
Safety Verification of Tree-Ensemble Policies via Predicate Abstraction
Chaahat Jain1, Lorenzo Cascioli2, Laurens Devos2, Marcel Vinzent1, Marcel Steinmetz3,

Jesse Davis2, Jörg Hoffmann1,4

1 Saarland University, Saarland Informatics Campus, Germany
2 Department of Computer Science, KU Leuven, Leuven, Belgium

3 LAAS-CNRS, ANITI, Université de Toulouse, INSA, France
4 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
⟨last⟩@cs.uni-saarland.de, ⟨first⟩.⟨last⟩@kuleuven.be, marcel.steinmetz@laas.fr

Abstract

Learned action policies are gaining traction in AI, but come
without built-in safety guarantees. Recent work devised a
method for safety verification of neural policies via predicate
abstraction. Here we extend this approach to policies repre-
sented by tree ensembles, through replacing the underlying5

SMT queries with queries that can be dispatched by Veritas,
a reasoning tool dedicated to tree ensembles. The query lan-
guage supported by Veritas is limited, and we show how to
encode richer constraints we need into additional trees added
to the policy ensemble. On benchmarks previously used to10

evaluate neural policy verification, we find that (1) tree en-
sembles can learn policies highly competitive with the neural
policies, while at the same time (2) these tree-ensemble poli-
cies can be orders of magnitude faster to verify.

1 Introduction15

Learned action policies are gaining traction in AI (e.g., Mnih
et al. 2015; Silver et al. 2016, 2018), including in AI plan-
ning (Issakkimuthu, Fern, and Tadepalli 2018; Groshev et al.
2018; Garg, Bajpai et al. 2019; Toyer et al. 2020; Karia and
Srivastava 2021; Ståhlberg, Bonet, and Geffner 2022a,b).20

However, such policies come without built-in safety guaran-
tees. Given a policy π, a start condition ϕ0, and an unsafety
condition ϕu, how to verify whether an unsafe state su |= ϕu

is reachable from a given start state s0 |= ϕ0 under π?
Research on this question is still in its early stages. In the25

formal methods community, prominent lines of works ad-
dress neural controllers of dynamical systems (Sun, Khedr,
and Shoukry 2019; Tran et al. 2019; Huang et al. 2019;
Dutta, Chen, and Sankaranarayanan 2019) or hybrid systems
(Ivanov et al. 2021). Here we follow up on recent work in30

the AI planning community (Vinzent, Steinmetz, and Hoff-
mann 2022; Vinzent, Sharma, and Hoffmann 2023), which
tackles neural policies taking discrete action choices in non-
deterministic state spaces, via policy predicate abstraction
(PPA). PPA builds an over-approximating abstraction not of35

the full state space Θ, but of the state-space subgraph con-
taining only those transitions taken by π. While building
that abstraction, for each possible abstract state transition
(sP , l, s

′
P), an SMT solver is queried to decide whether π se-

lects the necessary label l for at least one corresponding con-40

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

crete state transition (s, l, s′). This SMT query is dispatched
to Marabou (Katz et al. 2019), an SMT solver tailored to
neural network analysis.

Here we extend this approach to another family of learned
action policies, namely ones represented by tree ensem- 45

bles (Breiman 2001; Friedman 2001; Chen and Guestrin
2016) which have proven to be powerful predictors in many
ML problems (Grinsztajn, Oyallon, and Varoquaux 2022).
Our key observation is that PPA is in principle agnostic to
the policy representation, provided there exists a reasoning 50

mechanism to which the abstract state transition queries can
be dispatched. Given this, we can leverage progress on rea-
soning about other kinds of ML models. Here, we show how
to do this for the Veritas tool which excels in analyzing
tree-ensemble predictions (Devos, Meert, and Davis 2021; 55

Cascioli, Devos, and Davis 2023). We thus establish the first
machinery for safety verification of tree ensemble policies.

A key challenge in using Veritas within PPA is coping
with the fact that tree ensembles are typically applied to
static ML prediction problems, for which Veritas was de- 60

signed. Capturing the dynamics of planning requires encod-
ing constraints that capture how the abstract state changes
when an action is applied. Yet the query language supported
by Veritas (in its state-of-the-art implementation for multi-
class classifiers) is limited to box constraints. We show how 65

to encode the richer constraints necessary for PPA into addi-
tional trees added to the policy ensemble.

We evaluate our approach on Vinzent et al.’s (2022; 2023)
benchmarks. Specifically, we use neural policies as teach-
ers for imitation learning of tree-ensemble policies. We find 70

that (1) tree ensembles can learn highly competitive poli-
cies, with the best tree ensembles achieving similar average
reward as the neural policies, and being safe whenever the
neural policy is. At the same time, (2) these tree-ensemble
policies can be orders of magnitude faster to verify. 75

2 Background
Policy Safety Verification and PPA We consider transi-
tion systems described by a tuple ⟨V,L,O⟩. V is a finite
set of state variables. For each v ∈ V the domain Dv is a
bounded integer interval. L is a finite set of action labels. O 80

is a finite set of operators. Φ denotes the set of linear con-
straints over V , i.e., of the form d1 ·v1+· · ·+dr ·vr ▷◁ c with
coefficients d1, . . . , dr, c ∈ Z, ▷◁ ∈ {≤,=,≥}, and Boolean



combinations thereof. An operator o ∈ O is a tuple (g, l, u)
with label l ∈ L, guard g ∈ Φ and update u over V , where85

u(v) is a linear assignment d1 · v1 + · · ·+ dr · vr + c .
The state space of ⟨V,L,O⟩ is a transition system Θ =

⟨S,L, T ⟩. The set of states S is the set of complete variable
assignments over V . The set of transitions T ⊆ S × L× S
contains (s, l, s′) iff there exists an operator o = (g, l, u)90

such that g(s) evaluates to true, also written s |= g, and, for
each v ∈ V , s′(v) = u(v)(s) , also abbreviated s′ |= u(s).

An action policy π is a function S → L. A safety prop-
erty is a pair (ϕ0, ϕu), where ϕ0 ∈ Φ identifies the set of
start states and ϕu ∈ Φ identifies the set of unsafe states.95

A policy π is unsafe with respect to (ϕ0, ϕu) iff there exist
states s0, su ∈ S such that s0 |= ϕ0, su |= ϕu, and su is
reachable from s0 under π. Otherwise π is safe.

Policy predicate abstraction (PPA) (Vinzent, Steinmetz,
and Hoffmann 2022) is an abstraction technique that, un-100

like classical predicate abstraction (Graf and Saı̈di 1997),
abstracts not the full state space Θ, but the subgraph in-
duced by π. Given a set of predicates P ⊆ Φ, an ab-
stract state sP is a (complete) truth value assignment over
P . [sP ] = {s ∈ S | ∀p ∈ P : p(s) = sP(p)} denotes105

the set of all concrete states represented by sP . The policy
predicate abstraction of Θ over P and π is the labeled tran-
sition system Θπ

P = ⟨SP ,L, T π
P ⟩ where SP is the set of all

abstract states over P and (sP , l, s
′
P) ∈ T π

P iff there exists
(s, l, s′) ∈ T such that s ∈ [sP ], s′ ∈ [s′P ] and π(s) = l.110

If π is safe in Θπ
P , then it is safe in Θ. An unsafe path

in Θπ
P may be spurious, i.e., there does not exist a corre-

sponding path in Θ under π. PPA with counterexample-
guided abstraction refinement (CEGAR) (Clarke et al.
2003; Vinzent, Sharma, and Hoffmann 2023) can be used to115

iteratively remove such spurious abstract paths by refining
P , until either Θπ

P is proven safe, or a non-spurious abstract
unsafe path is found, proving unsafety for π.

To compute Θπ
P , one must solve the abstract transition

problem for every possible abstract transition: (sP , l, s′P) ∈120

TP iff for some operator (g, l, u) there exist concrete states
s ∈ [sP ] and s′ ∈ [s′P ] such that s |= g, s′ |= u(s)
and π(s) = l. In classical predicate abstraction where no
policy is considered and, hence, the condition π(s) = l
is dropped, such abstract transition problems are routinely125

encoded into satisfiability modulo theories (SMT) (Barrett
and Tinelli 2018). For PPA however, the policy condition
π(s) = l introduces a key new source of complexity. Pre-
vious work (Vinzent, Steinmetz, and Hoffmann 2022) ap-
proaches this problem for action policies represented by130

neural networks. In this work we delve into PPA for safety
verification of tree ensemble policies.

Additive Tree Ensembles A binary decision tree T over
an input space X ⊆ Rk is a tree whose inner nodes are
associated with a branching condition xi < α, where xi135

references one position in the input vector and α ∈ R is
a constant. Each leaf node is associated with a leaf value
ν ∈ R. For an input x⃗ ∈ X , T (x⃗) is the value of the
unique leaf reached by traversing the tree, following the left
child of an inner node if the branching condition is satis-140

fied by x⃗ and the right child otherwise. An additive tree

ensemble (tree ensemble for short) is a sum of binary trees
T (x⃗) :=

∑n
i=1 T

i(x⃗). We consider gradient boosted multi-
class classifiers, which associate each class C with a tree en-
semble TC (Chen and Guestrin 2016); as well as multi-class 145

random forests (Breiman 2001), where the leaf values in a
single ensemble are vectors storing the probability of each
class. Denoting the ensemble output for class C as TC , we
define class predictions through C(x⃗) := argmaxCTC(x⃗).

The Veritas Tool Verifiying a classifier C requires to de- 150

termine the existence of an input x⃗ from a constrained region
x⃗ |= Γ where Γ implements the constraints, s.t. C(x⃗) = Ct

for the target class Ct. Veritas1 is a state-of-the-art verifi-
cation tool for tree-ensemble classifiers (Devos, Meert, and
Davis 2021; Cascioli, Devos, and Davis 2023), which casts 155

this decision problem as the optimization problem

max
x⃗

f∗(x⃗) subject to x⃗ |= Γ,

f∗(x⃗) :=

[
TCt(x⃗)− max

C ̸=Ct
TC(x⃗)

] (1)

The decision problem is satisfied iff (1) has a solution with
positive objective value f∗(x⃗) > 0. Veritas requires Γ to be
a conjunction of box constraints, conditions lxi

≤ xi ≤
uxi

where lxi
, uxi

∈ R ∪ {∞}. It solves (1) via heuristic 160

search in the space of subsets of X representable by box
constraints, starting from Γ and incrementally refining the
constraint bounds until the desired concrete x⃗ is found.

3 Policy Predicate Abstraction for
Tree Ensembles 165

We consider action policies π represented by |L|-class tree-
ensemble classifiers taking the state variables as input. For
gradient-boosted tree ensembles, in what follows the tree en-
semble associated with operator label l is denoted Tl. For
random forests, we denote by Tl the (single) tree ensemble 170

with the leaf vectors projected onto dimension l.
To verify the safety of such π, we observe that PPA in

principle applies to arbitrary policy representations, pro-
vided a method solving the abstract policy-transition prob-
lem is available. Here we show how to realize this potential 175

for tree-ensemble policies.
Let P ⊆ Φ be a set of predicates, and let (sP , l, s′P) be

an abstract transition candidate. The conditions under which
(sP , l, s

′
P) ∈ T π

P can in principle be encoded into SMT.
However, using generic SMT solvers severely limits scala- 180

bility. Instead one needs reasoning methods specialized to
the type of ML model. For neural networks, Vinzent et al.
(2022) leverage the Marabou framework (Katz et al. 2019).
For tree ensembles, here we show how to leverage Veritas.
The key challenge in doing so is encoding the necessary con- 185

straints into the input language supported by Veritas.

Encoding Linear Constraints as Additional Trees The
basic component underlying all conditions in the abstract
transition test are linear constraints which are strictly more
general than the box constraints supported by Veritas. We 190

1https://github.com/laudv/veritas



first consider handling a single linear constraint, before pro-
ceeding to the whole transition test below. Let Γ be a con-
junction of box constraints, let ϕ := d1v1 + . . . drvr ▷◁ c
be a linear constraint, and let l ∈ L be any target operator
label. The key observation is that ϕ can be converted into195

an additional tree ensemble Tϕ such that ∃s |= Γ ∧ ϕ with
π(s) = l iff ∃s′ |= Γ with f∗

π′(s′) > 0 in Veritas’ objec-
tive (1) for the modified tree-ensemble classifier where Tl is
replaced by the union with Tϕ (yielding the sum Tl + Tϕ).

Let νTmax denote the maximal leaf value in a binary tree200

T , νTmin denote the minimal leaf value, and let νTmax :=
maxl′∈l

∑
T∈Tl′

νTmax and similarly νTmin be upper and
lower bounds on the maximal and minimal possible value of
all the tree ensembles. To generate the desired tree ensemble
Tϕ, we first enumerate all assignments to v1, . . . , vr violat-205

ing d1v1+. . . drvr ▷◁ c. This is exponential in the number of
variables r in the constraint, which limits scalability in gen-
eral, but works for small r as is typically the case in the PPA
setting. For each violating assignment α, we then add to Tϕ

a binary tree Tα that evaluates to Tα(s) = νTmin−νTmax =: δ210

if s agrees with α, and Tα(s) = 0 otherwise.
Given that every s can agree with at most one violating

assignment α, we have Tϕ(s) ∈ {0, δ}, and Tϕ(s) = 0 iff
s |= ϕ holds by construction. This means in particular that
f∗
π′(s) = f∗

π(s) for all s s.t. s |= ϕ. In other words, for every
s with s |= Γ ∧ ϕ and π(s) = l, it holds that f∗

π′(s) > 0.
Vice versa, for s ̸|= ϕ, the choice of δ ensures that

f∗
π′(s) = Tl(s) + Tϕ(s)− max

l′∈L,l ̸=l′
Tl′(s)

= Tl(s)− νTmax + νTmin − max
l′∈L,l ̸=l′

Tl′(s)

≤ Tl(s)− νTmax

≤ 0

Combining both observations yields the desired result:
Theorem 1. It holds for every conjunction of box con-
straints Γ, every linear constraint ϕ ∈ Φ, and tree-ensemble
policy π that ∃s |= Γ ∧ ϕ with π(s) = l iff ∃s′ |= Γ with215

f∗
π′(s′) > 0 where π′ replaces Tl with Tl + Tϕ.

The compilation can be extended to conjunctions ϕ1 ∧
· · · ∧ ϕn of linear constraints, using the observation that∑n

i=1 Tϕi
(s) ≤ δ as soon as s ̸|= ϕi for any 1 ≤ i ≤ n;

while being 0 if all constraints are satisfied. Hence, substi-220

tuting the target tree ensemble Tl by the union with all the
tree ensembles Tϕ1

, . . . ,Tϕn
achieves what we want:

Corollary 2. It holds for every conjunction of box con-
straints Γ, linear constraints ϕ1, . . . , ϕn ∈ Φ, and tree-
ensemble policy π that ∃s |= Γ ∧

∧n
i=1 ϕi with π(s) = l225

iff ∃s′ |= Γ with f∗
π′(s′) > 0 where π′ replaces Tl with

Tl +
∑n

i=1 Tϕi .

Encoding the Abstract Policy-Transition Test The ab-
stract policy transition test needs to determine whether
(sP , l, s

′
P) ∈ T π

P . In addition to the encoding of linear con-230

straints, this requires dealing with the dynamics of planning,
involving two distinct abstract states (start and target) in-
stead of a single input region as in the static settings for
which Veritas was developed. We formulate the constraints

on the target state over a primed copy of the state variables, 235

as is commonly done in many settings. We handle these
primed variables in Veritas queries by (temporarily) adding
them as additional input variables to the tree ensembles.

Specifically, to determine whether (sP , l, s′P) ∈ T π
P , we

process each l-labeled operator (g, l, u) in turn, making an 240

individual Veritas query for each. The box constraints Γ
represent the state variable bounds and are the same in all
queries. For each operator (g, l, u), we augment l’s tree en-
semble Tl via the tree-ensemble compilation of the con-
junction of linear constraints given by sP , s′P , as well 245

as the guard and update of (g, l, u), using the original or
primed state variables within these constraints as appropri-
ate. Within each such Veritas query, the primed variables are
handled as additional inputs to the tree ensembles.

Thanks to Corollary 2 we have that, if, for the aug- 250

mented π(g,l,u), Veritas finds a solution s, s′ satisfying
f∗
π(g,l,u)

(s, s′) > 0, then (sP , l, s
′
P) ∈ T π

P as desired. If,
on the other hand, no s, s′ exist such that f∗

π(g,l,u)
(s, s′) > 0

for any l-labeled operator (g, l, u), then (sP , l, s
′
P) /∈ T π

P :
Theorem 3. (sP , l, s

′
P) ∈ T π

P iff there exists an operator 255

(g, l, u), and s and s′ with s |= Γ and s′ |= Γ such that
f∗
π(g,l,u)

(s, s′) > 0 where π(g,l,u) replaces Tl by the union
with the tree-ensemble compilation of the conjunction of sP ,
s′P , g, and u.

4 Experiments 260

Our implementation is based on Vinzent et al.’s (2022; 2023)
C++ code base realizing PPA and CEGAR for neural poli-
cies.1 All experiments were run on Intel Xeon E5-2650v3
CPUs using time and memory cutoffs of 12h and 4GB.

Benchmarks A benchmark for policy verification is a pair 265

of a transition system (modeled in the Jani language (Budde
et al. 2017)) and a policy. The tree-ensemble policy train-
ing is described below. In terms of Jani models, we consider
Vinzent et al.’s (2022; 2023) modified non-deterministic ver-
sions of Blocksworld, 8-puzzle, and Transport. Blocksworld 270

and 8-puzzle come in two versions, “cost-aware (CA)” and
“cost-ignore (CI)” that distinguish whether or not the pol-
icy receives as input a part of the state variables determin-
ing action cost. For Transport, we furthermore created a do-
main version in which we implemented a feature “number 275

of packages to the left of the truck position” as an addi-
tional state variable. This was needed to obtain reasonably-
performing tree-ensemble policies, highlighting the advan-
tage of neural networks in automatic feature extraction.

Tree-Ensemble Policy Learning We learn tree ensemble 280

policies through imitation learning, using for each bench-
mark a pretrained neural policy as the teacher (selection is
described below). The training set is generated by simulating
the teacher policy for 5000 start states, collecting all state-
action pairs on these runs. Keeping the training set fixed, we 285

trained multiple tree-ensemble policies with different hyper-
parameters. We used XGBoost (Chen and Guestrin 2016)
(briefly: GB) as well as random forests (Breiman 2001)

1Source code and experiment data will be made public.



(briefly: RF). We varied tree depth across 4, 6, 8, 10, 15; the
number of trees across 5, 10, 20, 30; and the learning rate290

across 0.4, 0.6, 0.8. To choose among the trained policies,
we evaluated them through simulation runs from 10000 ran-
domly chosen start states (the testing set; same for all poli-
cies), considering three metrics: reward, the reward func-
tion used for neural policy training; GoalFrac, the fraction295

of simulation runs where the policy reached a goal state; and
fidelity, the fraction of states for which the tree-ensemble
policy selects the same action as its teacher.

For each of GB and RF, we select the tree ensemble that
achieves the highest reward, discarding policies that were300

already found to be unsafe during the simulation runs. If
several policies obtain the highest reward, we break ties by
GoalFrac, depth, and then number of trees, thus encouraging
selecting smaller tree ensembles.

Teacher Policy Selection. We considered the neural poli-305

cies used by Vinzent et al. (2022; 2023) in their experiments,
as well as newly trained ones. Vinzent et al. trained 3 poli-
cies for each Jani model, with hidden layer size 16, 32, and
64. Following the rationale of obtaining high-quality tree-
ensemble policies, we chose as the teachers only the best-310

performing ones. Specifically, we measured the neural poli-
cies’ quality through simulation runs using the same test-
ing set as for the tree-ensemble policies, and selected for
training all those whose average reward is within 1% of that
of the best performing policy. We discarded neural policies315

found to be unsafe during these runs.2

Beyond the neural policies from previous work, we cre-
ated some additional policies. Namely, as Vinzent et al.’s
neural policies for Transport and 8-puzzle are of poor qual-
ity (never reaching the goal), we also invested effort in find-320

ing better neural policies, through supervised learning from
domain-specific solvers we constructed.

Results Table 1 summarizes our results. Regarding policy
quality, fidelity is 1 or almost 1 in most cases, and perfor-
mance in terms of GoalFrac and average reward is at least as325

good as that of the NN teacher in most cases. The most no-
table exception is Transport, where the tree ensembles need
an additional feature to perform well.

The tree-ensemble policies also preserve safety. To the
extent we can verify it, the best tree-ensemble policies330

are safe whenever the neural teacher policy is. Random
forests are unsafe in 8Blocks CI, but are the only safe
policies in Transport+Feature. Regarding verification effi-
cacy, in Blocksworld the results are very positive, with tree-
ensemble policy verification outperforming neural policy335

verification by up to 3 orders of magnitude. In 8-puzzle,
none of the policies can be proved safe or unsafe within the
time/memory limits. In Transport, runtime varies a lot for the
unsafe policies as, in finding an unsafe path, one may “get
lucky”. Most remarkably, RF policies can be proved safe.340

2We remark that, on very bad policies that hardly ever reach the
goal, tree-ensemble verification sometimes takes much longer than
neural policy verification. It remains future work to determine why
that is the case. Here, we focus on performant policies, for which
investing the effort of verification actually makes sense.

5 Conclusion
We establish the first methodology for verification of tree-
ensemble policies. Our results show that such verification
can be feasible, and can be more effective than neural policy
verification. Our results also show that tree-ensemble poli- 345

cies can be competitive in terms of performance, though they
may suffer from lack of features as exemplified by the Trans-
port benchmark. An important topic for future work is to
address the latter through automatic feature generation (e.g.
(Drexler and Seipp 2023)), and to extend PPA verification 350

to deal with such features. Our hypothesis is that, within the
realm of problems where a full verification can be hoped for,
tree ensembles constitute a serious alternative to neural net-
works, and may thus, within that realm, offer a better trade-
off between performance vs. verifiability. Much more work 355

is needed to explore this hypothesis in full.

References
Barrett, C. W.; and Tinelli, C. 2018. Satisfiability Mod-
ulo Theories. In Handbook of Model Checking, 305–343.
Springer. 360

Breiman, L. 2001. Random forests. Machine learning, 45:
5–32.
Budde, C. E.; Dehnert, C.; Hahn, E. M.; Hartmanns, A.;
Junges, S.; and Turrini, A. 2017. JANI: Quantitative Model
and Tool Interaction. In TACAS. 365

Cascioli, L.; Devos, L.; and Davis, J. 2023. Multi-class Ro-
bustness Verification for Tree Ensembles. In Proceedings of
the Verifying Learning AI Systems Workshop.
Chen, T.; and Guestrin, C. 2016. XGBoost: A scalable
tree boosting system. In Proceedings of the 22nd ACM 370

SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 785–794.
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H. 2003.
Counterexample-guided abstraction refinement for symbolic
model checking. Journal of the Association for Computing 375

Machinery, 50(5): 752–794.
Devos, L.; Meert, W.; and Davis, J. 2021. Versatile Verifi-
cation of Tree Ensembles. In International Conference on
Machine Learning, 2654–2664. PMLR.
Drexler, D.; and Seipp, J. 2023. DLPlan: Description Logics 380

State Features for Planning. In ICAPS 2023 System Demon-
strations and Exhibits.
Dutta, S.; Chen, X.; and Sankaranarayanan, S. 2019. Reach-
ability analysis for neural feedback systems using regressive
polynomial rule inference. In Proceedings of the 22nd Inter- 385

national Conference on Hybrid Systems: Computation and
Control (HSCC’19), 157–168.
Friedman, J. H. 2001. Greedy function approximation: a
gradient boosting machine. Annals of statistics, 1189–1232.
Garg, S.; Bajpai, A.; et al. 2019. Size independent neural 390

transfer for rddl planning. In ICAPS.
Graf, S.; and Saı̈di, H. 1997. Construction of Abstract State
Graphs with PVS. In CAV, 72–83.



Grinsztajn, L.; Oyallon, E.; and Varoquaux, G. 2022. Why
do tree-based models still outperform deep learning on typ-395

ical tabular data? In Advances in Neural Information Pro-
cessing Systems, volume 35, 507–520.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning generalized reactive policies us-
ing deep neural networks. In ICAPS.400

Huang, S.; andf Wenchao Li, J. F.; Chen, X.; and Zhu, Q.
2019. ReachNN: Reachability analysis of neural-network
controlled systems. ACM Transactions on Embedded Com-
puting Systems, 18: 1–22.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training405

Deep Reactive Policies for Probabilistic Planning Problems.
In ICAPS, 422–430.
Ivanov, R.; Carpenter, T. J.; Weimer, J.; Alur, R.; Pappas,
G. J.; and Lee, I. 2021. Verifying the Safety of Autonomous
Systems with Neural Network Controllers. ACM Transac-410

tions on Embedded Computing Systems, 20(1): 7:1–7:26.
Karia, R.; and Srivastava, S. 2021. Learning Generalized Re-
lational Heuristic Networks for Model-Agnostic Planning.
In AAAI, 8064–8073.
Katz, G.; Huang, D. A.; Ibeling, D.; Julian, K.; Lazarus,415

C.; Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljic, A.;
Dill, D. L.; Kochenderfer, M.; and Barrett, C. 2019. The
Marabou Framework for Verification and Analysis of Deep
Neural Networks. In Dillig, I.; and Tasiran, S., eds., Com-
puter Aided Verification. CAV 2019, LNCS 11561. Cham:420

Springer. https://doi.org/10.1007/978-3-030-25540-4 26.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,425

S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature, 518(7540): 529–533.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,430

D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the Game of Go with Deep Neural Net-
works and Tree Search. Nature, 529: 484–503.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,435

M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Grae-
pel, T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018.
A general reinforcement learning algorithm that masters
Chess, Shogi, and Go through self-play. Science, 362(6419):
1140–1144.440

Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022a. Learning
general optimal policies with graph neural networks: Ex-
pressive power, transparency, and limits. In ICAPS.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022b. Learning
Generalized Policies without Supervision Using GNNs. In445

Proceedings of the 19th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’22).
Sun, X.; Khedr, H.; and Shoukry, Y. 2019. Formal Verifica-
tion of Neural Network Controlled Autonomous Systems. In

International Conference on Hybrid Systems: Computation 450

and Control (HSCC’19).
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. Journal
of Artificial Intelligence Research, 68: 1–68.
Tran, H.; Cai, F.; Lopez, D. M.; Musau, P.; Johnson, 455

T. T.; and Koutsoukos, X. D. 2019. Safety Verification of
Cyber-Physical Systems with Reinforcement Learning Con-
trol. ACM Transactions on Embedded Computing Systems,
18(5s): 105:1–105:22.
Vinzent, M.; Sharma, S.; and Hoffmann, J. 2023. Neural 460

Policy Safety Verification via Predicate Abstraction: CE-
GAR. In AAAI.
Vinzent, M.; Steinmetz, M.; and Hoffmann, J. 2022. Neural
Network Action Policy Verification via Predicate Abstrac-
tion. In ICAPS. 465



Jani model Policy Fid GoalFrac Reward Safe VerTime

4Blocks CI

NN (16h) — 1.00 172.5 Yes 4.8
GB 1.00 1.00 172.5 Yes 2.0
RF 1.00 1.00 172.5 Yes 2.3
NN (32h) — 1.00 172.0 Yes 13.6
GB 1.00 1.00 172.0 Yes 1.7
RF 1.00 1.00 172.0 Yes 2.4
NN (64h) — 1.00 172.9 Yes 81.1
GB 1.00 1.00 172.9 Yes 2.2
RF 1.00 1.00 172.9 Yes 2.0

6Blocks CI NN (64h) — 0.98 156.2 Yes 6745.0
GB 0.99 0.98 156.8 Yes 95.6
RF 1.00 0.97 155.6 Yes 167.6

8Blocks CI NN (64h) — 0.60 77.7 — —
GB 0.96 0.70 94.4 Yes 1750.5
RF 0.90 0.85 121.2 No 1.5

4Blocks CA

NN (32h) — 1.00 172.5 Yes 580.3
GB 0.99 1.00 172.5 Yes 16.9
RF 1.00 1.00 172.5 Yes 9.5
NN (64h) — 1.00 172.9 — —
GB 0.99 1.00 172.9 Yes 13.1
RF 1.00 1.00 172.9 Yes 13.1

6Blocks CA NN (64h) — 0.95 150.2 — —
GB 0.99 0.96 152.0 Yes 293.3
RF 1.00 0.97 153 — —

8Blocks CA NN (64h) — 0.00 -22.6 — —
GB 0.84 0.00 -22.3 — —
RF 0.74 0 -22.6 — —

8Puzzle CI NN (256h) — 0.09 14.1 — —
GB 0.93 0.07 10.0 — —
RF 0.99 0.08 13.3 — —

Transport NN (16h) — 0.97 99.1 No 42.5
GB 0.98 0.01 -2.0 No 500.0
RF 1.00 0.79 65.6 — —

Transport

NN (16h) — 0.99 110.2 No 9450.2
GB 1.00 0.99 110.3 No 853.0
RF 1.00 1.00 93.4 Yes 2714.4
NN (32h) — 0.99 110.5 No 0.5

+ Feature GB 1.00 0.99 110.3 No 875.0
RF 1.00 1.00 93.4 Yes 2729.9
NN (64h) — 0.99 110.2 — —
GB 0.99 0.99 109.4 — —
RF 1.00 0.99 93.3 Yes 0.6

Table 1: Results summary. Xh: hidden layer size X, GB: XG-
Boost, RF: random forests. Fid: fidelity, Safe: verification
outcome, VerTime: total verification runtime in seconds.


