
Factored Symmetries for Merge-and-Shrink Abstractions
Silvan Sievers and Martin Wehrle and Malte Helmert

University of Basel, Switzerland
{silvan.sievers,martin.wehrle,malte.helmert}@unibas.ch

Alexander Shleyfman
Technion, Haifa, Israel
alesh@tx.technion.ac.il

Michael Katz
IBM Haifa Research Lab, Israel

katzm@il.ibm.com

Abstract

Merge-and-shrink heuristics crucially rely on effective re-
duction techniques, such as bisimulation-based shrinking,
to avoid the combinatorial explosion of abstractions. We
propose the concept of factored symmetries for merge-and-
shrink abstractions based on the established concept of sym-
metry reduction for state-space search. We investigate under
which conditions factored symmetry reduction yields perfect
heuristics and discuss the relationship to bisimulation. We
also devise practical merging strategies based on this concept
and experimentally validate their utility.

Introduction
Heuristic search is a state-of-the-art approach for optimally
solving classical planning problems, and various admissible
heuristics have been proposed for this purpose. Merge-and-
shrink heuristics (Dräger, Finkbeiner, and Podelski 2009;
Helmert, Haslum, and Hoffmann 2007; Helmert et al. 2014)
are a general class of abstraction-based heuristics. Their
main drawback is the costly precomputation phase, which
is often a limiting factor for their practical applicability.

To limit the size of intermediate abstractions, shrinking
strategies are applied during the merge-and-shrink compu-
tation. State-of-the-art shrinking strategies are based on (ex-
act or approximate) bisimulation (Nissim, Hoffmann, and
Helmert 2011). Exact bisimulation can reduce the size of in-
termediate abstractions without losing precision. A further
technique to reduce the size of intermediate abstractions is
label reduction (Sievers, Wehrle, and Helmert 2014), which
unifies transition labels with equivalent behavior.

Complementary to heuristics like merge-and-shrink, state
space pruning techniques have recently found increasing at-
tention for improving the scalability of optimal search-based
planning algorithms. Pruning techniques tackle the state
explosion problem by reducing the branching factor of the
given planning task. A prominent example is symmetry re-
duction, which was originally proposed for computer-aided
verification and has recently seen much interest for planning
(Ip and Dill 1996; Pochter, Zohar, and Rosenschein 2011;
Domshlak, Katz, and Shleyfman 2012). Symmetry reduc-
tion identifies classes of “symmetric” states that do not need

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to be distinguished and (ideally) only considers one repre-
sentative of each class.

In this paper, we study the concept of symmetries in the
context of merge-and-shrink abstractions. We propose fac-
tored symmetries for families of abstract transition systems
and identify classes of such symmetries for which symmetry
reduction on individual abstractions results in perfect merge-
and-shrink heuristics. In addition, we investigate and dis-
cuss the relationship of local symmetries to the concept of
bisimulation and label reduction. Finally, we devise merging
strategies maximizing the application of symmetry reduc-
tion. Our empirical evaluation within the Fast Downward
planning system shows the potential of our approach.

Background
We introduce planning tasks, transition systems, merge-and-
shrink heuristics, and bisimulations.

Planning
We consider planning tasks in the SAS+ formalism
(Bäckström and Nebel 1995) extended with action costs.
A planning task is a 4-tuple Π = 〈V,O, s0, s?〉, where V
is a finite set of state variables, each with a finite domain
dom(v). A partial state s is a variable assignment over a
subset of V , denoted by vars(s). For a partial state s and
variable v ∈ vars(s), we write s[v] for the value assigned to
v in s. A partial state s is a state if vars(s) = V . The set O
is a finite set of operators, each with a precondition pre(o),
which is a partial state, an effect eff (o), also a partial state,
and a non-negative cost cost(o) ∈ R+

0 . The state s0 is the
initial state, and s? is a partial state called the goal.

A partial state complies with another partial state if they
agree on all variables for which both are defined. An opera-
tor o is applicable in state s if it complies with pre(o). The
result of applying o in s is the state s′ which complies with
eff (o) and satisfies s′[v] = s[v] for all v /∈ vars(eff (o)).

A transition system is a 5-tuple Θ = 〈S,L, T, s0, S?〉
where S is a finite set of states, L is a finite set of (tran-
sition) labels, where each label ` ∈ L has an associated cost
cost(`) ∈ R+

0 , T ⊆ S × L × S is a set of labeled tran-
sitions, s0 ∈ S is the initial state, and S? ⊆ S is the set
of goal states. We write s o−→ s′ ∈ Θ as a shorthand for
〈s, o, s′〉 ∈ T . A plan π = 〈`1, . . . , `n〉 for Θ is a path from

the initial state to any goal state, represented by the sequence
of labels. Its cost is

∑n
i=1 cost(`n). It is optimal if its cost

is minimal among all plans.
The state space of a planning task Π is the transition sys-

tem ΘΠ = 〈S,L, T, s0, S?〉 where S is the set of states of
Π, the labels L are the operators of Π with the given costs,
s o−→ s′ ∈ ΘΠ whenever operator o is applicable in state s
and results in state s′, s0 is the initial state of Π, and S? con-
tains all states that comply with the goal of Π. This paper
deals with the problem of optimal planning, i.e., finding an
optimal plan for ΘΠ or showing that no plan exists.

A heuristic is a function h : S → R+
0 ∪ {∞}. The per-

fect heuristic is the heuristic h∗ where h∗(s) is the cost of
an optimal plan starting in s. A heuristic h is admissible if
h(s) ≤ h∗(s) for all states s ∈ S.

Merge-and-Shrink Heuristics
An abstraction of a transition system Θ = 〈S,L, T, s0, S?〉
is a surjective function α : S 7→ Sα, where Sα is called the
set of abstract states. The abstract transition system induced
by α is the transition system Θα = 〈Sα, L, Tα, sα0 , Sα? 〉
where Tα = {〈α(s), l, α(s′)〉 | 〈s, l, s′〉 ∈ T}, sα0 = α(s0)
and Sα? = {α(s) | s ∈ S?}. The abstraction heuristic hα
maps each state s ∈ S to the cost of an optimal plan in Θα

starting in abstract state α(s). Abstraction heuristics are al-
ways admissible. We will sometimes consider the induced
equivalence relation ∼α, defined as s ∼α t iff α(s) = α(t).

Inspired by work in the context of model checking au-
tomata networks (Dräger, Finkbeiner, and Podelski 2006),
Helmert, Haslum, and Hoffmann (2007) proposed merge-
and-shrink heuristics for classical planning. The merge-and-
shrink framework allows for fine-grained abstraction heuris-
tics where the abstraction is computed incrementally by it-
erating between merging and shrinking steps on sets of ab-
stract transition systems with a common label set. Our expo-
sition is very brief, and we refer to the literature for details
(Sievers, Wehrle, and Helmert 2014).

For a planning task Π = 〈V,O, s0, s?〉 and a variable v ∈
V , the atomic abstraction αv is the projection to variable v:
α(s) = s[v]. The merge-and-shrink computation starts with
the set T = {Θαv | v ∈ V}, i.e., with all atomic transition
systems. Starting from T , the final abstraction is obtained
by repeatedly applying the following transformations:

1. Merging: Two transition systems Θα1 ,Θα2 ∈ T are re-
placed by their synchronized product Θα1 ⊗ Θα2 . This
corresponds to replacing abstractions α1 and α2 by α1 ⊗
α2 defined as (α1 ⊗ α2)(s) := (α1(s), α2(s)).

2. Shrinking: A transition system Θα ∈ T is replaced by an
abstracted version of itself. This corresponds to replacing
abstraction α by a coarser abstraction β ◦ α.

3. (Exact) label reduction: let L be the set of labels of T , and
let `1, `2 ∈ L with cost(`1) = cost(`2) be Θ-combinable
for some Θ ∈ T , i.e., for all transition systems Θ′ ∈ T \
{Θ}, `1 and `2 are locally equivalent (i.e., s `1−→ s′ ∈ Θ
iff s `2−→ s′ ∈ Θ). In all transition systems of T , replace
`1 and `2 by a fresh label ` with the same cost.1

1There exists a second kind of exact label reduction based on

A concrete merge-and-shrink heuristic is computed by
performing a sequence of such transformations until T only
contains a single transition system, whose corresponding ab-
straction then defines the resulting heuristic. Merging and
exact label reduction preserve information in the sense that,
if only they are applied, the resulting heuristic is perfect.
This is not generally true for shrinking.

Bisimulation
Bisimulation is a well-known criterion under which an ab-
stract transition system “exhibits the same observable be-
havior” as the original transition system (Milner 1990).

Nissim, Hoffmann, and Helmert (2011) propose using
bisimulation to define shrinking strategies for merge-and-
shrink heuristics. Let Θ be a transition system. An equiva-
lence relation∼ on the states of Θ is a bisimulation for Θ iff
s ∼ t implies that neither or both of s and t are goal states,
and for all transitions s `−→ s′ ∈ Θ there exists a transition
t `−→ t′ where s′ ∼ t′. (These rules are perhaps easiest to
understand with the intuition that states that are not bisim-
ilar are ones that “behave differently” in an important way.
If one of the states s and t is a goal state and the other one
is not, then they certainly behave differently. Similarly, if
there is a transition label that takes us from s and t to states
that behave differently – or that labels an outgoing transition
in only one of the two states – then they also behave dif-
ferently.) An abstraction α is a bisimulation if the induced
equivalence relation ∼α is. Shrinking with a bisimulation is
information-preserving.

Abstraction-Based Symmetries
Symmetry reduction for state-space search is based on au-
tomorphisms (symmetries) of the state space. The set of
all such automorphisms is closed under function composi-
tion and defines the automorphism group of the state space.
Each subgroup of the automorphism group induces an equiv-
alence relation on the state space, and only one state in each
equivalence class needs to be considered during search.

Current approaches find symmetries based on factored
planning task representations called problem description
graphs, or PDGs for short (Pochter, Zohar, and Rosenschein
2011). We generalize this concept to factored symmetries
based on arbitrary sets of abstract transition systems, study
the special cases of local and atomic symmetries and explore
their relationship to bisimulation and label reduction.

Factored Symmetries
We begin by introducing factored symmetries, which are de-
fined on sets of transition systems T with a common label
set. To simplify notation, we assume throughout the paper
that states of different transition systems in T can always
be distinguished, i.e., if Si and Sj are state sets of different
transition systems in T , then Si ∩ Sj = ∅. If σ is a func-
tion defined on states and labels, we extend it in the natural
way to sets of states (σ(X) = {σ(x) | x ∈ X}), sets of
sets of states (σ(X) = {σ(X) | X ∈ X}) and transitions
(σ(〈s, `, s′〉) = 〈σ(s), σ(`), σ(s′)〉).

global subsumption of labels, which is not relevant for this paper.

Definition 1. Let T = {Θ1, . . . ,Θn} be a set of tran-
sition systems with common label set L, where Θi =
〈Si, L, T i, si0, Si?〉 for all i ∈ {1, . . . , n}. A factored sym-
metry of T is a permutation σ of the set

⋃n
i=1 S

i ∪ L that
maps states to states and labels to labels such that

1. σ({S1, . . . , Sn}) = {S1, . . . , Sn}
2. σ(

⋃n
i=1 S

i
?) =

⋃n
i=1 S

i
?

3. σ(
⋃n
i=1 T

i) =
⋃n
i=1 T

i

4. cost(σ(`)) = cost(`) for all ` ∈ L
The four conditions guarantee that a factored symmetry

preserves the grouping of states into transition systems, the
goal state property, the transition structure, and label costs.
We illustrate the definition with the example in Figure 1,
corresponding to a planning task with four variables a, b, c
and d and uniform-cost operators ox,y for certain pairs of
x, y ∈ {a, b, c, g} that change x from 1 to 0 and y from 0 to
1. The mapping σ that cyclically rotates all facts and opera-
tors related to variables {a, b, c} is a factored symmetry.

When applied to the atomic transition systems of a plan-
ning task, Definition 1 is equivalent to the definition of PDG
symmetries in earlier work. However, it is not limited to
this case. On the opposite end of the spectrum, the case
T = {ΘΠ} captures a semantic notion of state space sym-
metry in a non-factored representation.

More generally, the definition can be applied to any in-
termediate result in the computation of a merge-and-shrink
abstraction. We say that a set of transition systems T rep-
resents the transition system T ⊗ obtained by merging its
components. A factored symmetry σ of T naturally induces
a permutation σ⊗ on the states S⊗ of T ⊗, and Definition 1
guarantees that h∗(σ⊗(s)) = h∗(s) for all s ∈ S⊗.

Like other notions of symmetry, factored symmetry is
closed under composition (if σ and τ are factored symme-
tries, then so is σ ◦ τ) and hence induces a group structure.
If Γ is a set of factored symmetries for T , then we say that
two states s and s′ of T ⊗ are symmetric under Γ, in sym-
bols s ∼Γ s′, if σ⊗(s) = s′ for some factored symmetry σ
in the group generated by Γ. This is an equivalence relation,
and states in the same equivalence class always share the
same h∗ value. The factored symmetry in Figure 1 induces
an equivalence relation showing that, for example, all states
containing g0 and exactly one of {a1, b1, c1} are symmetric.

In the special case where Γ is the set of all factored sym-
metries of T , we simplify this notation to s ∼ s′ and say
that s and s′ are symmetric under factored symmetry.

Interaction with Merging and Shrinking
We want to combine reasoning about symmetries with the
manipulation of transition systems in the merge-and-shrink
framework. It is then natural to ask how factored symmetries
interact with merging and shrinking.

It is easy to see that the interaction between shrinking and
factored symmetries is in general unpredictable. For exam-
ple, we may have s ∼ s′ in the set of transition systems T ,
but β(s) 6∼ β(s′) for the corresponding abstracted states
after shrinking with abstraction β. This happens when a
shrinking step “breaks” an existing symmetry, for example

a0

a1

b0

b1

c0

c1

g0

g1

ob,c, ob,g, oc,g

oc,a

oa,b

oa,g

ob,c, ob,g, oc,g

oc,a, oa,g, oc,g

oa,b

ob,c

ob,g

oc,a, oa,g, oc,g

oa,b, oa,g, ob,g

ob,c

oc,a

oc,g

oa,b, oa,g, ob,g

oa,b, ob,c, oc,a

oa,g

ob,g

oc,g

oa,b, ob,c, oc,a

Figure 1: Factored symmetry example: rotating a 7→ b 7→
c 7→ a in all abstract states (e.g., σ(b1) = c1) and labels
(e.g., σ(oa,b) = ob,c) is a factored symmetry.

by combining a0 and a1 in Figure 1. The converse case is
also possible: we may have s 6∼ s′ before shrinking, but
β(s) ∼ β(s′) after shrinking if the abstraction removes the
obstacles to the symmetry of s and s′. This should come
as little surprise because shrinking can transform a transi-
tion system in essentially arbitrary ways. We will discuss
the special case of bisimulation-based shrinking later.

Perhaps somewhat surprisingly, merging can also affect
the symmetry properties of T unpredictably. To see this, ob-
serve that the symmetry property between states a1b0c0g0

and a0b0c1g0 is lost when merging the two transition sys-
tems at the left of Figure 1 (which shows that symmetry can
be lost by merging), and the same symmetry is recovered
by then merging this product by the third transition system
(showing that symmetries can be gained by merging). In
summary, these considerations show that it can be beneficial
to search for new symmetries after each transformation step
in the construction of merge-and-shrink heuristics.

Local and Atomic Symmetries
Non-factored state spaces have the property that combining
symmetric states (formally: abstracting by mapping each
state to its orbit in the symmetry group) preserves opti-
mal goal distances. It is thus natural to attempt using fac-
tored symmetries for information-preserving shrinking in the
merge-and-shrink framework. The first obstacle to this is
that shrinking happens at the level of individual transition
systems Θ ∈ T , while symmetries like the one in Figure 1
can critically rely on relationships between different transi-
tion systems. We thus now consider a subclass of symme-
tries that “stay within” the individual abstractions.
Definition 2. A factored symmetry σ of a set of transition
systems T stabilizes Θ ∈ T if σ maps states of Θ to states
of Θ. A factored symmetry is local if it stabilizes all Θ ∈ T .

Local symmetries are closed under composition and
hence form a subgroup of the group of factored symmetries.
Since local symmetries stay within each abstraction in T ,
they can be used to define an equivalence class on abstract
states: for all Θ ∈ T and all states s, s′ of Θ, we set s ∼ s′
if there exists a local symmetry σ with σ(s) = s′.

By analogy to the use of symmetries in the global state
space, it may appear natural to use this equivalence relation
as a basis for abstraction (shrinking). However, such a use of

ta tb

tc

drive

drivedrive

(un)load (un)load

(un)load

pa pt

pb pc

(un)load

(un)load
(un)load

drive

drive drive

drive

Figure 2: Example transportation task: atomic abstractions
Θt of truck (left) and Θp of package (right). For brevity,
edges generally correspond to several labels.

tapa

tbpa

tcpa

tapb

tbpb

tcpb

tapc tbpc

tcpc

tapt tbpt

tcptdrive

drive

drive

drive

drive

drive
drive

drive
drive

drive

drive
drive

(un)load (un)load

(un)load

tcpa

tcpb

tapatapb

tbpatbpb

tapt

tbpt

tcpt tcpc

tapc

tbpc
drive

drive

(un)load

drive

drive

(un)load

drive

drive

Figure 3: Example transportation task: synchronized prod-
uct Θt ⊗ Θp (above) and abstraction obtained by shrink-
ing based on local symmetries before merging (below). For
brevity, edges generally correspond to several labels.

symmetries is not information-preserving, i.e., can lead to a
loss of precision in the resulting merge-and-shrink heuristic.

Proposition 1. Shrinking based on local symmetries is not
information-preserving.

To prove the proposition, we give an example where
shrinking based on local symmetries before merging results
in an imperfect heuristic. We use a simple transportation
task Π with a truck t, a package p, and locations a, b and c.
Figure 2 shows the abstract transition systems Θt and Θp for
the projections to the truck and package. All operator costs
are 1. As indicated by the double circles, the goal is for the
package to be at c. The initial state can be chosen arbitrarily.

There is a local symmetry σ that swaps the role of loca-
tions a and b everywhere (e.g., σ(ta) = tb; σ(pa) = pb).
Shrinking based on local symmetries would thus combine
ta and tb to a common abstract state (“truck at a or b”), and
similarly it would combine pa and pb (“package at a or b”).

Figure 3 shows the unabstracted global state space (top)
compared to the transition system obtained by performing
this abstraction and then merging (bottom). We see that the
abstraction loses precision: for example, it leads to the esti-
mate h(tbpa) = 3 instead of the correct h∗(tbpa) = 4. Intu-

itively, even though locations a and b are locally symmetric
in Θt and Θp, they cannot simply be combined: this loses
the distinction between states where the truck and package
are at the same location and those where they are not.

This problem can be resolved by further restricting the
notion of local symmetries to atomic symmetries.

Definition 3. A factored symmetry σ of a set of transition
systems T affects Θ ∈ T if there exists a state s of Θ with
σ(s) 6= s. A factored symmetry is atomic if it affects at most
one transition system Θ ∈ T .

Clearly atomic symmetries are a subset of local symme-
tries. Unlike local symmetries, they do not form a group: the
composition of atomic σ1 and σ2 is non-atomic if they affect
different transition systems. However, for any fixed Θ, the
atomic symmetries affecting at most Θ form a group.

Proposition 2. Shrinking based on atomic symmetries is
information-preserving.

In more detail, let T = {Θ1, . . . ,Θn}, and let T ′ =
{Θ′1, . . . ,Θ′n}, where each Θ′i is obtained from Θi by ab-
stracting based on an atomic symmetry affecting (at most)
Θi. Then T ′⊗ defines a perfect heuristic for T ⊗. We post-
pone the proof of this proposition, as it follows from a more
general result in the following section.

That fact that they allow for shrinking strategies that
maintain perfection makes atomic symmetries particularly
attractive, and we would like to exploit this result even for
abstractions that are not atomic. The following result shows
that we can achieve this by merging all transition systems
affected by a given symmetry.

Proposition 3. Let σ be a factored symmetry of a set of tran-
sition systems T that affects (exactly) the transition systems
T σ ⊆ T . Let T ′ be the set of transition systems obtained
from T by merging all transition systems in T σ . Then T ′
contains an atomic symmetry σ′ that induces the same sym-
metry on T ⊗ as σ.

Proof. Let T = {Θ1, . . . ,Θn}, and let k ∈ {1, . . . , n} such
that σ affects exactly the transition systems Θi with i ≤ k.
We get T ′ = {Θ′,Θk+1, . . . ,Θn} with Θ′ =

⊗k
i=1 Θi.

States of Θ′ can be written as sets of the form {s1, . . . , sk},
where each si is a state of Θi. (It is more common to use
tuples instead of sets, but the two representations are equiva-
lent because we require states of different transition systems
to be disjoint. Using sets simplifies the definition of σ′.)

We define σ′(`) = σ(`) for all labels `, σ′(sj) = sj for all
states sj of Θk+1, . . . ,Θn, and finally σ′({s1, . . . , sk}) =
{σ(s1), . . . , σ(sk)}. It is easy to verify that σ′ satisfies all
properties of symmetries (because σ does) and that it in-
duces the same symmetry on T ⊗ as σ. Also, it is clearly
atomic, affecting only Θ′.

Relationship to Bisimulation
Symmetry and bisimulation are similar concepts, as both
identify (possibly smaller) structures with equivalent behav-
ior. Hence, a natural question is to ask about their relation-
ship. For non-factored transition systems, it is well-known

that every symmetry induces a bisimulation (Clarke, Grum-
berg, and Peled 2000). It is also easy to see that the con-
verse does not hold. The transportation task example shows
that nontrivial factored symmetries, even local ones, do not
necessarily induce nontrivial bisimulations on the individual
transition systems. (There are no nontrivial bisimulations in
the abstract transition systems of the example.)

We now show that for fully label-reduced sets of transi-
tion systems (i.e., where no two labels can be combined by
exact label reduction), atomic symmetries are captured by
bisimulation.

Proposition 4. Let T be a fully label-reduced set of tran-
sition systems, and let Θ ∈ T . Let ∼ be the equivalence
relation on Θ induced by the atomic symmetries of T affect-
ing at most Θ. Then ∼ is a bisimulation of Θ.

Proof. Let S be the states of Θ. We show that ∼ ⊆ S × S
satisfies the two properties of bisimulations: (1) if s ∼ t,
then neither or both of s and t are goal states; (2) if s ∼ t
and s `−→ s′ ∈ Θ, then t `−→ t′ ∈ Θ for some t′ with s′ ∼ t′.

Consider s, t ∈ S with s ∼ t. Then there exists a local
symmetry σ of T affecting at most Θ such that σ(s) = t.
From the goal-perserving property of symmetries, we get
(1). To show (2), consider ` ∈ L and s′ ∈ S such that
s `−→ s′ ∈ Θ. From the definition of symmetry, we get
σ(s) σ(`)−−→ σ(s′) ∈ Θ. Defining t′ = σ(s′), we obtain
t σ(`)−−→ t′ ∈ Θ and s′ ∼ t′. To complete the proof, we will
show σ(`) = ` and hence t `−→ t′ ∈ Θ, which proves (2).

Consider any of the other transition systems Θ̂ ∈ T \{Θ}.
Because σ is an atomic symmetry affecting at most Θ, it
maps each state of Θ̂ to itself. Hence, σ maps each ŝ `−→ ŝ′ ∈
Θ̂ to σ(ŝ) σ(`)−−→ σ(ŝ′) = ŝ σ(`)−−→ ŝ′ ∈ Θ̂. In other words,
every transition with label ` in Θ̂ has a parallel transition
with label σ(`). The converse also holds because σ−1 is
also an atomic symmetry affecting at most Θ. This shows
that ` and σ(`) are locally equivalent in Θ̂.

This local equivalence holds for all Θ̂ 6= Θ, and
hence ` and σ(`) are Θ-combinable. Moreover, we have
cost(σ(`)) = cost(`) because σ is a factored symmetry.
Therefore, if σ(`) 6= `, the two labels satisfy the two re-
quirements for exact label reduction, which contradicts our
requirement that T is fully label-reduced. Hence we must
have σ(`) = `, concluding the proof.

Proposition 2 follows as a corollary because shrink-
ing based on bisimulation is known to be information-
preserving (Helmert et al. 2014). More importantly, the re-
sult shows that existing bisimulation-based shrink strategies
automatically capture redundancies exploitable by atomic
symmetries when using full label reduction.

Experiments
In this section, we propose and evaluate a general ap-
proach for including symmetry reasoning in the merge-and-
shrink framework. We have seen that shrinking based on
atomic symmetries is information-preserving, while shrink-
ing based on other classes of factored symmetries is not. We
exploit this information by tailoring the merging strategy to

force the occurrence of atomic symmetries. Specifically, if
we detect a factored symmetry σ affecting k transition sys-
tems and then merge these transition systems, σ becomes an
atomic symmetry only affecting the merged system.

We have also seen that state-of-the-art approaches using
bisimulation-based shrinking and label reduction based on
Θ-combinability automatically exploit atomic symmetries,
so there is no need to adapt the shrinking strategy.

Finally, we have seen that new symmetries can arise at
any time during the merge-and-shrink process, so it can pay
off to search for new factored symmetry in every iteration of
the merge-and-shrink loop.

Algorithm 1 Symmetry-based merge-and-shrink.
1 If |N | ≤ 1:
2 Compute a set Σ of non-atomic symmetries of T .
3 If Σ 6= ∅:
4 LetN := {Θ ∈ T | Θ is affected by one chosen σ ∈ Σn}
5 If |N | ≥ 2:
6 Choose Θ1,Θ2 ∈ N .
7 else
8 Choose Θ1,Θ2 according to basic merging strategyM .
9 Apply label reduction w.r.t. basic strategy L on all abstractions in T .

10 Apply shrinking w.r.t basic strategy S on Θ1,Θ2.
11 Replace Θ1,Θ2 with Θ1 ⊗Θ2 inN (if applicable) and T .

Algorithm 1 shows one iteration of the symmetry-
enhanced merge-and-shrink algorithm resulting from these
observations. It augments an existing merging strategy M ,
shrinking strategy S and label reduction strategy L as fol-
lows: initially, let N := ∅. As usual, the merge-and-shrink
procedure is executed until |T | = 1. Whenever we are cur-
rently not pursuing any merging policy based on symmetries
(line 1 triggers), we compute factored symmetries of T and,
if any are found, store all affected abstractions of a chosen
one inN (line 4). The next pair of abstractions to be merged
is chosen either according to the set N , if it contains at least
two abstractions (line 6), or according toM (line 8). The rest
of the procedure corresponds to regular merge-and-shrink.

Two design choices remain: the choice of one non-atomic
symmetry σ of the set Σ (line 4) and the decision which pair
of transition systems to choose from N (line 6). Regard-
ing the first choice, we tried selecting the symmetry which
affects the least or the most abstractions of T . The lat-
ter led to slightly better results in preliminary experiments,
and we report results for this configuration. Concerning the
second choice, we settled on the following non-linear pol-
icy: we first merge all abstractions which are non-locally
affected (i.e., mapped onto other abstractions) separately for
each such cycle of mapped abstractions. After these merges,
the induced symmetry is local, and we linearly merge all re-
maining abstractions affected by the symmetry.

Experimental Setup
We evaluate our approach for optimal planning with A∗

and the merge-and-shrink framework in the Fast Downward
planner (Helmert 2006), using all optimal IPC benchmarks
up to 2011 that supported by merge-and-shrink (44 domains

Coverage (blind search: 519) #successful M&S constr.

base symm symm-1 base symm symm-1

CGGL-B-N50K 600 646 637 1138 1177 1181
DFP-B-N50K 644 657 646 1181 1204 1203
MIASM-B-N50K 654 659 660 1159 1162 1172
RL-B-N50K 634 652 643 1202 1219 1216
RND-B-N50K 583 622 605 1165 1207 1200

Table 1: Coverage (left part) and number of M&S abstrac-
tions built within the resource limits (right part) for dif-
ferent M&S strategies (see section “Experimental Setup”
for abbreviations). Base: original strategy; symm: strategy
with our symmetry enhancement; symm-1: strategy with our
symmetry enhancement limited to symmetries found on the
set of atomic abstractions in the first M&S iteration. Best
configuration for every M&S strategy in bold.

and 1396 instances). Our experiments are performed on ma-
chines with Intel Xeon E5-2660 CPUs running at 2.2 GHz,
using a time bound of 30 minutes and a memory bound of 2
GB per run. Factored symmetries are computed with Bliss
(Junttila and Kaski 2007). We limit the overall time budget
for Bliss to T = 60 seconds, skipping line 1 in Algorithm 1
once this time budget is exhausted.

We use state-of-the-art strategies for merge-and-shrink,
including the linear merging strategies reverse level RL (Nis-
sim, Hoffmann, and Helmert 2011), causal graph goal level
CGGL (Helmert, Haslum, and Hoffmann 2007) and the ran-
dom strategy RND based on a random variable order, and
the non-linear merging strategies DFP (Sievers, Wehrle, and
Helmert 2014; Dräger, Finkbeiner, and Podelski 2009) and
MIASM (Fan, Müller, and Holte 2014).2 The most power-
ful shrinking strategies are based on bisimulations (Helmert
et al. 2014; Katz, Hoffmann, and Helmert 2012). We focus
on the shrinking strategy based on bisimulation B with limit
N = 50000 for the maximal size of all transition systems
during the merge-and-shrink computation.

Experimental Results
Table 1 shows the summary of our results. Most importantly,
we observe that the symmetry enhancement (symm) increase
coverage for all strategies. Apparently, one reason for this
is the ability to successfully finish the computation of the
merge-and-shrink abstractions more often. Clearly, being
able to successfully compute the merge-and-shrink abstrac-
tion is an obvious, yet important requirement of successfully

2While merging for symmetries seamlessly fits the linear merg-
ing strategies (whenever the atomic abstraction to be merged next
according to the linear merging strategy has been merged with
some other abstractions, we simply take the result of the previous
merge(s)) and also the dynamically computed DFP strategy, this
is not true for the MIASM strategy, which is precomputed before
the actual merge-and-shrink computation. Our current implemen-
tation of MIASM does not take into account symmetries during
the precomputation step, and hence we arbitrarily “break” the pre-
computed merging order when merging according to symmetries
in intermediate merge-and-shrink iterations.

Coverage CGGL base CGGL symm

gripper (20) 7 +11
parking-opt11-strips (20) 0 +7
mystery (30) 12 +5
pipesworld-tankage (50) 9 +5
airport (50) 11 +4
miconic (150) 74 +4
mprime (35) 20 +3
pipesworld-notankage (50) 12 +3
sokoban-opt08-strips (30) 27 +3
elevators-opt08-strips (30) 12 +1
elevators-opt11-strips (20) 10 +1
trucks-strips (30) 7 +1
visitall-opt11-strips (20) 9 +1
woodworking-opt08-strips (30) 11 +1
woodworking-opt11-strips (20) 6 +1
logistics98 (35) 5 -1
nomystery-opt11-strips (20) 19 -1
satellite (36) 7 -1
tidybot-opt11-strips (20) 1 -1
zenotravel (20) 11 -1

Sum (716) 270 +46

Remaining domains (680) 330 ±0

Sum (1396) 600 646

Table 2: Improvement in coverage on a per-domain basis for
CGGL base vs. CGGL symm. Best values in bold.

finding plans with the resulting heuristic. The number of
successful M&S constructions is shown on the right part of
Table 1, demonstrating a significant increase compared to
the baseline strategies (base).

To show the benefits of recomputing symmetries in every
merge-and-shrink iteration, Table 1 also shows results where
Bliss is only invoked in the first merge-and-shrink iteration
(symm-1). Clearly, running Bliss only once is beneficial al-
ready, but the overall strategy profits from the information
gained in further runs (with the exception of MIASM).

The strongest benefits with our framework are obtained
for the CGGL strategy with 46 additional problems solved.
Considering the usual exponential growth in complexity in
the size of the problem instances, this is a substantial im-
provement. The lowest coverage increase is obtained for
the MIASM strategy. Again, note that our integration of
MIASM and symmetries is very basic (see footnote 2 and
section “Conclusions”). We further investigate per-domain
performance of the CGGL strategy to verify that the symme-
try enhancement is beneficial in a broad range of domains.
Table 2 shows that coverage improves in 15 out of 44 do-
mains, whereas it decreases in 5 domains, and then only
by 1 task. In the remaining 24 domains, the configurations
achieve equal coverage and hence the domains are displayed
in an aggregated row.

Considering the quality of the resulting heuristic, we
again provide details for the CGGL strategy. Figure 4
compares the number of expansions of CGGL base against
CGGL symm on all domains. Figure 5 shows the same data
in a way that allows distinguishing the different domains,

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

unsolved

unsolved

CGGL-B-N50K base

C
G

G
L
-B

-N
50

K
sy

m
m

Figure 4: Expansions for CGGL base vs. CGGL symm.

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

unsolved

unsolved

CGGL-B-N50K base

C
G

G
L
-B

-N
50

K
sy

m
m

airport
elevators-opt08-strips
elevators-opt11-strips
gripper
logistics98
miconic
mprime
mystery
nomystery-opt11-strips
parking-opt11-strips
pipesworld-notankage
pipesworld-tankage
satellite
sokoban-opt08-strips
tidybot-opt11-strips
trucks-strips
visitall-opt11-strips
woodworking-opt08-strips
woodworking-opt11-strips
zenotravel

Figure 5: Expansions for CGGL base vs. CGGL symm only
on domains where both configurations do not obtain the
same coverage.

10−1 100 101 102 103
10−1

100

101

102

103

unsolved

unsolved

CGGL-B-N50K base

C
G

G
L
-B

-N
50

K
sy

m
m

Figure 6: Runtime for CGGL base vs. CGGL symm.

Outcome CGGL base CGGL symm CGGL symm-1

M&S out of memory 143 100 96
M&S out of time 115 119 119
Search out of memory 530 524 536
Search out of time 4 2 3
Proved unsolvable 4 5 5
Solved 600 646 637

Table 3: Detailed outcomes (such as reasons for failing to
solve a task) for all three CGGL configurations. Best values
in bold.

Outcome CGGL base vs. symm CGGL base vs. symm-1

M&S out of memory 27 23
M&S out of time 0 0
Search out of memory 25 19
Search out of time 0 0
Solved 594 595

Table 4: Behavior of CGGL base on the tasks solved by
the two symmetry-enhanced strategies. Column CGGL base
vs. symm shows results only for the tasks solved by CGGL
base; similarly for the other column.

for clarity restricted to the domains of Table 2 where the
two configurations do not achieve the same coverage. Fi-
nally, we also compare the runtime of both configurations
on the full benchmark set (Figure 6). While there is a larger
number of cases where the symmetry-based configuration
requires significantly fewer expansions than for the baseline,
the clearest distinguishing characteristic is that there are far
more tasks that the symmetry-based configuration solves but
the baseline does not.

We hence further investigate the reasons of failure for the
three CGGL configurations. Table 3 lists the number of tasks
for which either the merge-and-shrink construction or the
search runs out of memory or time, as well as the number
of solved tasks and tasks proved unsolvable. We observe
that using symmetries drastically decreases the number of
tasks where the configuration runs out of memory, which
means that we obtain more compact abstractions with the
improved merging strategy. At the same time, the number of
timeouts remains nearly the same both for the merge-and-
shrink computation and the search.

To see the differences between the CGGL baseline and
our two symmetry-enhanced strategies, we report the same
reasons of failure for the CGGL baseline on benchmarks
solved by the symmetry-enhanced CGGL configuration we
compare against. Table 4 shows the comparison of CGGL
base against CGGL symm (left column) and against CGGL
symm-1 (right column). We observe that all 52 tasks that
the baseline cannot solve compared to CGGL symm are due
to reaching the memory limit, where in 27 cases this limit is
reached during the merge-and-shrink computation. Similar
results hold when comparing against CGGL symm-1. These
observations match the previous ones.

Bliss Failures CGGL symm CGGL symm-1

Bliss out of memory 145 2
Bliss out of time 386 0

Table 5: Number of tasks for which the computation of sym-
metries with Bliss failed for CGGL configurations.

To show the impact on resource consumption of using
Bliss for symmetry detection, Table 5 lists the number of
tasks for which the symmetry computation runs out of mem-
ory or time, if the time limit applies (configuration CGGL
symm). Note that whenever Bliss runs out of memory or
time, we continue the merge-and-shrink computation with-
out any further use of symmetries. We observe that sym-
metry computation is expensive and often reaches resource
limits. Our previously discussed results show, however, that
computing symmetries either only once or for a relatively
short total time of one minute pays off.

Conclusions
We introduced factored symmetries for sets of transition
systems and discussed their relationship to the merge-and-
shrink framework. We showed that merging and shrinking
operations can lead to the loss of symmetries as well as the
discovery of new ones and that the special class of atomic
symmetries is captured by bisimulation-based shrinking and
exact label reduction. We proposed a general way to en-
hance merge-and-shrink computations by symmetry reason-
ing and experimentally demonstrated its utility.

One possible future research direction is the tighter inte-
gration of symmetry reasoning with the MIASM strategy,
which is based on estimating the required size of interme-
diate abstractions. Symmetry information could be used to
make this estimation process more accurate. Another direc-
tion for future work is to study imperfect shrinking strate-
gies using symmetry information, for example based on non-
atomic local symmetries.

Acknowledgments
We thank the anonymous reviewers for their comments,
which helped improve the paper. This work was supported
by the Swiss National Science Foundation (SNSF) and by
the Israel Science Foundation (ISF) grant 1045/12.

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 2000. Model
Checking. The MIT Press.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In McCluskey, L.; Williams, B.; Silva, J. R.;
and Bonet, B., eds., Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2012). AAAI Press.

Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. In
Valmari, A., ed., Proceedings of the 13th International SPIN
Workshop (SPIN 2006), volume 3925 of Lecture Notes in
Computer Science, 19–34. Springer-Verlag.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2009. Directed
model checking with distance-preserving abstractions. In-
ternational Journal on Software Tools for Technology Trans-
fer 11(1):27–37.
Fan, G.; Müller, M.; and Holte, R. 2014. Non-linear merg-
ing strategies for merge-and-shrink based on variable inter-
actions. In Proceedings of the Seventh Annual Symposium
on Combinatorial Search (SoCS 2014), 53–61. AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM 61(3):16:1–63.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007), 176–183. AAAI
Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Ip, C. N., and Dill, D. L. 1996. Better verification through
symmetry. Formal Methods in System Design 9(1–2):41–75.
Junttila, T., and Kaski, P. 2007. Engineering an efficient
canonical labeling tool for large and sparse graphs. In Pro-
ceedings of the Ninth Workshop on Algorithm Engineering
and Experiments (ALENEX 2007), 135–149. SIAM.
Katz, M.; Hoffmann, J.; and Helmert, M. 2012. How to relax
a bisimulation? In McCluskey, L.; Williams, B.; Silva, J. R.;
and Bonet, B., eds., Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2012), 101–109. AAAI Press.
Milner, R. 1990. Operational and algebraic semantics of
concurrent processes. In van Leeuwen, J., ed., Handbook
of Theoretical Computer Science, Volume B: Formal Models
and Sematics. Elsevier and MIT Press. 1201–1242.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
Walsh, T., ed., Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI 2011), 1983–
1990.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Ex-
ploiting problem symmetries in state-based planners. In Bur-
gard, W., and Roth, D., eds., Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence (AAAI 2011),
1004–1009. AAAI Press.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Gener-
alized label reduction for merge-and-shrink heuristics. In
Proceedings of the Twenty-Eighth AAAI Conference on Ar-
tificial Intelligence (AAAI 2014), 2358–2366. AAAI Press.

