
Enhanced Symmetry Breaking in
Cost-Optimal Planning as Forward Search

Carmel Domshlak
Technion

Haifa, Israel
dcarmel@ie.technion.ac.il

Michael Katz
Saarland University

Saarbrücken, Germany
katz@cs.uni-saarland.de

Alexander Shleyfman
Technion

Haifa, Israel
shleyfman.alexander@gmail.com

Abstract

In heuristic search planning, state-space symmetries are
mostly ignored by both the search algorithm and the heuristic
guidance. Recently, Pochter, Zohar, and Rosenschein (2011)
introduced an effective framework for detecting and account-
ing for state symmetries withinA∗ cost-optimal planning. We
extend this framework to allow for exploiting strictly larger
symmetry classes, and thus pruning strictly larger parts of
the search space. Our approach is based on exploiting infor-
mation about the part of the transition system that is gradu-
ally being revealed by A∗. An extensive empirical evaluation
shows that our approach allows for substantial reductions in
search effort overall, and in particular, allows for more prob-
lems being solved.

Introduction
To date, A∗ search with admissible heuristic functions is
a prominent approach to cost-optimal planning. Numer-
ous admissible heuristics for domain-independent planning
have been proposed, varying from cheap to compute and not
very informative to expensive to compute and very informa-
tive (Bonet and Geffner 2001; Haslum and Geffner 2000;
Helmert, Haslum, and Hoffmann 2007; Katz and Domshlak
2010; Karpas and Domshlak 2009; Helmert and Domshlak
2009; Bonet and Helmert 2010). However, while further
progress in developing informative heuristics is still very
much desired, it is also well known that, on many prob-
lems, A∗ expands an exponential number of nodes even if
equipped with heuristics that are almost perfect in their es-
timates (Helmert and Röger 2008). One major reason for
that is state symmetries in the transition systems of interest.
A succinct description of the planning tasks in languages
such as STRIPS and SAS+almost unavoidably results in lots
of different states in the search space to be symmetric to
one another with respect to the task at hand. In turn, fail-
ing to detect and account for these symmetries results in A∗
searching through many symmetric states, although search-
ing through a state is equivalent to searches through all of its
symmetric counterparts.

The idea of identifying and pruning symmetries while
reasoning about automorphisms of the search spaces has

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

been exploited for quite a while already in model check-
ing (Emerson and Sistla 1996), constraint satisfaction (Puget
1993), and planning (Rintanen 2003; Fox and Long 1999;
2002). However, until the recent work by Pochter et al.
(2011), no empirical successes in this direction have been
reported in the scope of cost-optimal planning as heuristic
forward search. The success of the framework proposed by
Pochter et al. is especially valuable because, to date, heuris-
tic forward search with A∗ constitutes the most effective ap-
proach to cost-optimal planning.

In this work, we build upon the framework of Pochter et
al. (2011) and extend it to allow for exploiting strictly larger
sets of automorphisms, and thus pruning strictly larger parts
of the search space. Our approach is based on exploiting
information about the part of the transition system that is
gradually being revealed by the A∗ algorithm. This infor-
mation allows us to eliminate the requirement of Pochter et
al. from the automorphisms to stabilize the initial state, a re-
quirement that turns out to be quite constraining in terms of
state-space pruning. We introduce a respective extension of
the A∗ algorithm that preserves its core properties of com-
pleteness and optimality. Similarly to the work of Pochter et
al. , our approach works at the level of the search algorithm,
and is completely independent of the heuristic in use. Our
empirical evaluation shows that our approach to A∗ sym-
metry breaking favorably competes with the previous work
of Pochter et al. (2011), increasing the number of problems
solved, and significantly reducing the search effort required
to solve planning tasks.

Preliminaries
We consider classical planning tasks Π = 〈V ,A, s0, G〉
captured by the well-known SAS+ formalism (Bäckström
and Nebel 1995). In such a task, V is a set of finite-domain
state variables; each complete assignment to V is called a
state, and S =

∏
v∈V dom(v) is the state space of Π. s0 is

an initial state. The goal G is a partial assignment to V ; a
state s is a goal state, denoted by s ∈ S∗, iff G ⊆ s. A is a
finite set of actions, each given by a pair 〈pre, eff〉 of partial
assignments to V , called preconditions and effects. Apply-
ing action a in state s results in a state denoted by sJaK.

Our focus here is on cost-optimal planning, and we as-
sume familiarity with the standard A∗ search algorithm. By
T = 〈S,E〉we refer to the state transition (di)graph induced

343

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling



by Π, with parallel edges induced by state-wise equivalent
actions being represented by a single edge in E. Auxiliary
notation: i ∈ [k] is used for i ∈ {1, 2, . . . , k}, k ∈ N.

An automorphism of a transition graph T = 〈S,E〉 is
a permutation σ of the vertices S such that (s, s′) ∈ E iff
(σ(s), σ(s′)) ∈ E. The composition of two automorphisms
is another automorphism, and the complete, under the com-
position operator, set of automorphisms forms the automor-
phism group Aut(T ) of the graph. By Γ ≤ Γ′ we denote
that Γ is a subgroup of Γ′. By σid we denote the trivial au-
tomorphism that is the identity morphism. Each subgroup
of automorphisms Γ ≤ Aut(T ) induces an equivalence re-
lation ∼Γ on states S: s ∼Γ s′ iff there exists σ in Γ such
that σ(s) = s′. For a pair of equivalence relations ∼1 and
∼2 on states S, if s ∼1 s

′ implies s ∼2 s
′, we say that ∼2

is coarser than ∼1 (∼1 is finer than ∼2), and denote that
by ∼1≤∼2. Among all the subgroups of automorphisms,
Aut(T ) itself induces the coarsest equivalence relation ∼∗
that separates all the non-symmetrical states of T .

Let S1, . . . , Sk be some subsets of S and Γ ≤ Aut(T )
be a subgroup of automorphisms. Let ΓS1,...,Sk

= {σ ∈
Γ | ∀i ∈ [k],∀s ∈ Si : σ(s) ∈ Si} be the set of ele-
ments of Γ that map states in each Si only to states in Si.
Then ΓS1,...,Sk

is a subgroup of Γ called the stabilizer of
state subsets S1, . . . , Sk with respect to Γ ≤ Aut(T ). Fi-
nally, a set of automorphisms Σ is said to generate a group
Γ if Γ is the fixpoint of iterative composition of the ele-
ments of Σ. Finding such a generating set of Aut(T ) (for
an explicitly given graph T ) is not known to be polynomial-
time, but backtracking search techniques are surprisingly ef-
fective in finding generating sets for substantial subgroups
Γ ≤ Aut(T ) (Junttila and Kaski 2007).

Previous Work: State Pruning with Γ{s0},S∗
In our work we build upon the approach by Pochter et al.
(2011) for exploiting state space symmetries in cost-optimal
planning using A∗. Here we describe the key aspects of this
approach, referring the reader for further details to the orig-
inal publication.

The basic principle underlying the work of Pochter et al. is
similar to the idea of canonicalization by Emerson and Sistla
(1996), formalized in the context of the A∗ algorithm: For
any group Γ ≤ Γ{s0},S∗ ≤ Aut(T ), and any equivalence re-
lation ∼≤∼Γ, a state s can be pruned without forfeiting the
optimality and completeness of A∗, as long as some other
state in its equivalence class defined by ∼ is expanded. The
modification of A∗ required for exploiting this observation
is as follows.

1. Offline: Find a subset Σ of generators for the group
Γ{s0},S∗ . Let Γ ≤ Γ{s0},S∗ be the group generated by
Σ. Using Σ, find an equivalence relation ∼≤∼Γ.

2. Whenever search generates a state s such that s ∼ s′ for
some previously generated state s′, treat s as if it was s′.

This is, of course, more of a template forA∗ modification,
and one has to specify efficient means for (i) determining the
equivalence relation∼ using a generating set Σ, and, what is
even more challenging, (ii) finding the actual generating set

Σ. The concrete proposals of Pochter et al. for accomplish-
ing these two tasks are the key components of their contri-
bution, and we discuss their essence in what comes next.

As the state transition graph T of a SAS+ planning task
Π is not given explicitly, automorphisms of T must be
inferred from the description of Π. The specific method
that Pochter et al. proposed for deducing automorphisms of
T exploits automorphisms of a certain graphical structure
induced by the task description. This node-colored undi-
rected graph, called problem description graph (PDG), is in
particular convenient for discovery of automorphisms of T
that are stabilized with respect to an arbitrary set of state sets
S1, . . . , Sm ⊆ S where each Si = {s ∈ S | s[Vi] = pi} is
characterized by a single partial assignment to the state vari-
ables V . 1 This property of PDGs in particular allows for
searching for generators of Γ{s0},S∗ using off-the-shelf tools
for discovery of automorphisms in explicit, node-colored
graphs such as BLISS (Junttila and Kaski 2007).

Having discovered this way a generating set of a group
Γ ≤ Γ{s0},S∗ , the next step is to determine an equivalence
relation ∼. Each equivalence class of ∼ is implicitly rep-
resented by one of its states s†, called the canonical state.
While finding the coarsest relation ∼Γ is NP-hard (Luks
1993), nothing in the above modification of A∗ requires this
relation to be the coarsest one. The specific approach sug-
gested by Pochter et al. constitutes a procedural mapping
C : S → S from states to states in their equivalence class.
This mapping C is implemented via a heuristic local search
in a space with states being our planning task states S, ac-
tions corresponding to the generators Σ, and state evalua-
tion being based on a lexicographic ordering of S. Each
local minimum in this space defines an equivalence class by
“defining itself” to be the canonical state s† of that class. In
other words, two states s and s′ are equivalent if their canon-
ical states are the same, that is s ∼ s′ iff C(s) = C(s′).

The empirical results obtained by Pochter et al. (2011)
by modifying the A∗ algorithm implementation of the Fast
Downward planner (Helmert 2006) were truly impressive.
First, the modified A∗ substantially outperformed the basic
A∗ in terms of the solved IPC benchmarks, and this across
numerous heuristic functions, from the trivial blind heuristic
to state-of-the-art abstraction and landmark heuristics. At
least as importantly, (i) the improvement was achieved in
numerous domains, and not only on the extremely symmet-
ric GRIPPER domain, and (ii) the improvement was robust in
the sense that, on no domain the time overhead of exploiting
Γ{s0},S∗ symmetries resulted in solving less tasks than with
the basic A∗. In what follows, we show that the envelope
of exploiting graph automorphisms in cost-optimal planning
with A∗ can be pushed even further.

A∗ Symmetry Breaking with ΓS∗

We now proceed with describing our approach, and we be-
gin with discussing a couple of motivating examples. Con-
sider the state transition graph depicted in Figure 1a. For this

1Our definition of PDG differs from the original one by Pochter
et al. (2011) in that action nodes are colored, to distinguish between
actions of different cost. This modification, however, is truly minor.

344



_
� �

K
�

K_ �
s0 //

��

?>=<89:;s1 // ?>=<89:;s2

��?>=<89:;76540123s∗

?>=<89:;s4 //

OO

?>=<89:;s5 // ?>=<89:;s6

OO

p1 p2

l1 l2

l3

t

p1 p2

l1 l2

l3

t

(a) (b)

Figure 1: Illustrations for the examples on ΓS∗ vs. Γ{s0},S∗ .

graph, the group Γ{s0},S∗ of stabilizers with respect to both
the initial state and the goal consists of only the trivial auto-
morphism σid, and thus it will not be useful for pruning. In
particular, A∗ with blind heuristic will examine all the states
s0, . . . , s6 before reaching the goal state s∗. Note, however,
that there exists σ ∈ ΓS∗ such that s1 = σ(s5), and thus, in
particular, h∗(s1) = h∗(s5). Hence, if A∗ happens to gen-
erate state s5 after generating state s1, then s5 can be safely
pruned without violating optimality of the search. The pic-
ture, of course, is not symmetric, and if s1 is discovered after
s5, then s1 cannot be pruned as it may lie on the only optimal
plan for the task (which is actually the case in this schematic
example). Later we show that something can be done about
s1 even in such situations.

To further illustrate the direction suggested by this
schematic example, consider a simple LOGISTICS example
with three, fully connected locations l1, l2, l3, two packages,
and a single truck. The packages p1 and p2 are initially at l1
and l2, respectively, and the goal is to bring both packages to
l3. Now, if the truck is initially at l3, then the two states de-
picted in Figure 1b are symmetric with respect to Γ{s0},S∗ ,
and thus only one of them will be expanded by A∗ modified
as in the previous section. However, if the truck is initially
at l1, that is, s0 is the state on the left of Figure 1b, then the
two states are no longer symmetric with respect to Γ{s0},S∗ ;
in fact, Γ{s0},S∗ now consists of only the trivial σid. It is,
however, very unreasonable to expand the state on the right
of Figure 1b as it is symmetric with respect to ΓS∗ to the
initial state of the task.

A simple property of plans and state automorphisms that
generalizes the intuition provided by the examples above
is as follows: Let Π be a planning task, Γ be a subgroup
of ΓS∗ , and (s0, s1, . . . , sk), (s0, s

′
1, . . . , s

′
l) be a pair of

plans for Π, that is, {sk, s′l} ⊆ S∗. If, for some i ∈ [k]
and i < j ∈ [l], si = σ(s′j) for some σ ∈ Γ, then
(s0, . . . , si−1, σ(s′j), . . . , σ(s′l)) is also a plan for Π, shorter
than the plan (s0, s

′
1, . . . , s

′
l).

While not very prescriptive in itself, this property leads
to the following observation about the prospects of exploit-
ing state automorphisms within A∗: In above terms, if A∗
generates si before generating s′j , then s′j can safely be
pruned. Moreover, if A∗ generates si after s′j , then we can
still “prune” si and continue working with s′j and its succes-
sors, as long as we memorize that s′j is no longer represents
itself, but its ΓS∗ -symmetric counterpart si.

The modification of A∗ required for exploiting this obser-
vation is described in Figure 2; notation gtmp(s), parent(s),
and act(s) capture standard search-node information associ-
ated with state s, respectively, distance-so-far, parent state,

1. Offline: Find a subset Σ of generators for the group
ΓS∗ . Let Γ ≤ ΓS∗ be the group generated by Σ.
Using Σ, find an equivalence relation ∼≤∼Γ.

2. Whenever search generates a state s such that
s ∼ s′ for some previously generated state s′, if
gtmp(s) < gtmp(s′), then set gtmp(s′) := gtmp(s),
parent(s′) := parent(s), and act(s′) := act(s), and
then reopen s′. Otherwise, if gtmp(s) ≥ gtmp(s′),
prune s as if it was never generated.

3. If a goal state s∗ is reached, (i) extract a
sequence of pairs of state and action π =
〈(ε, s0), (a1, s1), . . . , (am, sm)〉, where sm = s∗,
by the standard backchaining from s∗ along the
parent relation, setting actions by the act rela-
tion, and (ii) generate a valid plan from π using
trace-forward(π).

trace-forward(π) :
let π = 〈(ε, s0), (a1, s1), . . . , (am, sm)〉, and, for i ∈ [m],
let σi ∈ ΓS∗ be such that σi(si) = si−1JaiK
σ := σid, ρ := 〈ε〉
for i := 1 to m do

s := σ(si−1), σ := σi ◦ σ, s′ := σ(si)
append to ρ a cheapest action a such that sJaK = s′

return ρ

Figure 2: A∗ modification for symmetry breaking with ΓS∗ .

and action using which s is obtained from its parent. Actu-
ally, the core search mechanism of A∗ remains unchanged,
and at high level, step 2 can be summarized as: Whenever
search generates a state s such that s = σ(s′) for some pre-
viously generated state s′ and some σ ∈ Γ, treat s as if it was
s′. However, when the current path to s is shorter than the
current path to s′, the parent sp of s “adopts” s′ as a pseudo-
child while we memorize the action a such that s = spJaK.
The major difference of the algorithm here from the plain
A∗ is in the plan extraction routine. Plan extraction in A∗ is
done simply by backchaining from the discovered goal state
to the initial state along the parent connections. In contrast,
with the modified algorithm, some of these connections may
correspond to adoptions, that is, the chain π of action/state
pairs provided by the standard backchaining may correspond
neither to a plan for Π, nor even to an action sequence appli-
cable in s0.

While this is indeed so, π can still be efficiently converted
into a plan for Π, using the trace-forward procedure in Fig-
ure 2. The only not self-explanatory step there is determin-
ing mappings σi for i ∈ [m]: If si−1JaiK = si, that is, si−1

is the true parent of si, then σi = σid. Otherwise, we still
have si ∼ si−1JaiK, and let σ[i,1](si) = σ[i,2](si−1JaiK) =

s†, where σ[i,1] and σ[i,2] are determined using the local
search procedure C. Then, σi = σ−1

[i,2] ◦ σ[i,1].
The example depicted in Figure 3 illustrates this “plan

reconstruction” procedure. Figure 3a depicts the part of
the search space generated before the search reached the
goal state s∗; the states are numbered in the order of their
generation and solid arcs capture the successor relation be-

345



s0 1

2 3

45 6

7 8

910

s∗

(a) (b)

s0 1

2 3

45 6

7 8

910

s∗

x

y

z

σ

σ

σ σ′

σ ◦ σ′

Figure 3: Illustration of search result and plan extraction.

tween the states. Assume now that 5 ∼ 4 and 10 ∼ 9.
Given that, when 5 is generated, parent(4) is switched from
the true parent 3 to the “adopting parent” 2, and similarly,
parent(9) is switched from 8 to 7. These adoption rela-
tions are depicted in Figure 3a by dashed arcs. Figure 3b
depicts the backchained pseudo-plan π (thick arcs), as well
as the valid plan ρ, reconstructed from π in trace-forward
(filled rectangle). Only states s0 and 2 are shared by π
and ρ; states 5 and x are reconstructed from states 4 and
7, respectively, via state automorphism σ ∈ ΓS∗ for which
σ(4) = 5 = parent(4)Jact(4)K = 2Jact(4)K, and states
y and (goal state) z are reconstructed from 9 and s∗, re-
spectively, via composition of σ with σ′ ∈ ΓS∗ for which
σ′(9) = 10 = parent(9)Jact(9)K = 7Jact(9)K.

Performance Evaluation
We implemented our approach on top of the Fast Downward
planner (Helmert 2006), and evaluated it on all the applica-
ble benchmarks from IPC 1–6. The comparison was made
both to the approach of Pochter et al. we build upon, as well
as to the plain A∗ with no symmetry breaking. All of the
experiments were run on Intel E8200 with the standard time
limit of 30 minutes and memory limit of 2 GB.

Figure 4 depicts the results for our approach (ΓS∗ ), previ-
ous approach (Γ{s0},S∗ ), and plainA∗ in the context of blind
and LM-cut (Helmert and Domshlak 2009) heuristics. The
experiments with the blind heuristic aim at distilling the po-
tential of the symmetry breaking techniques, while the ex-
periments with the state-of-the-art LM-cut aim at realizing
the marginal contribution of symmetry breaking on top of
a relatively high-quality search guidance. The results are
presented in terms of both the number of problems solved
(“s”) and in terms of the node expansions until the solution
(“E”). The metric score of the number of node expansions
for configuration c on some problem is E∗/Ec, where Ec

is the number of nodes expanded under configuration c, and
E∗ is the best (minimal) number of node expansions by any
configuration on that problem. Thus the best value for each
problem is assigned a metric score of 1, and expanding twice
as many nodes would lead to a score of 0.5; not solving the
problem results in a score of 0. We report the total score for

Domain SA ΓS∗ Γ{s0},S∗ No symm
s E s E s E

airport 19 19 18.98 19 17.99 18 15.85
blocks 18 18 18.00 18 18.00 18 18.00
depot 5 5 5.00 4 2.30 4 1.91
driverlog 7 7 7.00 7 5.03 7 3.02
elevators 11 11 11.00 11 9.85 11 9.85
freecell 14 14 14.00 14 14.00 14 13.53
grid 1 1 1.00 1 0.88 1 0.88
gripper 20 20 20.00 20 20.00 7 0.13
logistics00 10 10 10.00 10 7.72 10 5.29
logistics98 2 2 2.00 2 0.71 2 0.71
miconic 51 51 51.00 51 44.57 50 27.17
mprime 20 19 16.23 20 19.86 19 14.82
mystery 19 19 17.20 18 17.22 18 14.54
openstacks08 23 23 23.00 23 22.63 18 5.68
openstacks06 7 7 7.00 7 7.00 7 3.44
parcprinter 10 10 10.00 10 10.00 10 10.00
pathways 4 4 4.00 4 4.00 4 2.94
pegsol 27 27 25.31 27 26.12 27 22.68
pipesworld-nt 15 15 15.00 14 8.25 13 4.47
pipesworld-t 17 17 17.00 14 5.40 10 2.86
psr-small 49 49 49.00 49 46.17 49 36.69
rovers 5 5 5.00 5 5.00 5 4.63
satellite 6 6 6.00 5 3.02 4 1.16
scanalyzer 13 12 12.00 13 11.68 13 6.53
sokoban 22 22 21.89 18 10.51 18 9.53
tpp 6 6 6.00 6 5.61 5 2.41
transport 11 11 10.93 11 8.98 11 7.88
trucks 5 5 5.00 5 4.58 5 4.14
woodworking 7 7 7.00 7 7.00 7 6.53
zenotravel 8 8 8.00 8 6.21 7 4.94

432 430 423.54 421 370.27 392 262.22

(a)
Domain SA ΓS∗ Γ{s0},S∗ No symm

s E s E s E
airport 28 28 28.00 28 27.92 28 27.92
blocks 28 28 28.00 28 28.00 28 28.00
depot 8 8 8.00 7 5.24 7 4.37
driverlog 13 13 13.00 13 12.53 13 10.98
elevators 22 22 22.00 22 20.64 22 20.06
freecell 15 15 15.00 15 15.00 15 14.55
grid 2 2 2.00 2 1.96 2 1.96
gripper 20 20 19.27 20 20.00 7 0.21
logistics00 20 20 19.45 20 19.98 20 16.57
logistics98 6 6 5.98 6 5.63 6 3.96
miconic 141 141 141.00 141 140.86 141 137.46
mprime 23 23 21.15 23 23.00 23 20.48
mystery 21 21 20.17 21 19.97 21 18.58
openstacks08 23 23 23.00 23 22.64 18 5.69
openstacks06 7 7 7.00 7 7.00 7 3.45
parcprinter 18 18 18.00 18 18.00 18 18.00
pathways 5 5 5.00 5 5.00 5 4.83
pegsol 28 28 26.20 28 27.79 27 23.31
pipesworld-nt 20 20 19.60 18 15.43 17 8.44
pipesworld-t 16 16 16.00 13 7.15 11 3.70
psr-small 50 50 50.00 49 47.52 49 39.07
rovers 7 7 7.00 7 7.00 7 6.95
satellite 12 12 11.99 10 9.04 7 5.02
scanalyzer 16 16 15.92 16 15.83 15 11.86
sokoban 29 28 27.02 29 19.93 28 17.10
tpp 7 7 7.00 7 6.97 6 4.37
transport 11 11 11.00 11 10.43 11 9.86
trucks 10 10 10.00 10 9.93 10 9.56
woodworking 17 17 17.00 17 16.76 16 13.66
zenotravel 13 13 12.63 13 12.93 13 11.77

636 635 627.36 627 600.09 598 501.72

(b)

Figure 4: Number of solved tasks and efficiency in terms of
expanded nodes with (a) blind and (b) LM-cut heuristics.

each domain, as well as the total score overall, and this over
all problems solved by some configuration (“SA”).

The results clearly testify for the increased effectiveness
of the new symmetry breaking method in terms of the num-
ber of problems solved, but probably even more so, in terms
of the search effort required to solve individual problems.
Overall, however, we believe that further progress can be
achieved in symmetry breaking for state-space search. The
message we hope our results communicate is that the key for
that progress might be in exploiting the information that ei-
ther can be or is already collected by the search algorithms.

346



References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Comp. Intell. 11(4):625–655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1–2):5–33.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In ECAI, 329–334.
Emerson, E. A., and Sistla, A. P. 1996. Symmetry and model
checking. Formal Methods in System Design 9(1–2):105–
131.
Fox, M., and Long, D. 1999. The detection and exploitation
of symmetry in planning problems. In IJCAI, 956–961.
Fox, M., and Long, D. 2002. Extending the exploitation of
symmetries in planning. In AIPS, 83–91.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In ICAPS, 140–149.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS, 162–169.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In AAAI, 944–949.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
ICAPS, 200–207.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Junttila, T., and Kaski, P. 2007. Engineering an efficient
canonical labeling tool for large and sparse graphs. In
ALENEX, 135–149.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI, 1728–1733.
Katz, M., and Domshlak, C. 2010. Implicit abstraction
heuristics. JAIR 39:51–126.
Luks, E. M. 1993. Permutation groups and polynomial-time
computation. In Groups and Computation, DIMACS Series
in Disc. Math. and Th. Comp. Sci., volume 11. 139–175.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Ex-
ploiting problem symmetries in state-based planners. In
AAAI, 1004–1009.
Puget, J.-F. 1993. On the satisfiability of symmetrical con-
strained satisfaction problems. In ISMIS, 350–361.
Rintanen, J. 2003. Symmetry reduction for SAT representa-
tions of transition systems. In ICAPS, 32–41.

347


	ICAPS12
	Contents
	Index
	Help
	Terms
	ICAPS Conferences
	AAAI




