricted to arc-empty black causal
graphs in practice. In Figure 1, both T and F are RSE-
invertible; if we paint only T black then the black causal
graph is arc-empty, and if we paint both T and F black then
the black causal graph is (not arc-empty but) a DAG.

Red-Black DAG Heuristics
Katz and Hoffmann (2013) provide an algorithm for RSE-
invertible RB tasks with acyclic black causal graphs. To
provide the context, Figure 2 shows Katz and Hoffmann’s
pseudo-code. The algorithm assumes as input the set R+ of
preconditions and goals on red variables in a fully delete-
relaxed plan, i. e., R+ = G[V R]∪

⋃
a∈π+ pre(a)[V R] where

π+ is a relaxed plan for Π. It then successively selects
achieving actions for R+, until all these red facts are true.
Throughout the algorithm, R denotes the set of red facts al-
ready achieved by the current red-black plan prefix π; B
denotes the set of black variable values that can be achieved
using only red outside conditions from R.

For each action a ∈ A′ selected to achieve new facts from
R+, and for the global goal condition at the end, there may
be black variables that do not have the required values. For
example, say we paint T and F black in Figure 1. Then R+

will have the form {A = T,A = a,B = T,B = b, C =
T,C = c,D = T,D = d}. In the initial state, A′ will
contain only load actions. Say we execute a =load(A, init),
entering A = T into R and thus including unload(A, a) into
A′ in the next iteration. Trying to execute that action, we
find that its black precondition T = a is not satisfied. The
call to ACHIEVE({T = a}) is responsible for rectifying this.

ACHIEVE(g) creates a task ΠB over Π’s black variables,
asking to achieve g. As Katz and Hoffmann showed, ΠB

is solvable, has a DAG causal graph, and has strongly con-
nected DTGs (when restricting to actions a where pre(a) ⊆
IJπK). From this and Theorem 4.4 of Chen and Gimenez

main advantage of our red-black DAG heuristics over the simpler
red-black plan heuristics devised in earlier work.



Algorithm : REDBLACKPLANNING(Π, R+)
main
// Π = 〈V B, V R, A, I,G〉
global R, B ← ∅, π ← 〈〉
UPDATE()
while R 6⊇ R+

do

8>>>>><>>>>>:

A′ = {a ∈ A | pre(a) ⊆ B ∪R, eff(a) ∩ (R+ \R) 6= ∅}
Select a ∈ A′
if pre(a)[V B] 6⊆ IJπK

then π ← π ◦ ACHIEVE(pre(a)[V B])
π ← π ◦ 〈a〉
UPDATE()

if G[V B] 6⊆ IJπK
then π ← π ◦ ACHIEVE(G[V B])

return π
procedure UPDATE()
R← IJπK[V R]
B ← B ∪ IJπK[V B]
for v ∈ V B, ordered topologically by the black causal graph

do B ← B ∪ DTGΠ(v)|R∪B

procedure ACHIEVE(g)
IB ← IJπK[V B]
GB ← g
AB ← {aB | a ∈ A, aB = 〈pre(a)[V B], eff(a)[V B]〉,

pre(a) ⊆ R ∪B, eff(a)[V B] ⊆ B}
〈a′B1 , . . . , a′Bk 〉 ← an FDR plan for ΠB = 〈V B, AB, IB, GB〉
return 〈a′1, . . . , a′k〉

Figure 2: Red-black planning algorithm. R+ = G[V R] ∪⋃
a∈π+ pre(a)[V R] where π+ is a relaxed plan for Π.

(2010), it directly follows that a plan for ΠB, in a succinct
plan representation, can be generated in polynomial time.

The “succinct plan representation” just mentioned con-
sists of recursive macro actions for pairs of initial-
value/other-value within each variable’s DTG; it is required
as plans for ΠB may be exponentially long. Chen and
Gimenez’ algorithm handling these macros involves the ex-
haustive enumeration of shortest paths for the mentioned
value pairs in all DTGs, and it returns highly redundant plans
moving precondition variables back to their initial value in
between every two requests. For example, if a truck unloads
two packages at the same location, then it is moved back to
its start location in between the two unload actions.

Katz and Hoffmann (2013) shunned the complexity of
DAG planning, and considered ΠB with arc-empty causal
graphs, solving which is trivial. In our work, after explor-
ing a few options, we decided to use the simple algorithm
in Figure 3: Starting at the leaf variables and working up to
the roots, the partial plan πB is augmented with plan frag-
ments bringing the supporting variables into place (a similar
algorithm was mentioned, but not used, by Helmert (2006)).

Proposition 1 The algorithm DAGPLANNING(ΠB) is
sound and complete, and its runtime is polynomial in the
size of ΠB and the length of the plan πB returned.

Note here that the length of πB is worst-case expo-
nential in the size of ΠB, and so is the runtime of

Algorithm : DAGPLANNING(ΠB)
main
πB ← 〈〉
for i = n downto 1

do

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

// Denote πB = 〈a1, . . . , ak〉
d← I[vi]
for j = 1 to k

do

8><>:
πj ← 〈〉
if pre(aj)[vi] is defined

then

πj ← πvi(d, pre(aj)[vi])
d← pre(aj)[vi]

πk+1 ← 〈〉
if G[vi] is defined

then πk+1 ← πvi(d,G[vi])
πB ← π1 · 〈a1〉 · . . . · πk · 〈ak〉 · πk+1

return πB

Figure 3: Planning algorithm for FDR tasks ΠB with
DAG causal graph CGΠB and strongly connected DTGs.
v1, . . . , vn is an ordering of variables V consistent with the
topology of CGΠB . πv(d, d′) denotes an action sequence
constituting a shortest path in DTGv(Π) from d to d′.

DAGPLANNING(ΠB). We trade the theoretical worst-case
efficiency of Chen and Gimenez’ algorithm against the prac-
tical advantage of not having to rely on exhaustive compu-
tation of shortest paths – anew for every call of DAGPLAN-
NING, with “initial values” and DTGs from ΠB – for input
tasks ΠB that typically have small plans (achieving the next
action’s black preconditions) anyhow.2

Unlike the macro-based algorithm of Chen and Gimenez,
our DAGPLANNING algorithm does not superfluously keep
switching supporting variables back to their initial values.
But it is not especially clever, either: If variable v0 supports
two otherwise independent leaf variables v1 and v2, then the
sub-plans for v1 and v2 will be inserted sequentially into
πB, losing any potential for synergies in the values of v0

required.

Painting Strategy
Katz and Hoffmann explored a variety of painting strategies,
i. e., strategies for selecting the black variables. We kept this
simple here because, as we noticed, there actually is little
choice, at least when accepting the rationale that we should
paint black as many variables as possible: In most IPC do-
mains, there are at most 2 possible paintings per task. To
illustrate, consider Figure 1: We can paint T and F black, or
paint T and the packages black. All other paintings either do
not yield a DAG black causal graph, or are not set-inclusion
maximal among such paintings. We thus adopted one of
Katz and Hoffmann’s basic strategies, namely ordering the
variables by causal graph level, and iteratively painting vari-
ables red until the black causal graph is a DAG (Katz and

2One could estimate DAG plan length (e. g., using Helmert’s
(2006) causal graph heuristic), computing a red-black plan length
estimate only. But that would forgo the possibility to actually exe-
cute DAG red-black plans, which is a key advantage in practice.



Hoffmann’s original strategies continue until that graph is
arc-empty).

Enhancing Red-Black Plan Applicability
One crucial advantage of red-black plans, over fully-delete
relaxed plans, is that they have a much higher chance of ac-
tually working for the original planning task. This is es-
pecially so for the more powerful DAG red-black plans we
generate here. In Figure 1, as already mentioned, if we paint
just T black then the red-black plan might work; but if we
paint both T and F black – moving to a non-trivial DAG
black causal graph – then every optimal red-black plan defi-
nitely works. A simple possibility for exploiting this, already
implemented in Katz and Hoffmann’s (2013) earlier work,
is to stop search if the red-black plan generated for a search
state s is a plan for s in the original task.

There is a catch here, though – the red-black plans we
generate are not optimal and thus are not guaranteed to ex-
ecute in Figure 1. In our experiments, we observed that the
red-black plans often were not executable due to simple rea-
sons. We fixed this by augmenting the algorithms with the
two following applicability enhancements.

(1) Say that, as above, R+ = {A = T,A = a,B =
T,B = b, C = T,C = c,D = T,D = d} and
REDBLACKPLANNING started by selecting load(A, init).
Unload(A, a) might be next, but the algorithm might
just as well select load(B, init). With T and F black,
load(B, init) has the black precondition F = true. Calling
ACHIEVE({F = true}) will obtain that precondition using
unload(A, init). Note here that variableA is red so the detri-
mental side effect is ignored. The same phenomenon may
occur in any domain with renewable resources (like trans-
portation capacity). We tackle it by giving a preference to
actions a ∈ A′ getting whose black preconditions does not
involve deleting R+ facts already achieved beforehand. To
avoid excessive overhead, we approximate this by recording,
in a pre-process, which red facts may be deleted by moving
each black variable, and prefer an action if none of its black
preconditions may incur any such side effects.

(2) Our second enhancement pertains to the DTG paths
chosen for the black precondition variables in DAGPLAN-
NING (after REDBLACKPLANNING has already selected the
next action). The red outside conditions are by design all
reached (contained in R), but we can prefer paths whose red
outside conditions are “active”, i. e., true when executing the
current red-black plan prefix in the real task. (E.g., if a ca-
pacity variable is red, then this will prefer loads/unloads that
use the actual capacity instead of an arbitrary one.) In some
special cases, non-active red outside conditions can be easily
fixed by inserting additional supporting actions.

Supported Features
In contrast to previous years, a support for conditional ef-
fects is currently mandated. Since there is no straightfor-
ward adaptation of the red-black heuristics to the formal-
ism that supports conditional effects, we have chosen here
to compile them away. This was done by multiplying them
out in the translation step. On one hand, this can lead to

an exponential blow-up in the task representation size. On
the other hand, it does not split up an operator application
into a sequence of operator applications. Our decision was
based on the speculation that the latter option could poten-
tially decrease red-black plan applicability, one of the main
advantages of the current red-black heuristics.
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