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Abstract. Recent work has introduced methodology for
testing learned action policies in AI Planning, aiming to ef-
fectively identify bug states where policy behavior is sub-
optimal. While this work focused on cost-optimality in clas-
sical planning, here we apply the core ideas to safety test-
ing in planning with initial-state and action-outcome non-
determinism. We cover the entire testing pipeline, introduc-
ing fuzzing algorithms to find unsafe policy runs, as well as
test oracles to identify bugs where such unsafe behavior could
be avoided. Going beyond the previous framework, we intro-
duce a final step to the pipeline, identifying faults which we
define to be specific policy decisions – state/action pairs –
transitioning from a safe state (where a safe policy exists)
to an unsafe state (where no such policy exists). We adapt
a range of known algorithms for these purposes, including
also approximate ones bounding the number of times we are
allowed to diverge from the learned policy. We run compre-
hensive experiments evaluating each part of our pipeline. Key
takeaways are that safety testing can be quite cheap, in con-
trast to cost-optimality testing; and that variants of Tarjan’s
algorithm tend to be highly effective for this purpose.

1 Introduction
Learned action policies, in particular neural ones, are gaining
traction in AI [e.g., 25, 28, 29], including in AI Planning [20,
15, 14, 35, 22, 30, 31, 27]. However, such policies come without
any built-in guarantees, so methods for quality assurance are
important. One natural approach is policy testing to identify
deficiencies in policy behavior.

Steinmetz et al. [32] introduced a framework for testing
learned action policies π in AI Planning, defining a bug as
a state s on which π behaves sub-optimally with respect to
a testing objective. Their focus was on classical (determin-
istic) planning with cost-optimality as the testing objective,
finding bugs s where either π does not find a plan though
one exists, or π’s plan has sub-optimal costs. Follow-up works
introduced fuzzing methods (biased random walks) to gen-
erate candidate states s [11]; as well as test oracles to prove
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that s is a bug without having to run an optimal planner [10].
Here we apply the ideas of this framework to safety test-

ing in non-deterministic planning, specifically planning with
initial-state and action-outcome non-determinism. A given
policy π is safe in a given state s if, for all possible runs
of π from s (for all possible action outcomes), we never enter
a state that satisfies a given unsafety condition ϕu. A state
is safe if such a policy exists. Under our testing objective, a
state s is a bug if π is unsafe on s although s is safe, i.e., if
π’s unsafe behavior on s could be avoided.1

We cover the entire testing pipeline. First, we introduce a
form of fuzzing algorithms that find unsafe policy runs by
biased sampling of action outcomes, leveraging a heuristic
unsafety-distance function on the outcome states. Second, we
devise test oracles which, given a state s on which π is unsafe,
run searches trying to prove that s is safe (thereby proving
that s is a bug). Third, we extend Steinmetz et al.’s frame-
work with a final step in the testing pipeline. For any test-
ing objective, if s is a bug, all we know is that somewhere
below s the policy is sub-optimal (in our case: is avoidably
unsafe). But what specific policy decisions are causing the
sub-optimal behavior? Here we address this question in the
safety-testing context. We define a fault to be a state-action
pair (s, π(s)) where s is safe but there exists an outcome state
s′ that is unsafe. We show how to find such faults by running
the search algorithms underlying our test oracles backwards
on the states along a policy run, caching information to avoid
duplicate work.

Proving that a state is safe – finding a safe alternate pol-
icy π′ – differs from standard non-deterministic planning (e.g.
[7, 26]) in that the only role of the goal is as a terminal state
beyond which we do not need to search. Furthermore, as in
general determining safety or unsafety exactly is anticipated
to be costly or infeasible, we are interested in approximate
variants of the problem as well. To this end, we adopt an idea
recently proposed in a completely different context [9] (speed-
ing up goal-conflict explanations in classical planning). We fix
a radius r around the given learned policy π, permitting any
1 Earlier work on policy testing outside the planning context also

addressed safety [e.g., 8, 1, 23, 12, 24], but disregarding avoid-
ability, identifying “bug” with unsafe behavior.
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Figure 1. An overview of our testing pipeline.

run of π′ to diverge from π at most r times (i.e., to take
at most r different action decisions). We design exact algo-
rithms solving this under-approximation, thereby obtaining
sound but incomplete algorithms for deciding safety. These
can be used as sufficient criteria in test oracles. Beyond that
use, r-constrained safety is meaningful in its own right. If,
e.g., π is unsafe in s but a 1-constrained safe policy π′ exists,
then we can “fix” π in s by changing a single decision – a
strong statement about the bug s.

We formalize the r-constrained problem through a value
function counting the maximal number of divergences from
π along possible runs. We introduce a Bellman equation for
this and show that its fixed points are optimal. Based on
this, we introduce adapted variants of LRTDP [5], LAO* [16],
and value iteration (VI) [4]. We furthermore show how to
adapt Tarjan’s algorithm; we refer to this adaptation as Tar-
janSafe. Exact algorithms are part of this algorithm family,
through setting r =∞. Figure 1 illustrates our overall testing
pipeline.

We run comprehensive experiments evaluating each part
of our extended policy testing pipeline: fuzzing, test oracles,
fault analysis. To this end, we adapt benchmarks previously
considered for policy verification in planning contexts [36, 21]
as well as control contexts [3, 2], and we add new bench-
marks varying a transport problem with different forms of
non-determinism. Key lessons learned are as follows. Our sam-
pling bias in fuzzing finds many more unsafe policy runs than
uniform sampling. Regarding oracles, ∞-TarjanSafe and 1-
TarjanSafe can often find safe policies very fast and thereby
form powerful quick test oracles. Regarding fault analysis, the
main new challenge is that, to prove (s, π(s)) is a fault, we
need to prove that for some outcome state s′ no safe policy
exists.∞-TarjanSafe is still very competitive at doing so, but
is outperformed by ∞-LRTDP on the most challenging in-
stances. Approximation via 1-constrained unsafety is, as one
would expect, less prone to long runtimes on unsafety proofs,
making 1-constrained faults a reliable alternative.

2 Background
We consider fully-observable non-deterministic (FOND) plan-
ning tasks [7] in forms of non-deterministic transition systems
Θ = ⟨S,A, T ,S0,S∗⟩, where S is a finite or infinite set of
states; A is a set of action labels; T : S×A⇀ (2S \{∅}) is
the non-deterministic transition function; ∅ ⊂ S0 ⊆ S is a
non-empty set of initial states, and S∗ ⊆ S is a set of goal
states. Typically, the states are described only implicitly via
Boolean, integer, or real-valued state variables, and actions
are described via conditions and effects on those variables. We
ignore this detail in the following, yet want to emphasize that
Θ is usually too large to build and explore exhaustively. In
our experiments, we consider different planning benchmarks

provided in the Jani specification language [6], as considered
in related works on policy verification [36, 21].

For each state s, app(s) ⊆ A denotes the set of actions
applicable in s, i.e., the actions a where T (s, a) is defined.
We assume without loss of generality that app(s) ̸= ∅ holds
for all states s. If s′ ∈ T (s, a) is a possible successor of a
in s, we also write s →a s′. A path is a finite or infinite
alternating sequence of states and actions σ = s1, a1, s2, . . .
such that ai ∈ app(si) and si+1 ∈ T (si, ai) holds for all i ≥ 1.
The length of σ is denoted |σ|, where |σ| =∞ if σ is infinite.
If finite, s|σ| is the final or ending state of σ. σ is maximal
if (1) s|σ| ∈ S∗ or σ is infinite, and (2) si /∈ S∗ for all i < |σ|.
We refer to the set of all paths by Paths and the set of all
maximal paths by MaxPaths. The (maximal) paths starting
from a state s are referred to by Paths(s) (MaxPaths(s)). A
policy is a function π : S 7→ A so that π(s) ∈ app(s) for
all states s. Π is the set of all policies. π induces the policy
graph Θπ = ⟨S,A, T π,S0,S∗⟩ with the same components
as Θ except for T π, which is given by T π(s, a) := T (s, a) if
a = π(s) and undefined otherwise. The set of paths Pathsπ

(maximal paths MaxPathsπ) induced by π are the (maximal)
paths of Θπ.

An unsafety condition is a Boolean state predicate ϕu :
S 7→ B. A state s is unsafe if ϕu(s) is true, written s |= ϕu.

3 Our Policy Safety Testing Framework
We next introduce our policy safety testing framework, for-
malizing its basic definitions and discussing its intended use.
As outlined in the introduction, we follow Steinmetz et al.’s
[32] generic policy testing framework, instantiating it for
safety in non-deterministic planning, and extending it with
a final fault analysis step.

In a nutshell, Steinmetz et al.’s framework suggests to fix a
testing objective, formalized by a value function V π that
maps states s to their value V π under a given policy π. With
V ∗ denoting the best value under any policy, a state s is then
a bug if |V ∗(s) − V π(s)| > 0. For practical implementation
of such policy testing, methods are required for 1. generating
test cases s, and 2. proving a given s to be a bug. Stein-
metz et al. and follow-up works [10, 11] focused on classical
planning with cost-optimality as the testing objective. For 1.,
they design biased sampling (random walk) methods, geared
at finding states s with bad policy performance. For 2., they
design test oracles, sufficient criteria that can identify some
but not all bugs without resorting to optimal planning. The
latter is essential in their setting, as the testing objective co-
incides with the learning objective – if cost-optimal planning
was feasible in the given domain, then there would be no need
for learning a policy in the first place.

Here we tackle safety testing in non-deterministic planning.
Our testing objective is:



Definition 1. (π-safety objective) For a policy π and state
s we define the value of π in s as

V π(s) =


1 if s |= ϕu

0 else if s ∈ S∗

maxs′:s→π(s)s′ V π(s′) else

The optimal value in s is given by V ∗(s) = minπ∈Π V π(s).

With this, our bug definition directly follows Steinmetz et
al.’s framework:

Definition 2. (π-safety and bugs) For a policy π and state
s, we say that s is safe if V ∗(s) = 0, and that π is safe in s
if V π(s) = 0. We say that s is a bug if |V ∗(s)− V π(s)| > 0.

In other words, a bug here is a state s on which π is unsafe
– an unsafe state can be reached under π – even though a safe
policy for s exists. In this situation, π’s unsafe behavior on
s is avoidable. For example, in a driving domain, π may be
unsafe on s because in one of the non-deterministic outcomes
an object crashes into the car (unavoidable unsafety, not a
bug), or π may be unsafe on s because it chooses to accelerate
towards a wall (avoidable unsafety, bug).

Observe that, in Steinmetz et al.’s framework, and hence
in the definitions we just gave, even if s is a bug state, π’s
choice on s itself may be optimal: all we know is that some-
thing goes wrong in the policy run beneath s. Considering
again the driving example, if π chooses to accelerate towards
a wall in state s, then all states preceding s in that policy
run (e.g. when the car turned a corner 27 steps ago) are bugs
as well. So how to define and find the “bad” policy decisions,
that cause the undesired behavior? Steinmetz et al. call this
fault localization, and leave it open for future work. Here
we provide an instantiation for policy safety testing:

Definition 3. (π-safety fault) For a policy π and state s,
(s, π(s)) is a fault if s is safe but there exists a transition
s→π(s) s′ where s′ is unsafe.

We deem a policy decision to be a fault if it takes the agent
from the safe region, where unsafety can be avoided with cer-
tainty, into the unsafe region where that is not the case.

Some words are in order on the intended use of our frame-
work, and some important computational implications. In
contrast to classical planning and cost-optimality testing as
in prior work, in our setting the testing objective does not
coincide with the learning objective. To be safe, it suffices to
avoid the unsafety condition; in contrast, policies will also be
trained to reach the goal. Concretely, a canonical application
setting for our form of policy testing is that where π was
trained using RL to maximize expected discounted reward in
an MDP where goal states give positive rewards while unsafe
states give (high) negative rewards. This is a commonly used
proxy objective for RL when goal reachability must be traded
against safety [13, 37]. Our testing machinery then considers
worst-case (non-deterministic) behavior in this MDP, and fo-
cuses entirely on safety, disregarding the goal except for safe
termination of policy runs. From the conceptual side, this
makes sense as a focused test on an important aspect of sys-
tem performance; faults identified by our testing pipeline can
inform human policy inspection, or further policy training.

From the computational side, solving a state s “optimally”
w.r.t. our testing objective means to prove whether or not s
is safe. This is a hard problem in general, but may be more fea-
sible in practice than maximizing rewards in the MDP where
π was learned. Indeed, our experiments suggest that deciding
safety can be quite easy in our setting.

In the remainder of the paper, we operationalize our policy
safety testing framework as illustrated in Figure 1. Section 5
discusses fuzzing methods that generate test cases seeding the
bug and fault analyses; Section 6 discusses the design of test
oracles and fault detection methods based on state-safety de-
ciding algorithms. Prior to these discussions, we introduce r-
constrained safety as well as policy bugs/faults variants based
on that (Section 4). These variants are of interest in their own
right as argued; r-constrained safety furthermore serves for
the design of approximate methods in Section 6.

4 r-Constrained Safety
Following prior work on approximate policy explanations [9],
we consider approximate variants of Definitions 1 and 2 that
base the sate-safety assessment on policies within proximity
of the policy to be analyzed.

Definition 4 (r-Policy Space). Let π and π′ be two policies,
and s be a state. We consider the distance measure

δs(π, π′) = max
σ=s1,a1,···∈MaxPathsπ′ (s)

|σ|∑
i=1

Jπ(si) ̸= aiK

where J·K denotes the Iverson bracket. The policies within a
radius r ∈ Z+

0 ∪ {∞} from π in state s are denoted Πs
π,r =

{π′ ∈ Π | δs(π, π′) ≤ r}.

In words, δs(π, π′) measures the maximal number of policy-
choice differences between π and π′ along any maximal s-path
induced by π′; and Πs

π,r contains all the policies differing from
π no more than r times. We generalize Definitions 1 and 2 by
adapting the optimal value function accordingly:

Definition 5 (r-Bug). For a policy π and a radius r ∈ Z+
0 ∪

{∞}, the r-constrained optimal safety value function is given
by V ∗

π,r(s) = minπ′∈Πs
π,r

V π′
(s). We say that s is r-safe on π

if V ∗
π,r(s) = 0, and that s is an r-bug if |V ∗

π,r(s)−V π(s)| > 0.

Clearly, the notions of ∞-bugs and bugs are equivalent.
For r <∞, each r-bug is also a bug, but not necessarily vice
versa. There can be bugs that are not r-bugs for any value of
r < ∞. This is a direct consequence of the definition of δs,
which entails δs(π, π′) = ∞ in case policy-choice differences
are enclosed in some cycle. For r <∞, r-bugs yield a sufficient
bug-condition test. At the same time, verifying r-safety can
be potentially easier by considering alternative options only
in the very confined perimeter around the given policy as con-
trolled by the radius parameter r. Besides being potentially
computationally easier, Definition 5 also provides a novel way
to classify bugs. As resolving r-bugs could be considered less
expensive than r′-bugs for r′ > r, this information might help
domain experts in assessing the severity of different bugs.

On top of Definition 4, we also considered two alternative
distance (and hence r-bug) definitions. First, in place of max-
imizing over paths, one could consider summation. This how-
ever introduces a dependency to the non-determinism present



Algorithm 1: Fuzzing algorithm
Data: Policy π, lookahead limit Dlimit ∈ Z+ ∪ {∞},

hu : S 7→ Z+
0 distance-to-unsafety estimation

Result: Path s1, π(s1), s2, π(s2), . . . , sn such that
sn |= ϕu or “failed”

1 s1 ← sample from S0 uniformly at random;
2 σ ← s1;
3 while s|σ| ̸|= ϕu do
4 σ′ ← FindContinuation(s|σ|);
5 if σ′ is “failed”’ then
6 return “failed”
7 σ ← concatenate σ and σ′;
8 return σ
9 Function FindContinuation(s):

10 for d = 1, . . . , Dlimit do
11 Sd ← states d steps away from s in Θπ;
12 if Sd = ∅ then
13 return “failed” // exhausted successors

14 if ∃s′ ∈ Sd: s′ |= ϕu then
15 return policy path from s to s′

16 if argmins′∈Sd
hu(s′) is unique then

17 break;

18 s′ ← argmins′∈Sd
hu(s′) or sample from

⋃
d

Sd;
19 return policy path from s to s′

in a planning task, harming comparability and interpretabil-
ity of the results, while also suffering from the same drawbacks
as maximization. Another alternative is to count differences
in the policy graph at global instead of path-individual level.
In preliminary experiments, this turned out to be computa-
tionally very expensive. So, we focus on the distance measure
and r-bug conditions as per Definitions 4 and 5.

5 Fuzzing: Test-Case Generation through
Lookahead Search and Sampling

In order to identify policy bugs effectively, it is crucial to
have test-generation methods that can quickly find policy runs
leading to unsafe states. Given a policy that is believed to
have reasonable quality, i.e., one being worthwhile to analyze
in the first place, it is unlikely to find such runs by sampling
policy executions uniformly at random. Instead, we follow the
heuristic approach sketched in Algorithm 1, which leverages
functions hu estimating the distance from states towards the
satisfaction of the unsafety condition, to guide the policy run
generation. We discuss our choice of hu below.

Algorithm 1 iteratively composes a policy execution path,
starting from an initial state that is chosen uniformly at
random. The path is incrementally extended through calls
to FindContinuation until either an unsafe path has been
constructed or an extension of the current path to an un-
safe path is no longer possible. FindContinuation performs
policy simulations and uses hu to resolve successor choices
left under the non-deterministic transition function. To es-
cape plateaus of successor states indistinguishable by the pro-
vided distance estimates, FindContinuation resembles a vari-
ant of the hill climbing algorithm [17], running a breadth-
first lookahead search in the policy graph Θπ until (a) a
unique descendant with minimal hu value is found, or (b)

an unsafe state is found, or (c) the policy sub-graph rooted
at the considered state has been exhausted. A lookahead
depth bound optionally allows to cap the computational over-
head. In case of (c), the current policy path cannot be ex-
tended to an unsafe path, and FindContinuation as well as
the main procedure return a failure code. In case of (b),
FindContinuation returns the corresponding path suffix and
the main procedure terminates. In case of (a), or if the depth
limit was reached, FindContinuation extends the policy path
to some visited state. We experimented with two strategies
to select this state: greedy, we choose a state s′ ∈ Sd

from the last state layer that is deemed closest to satisfy-
ing the unsafety condition as per hu; or by weighted dis-
tribution sampling, where we sample from all seen states
s′ ∈

⋃
d

Sd according to the distance-weighted probability
p(s′) = e−hu(s′)/

∑
s′′∈

⋃
d

Sd
e−hu(s′′).

Suitable distance functions hu can for example be found
in the vast research on planning heuristics. However, due to
their lack of support of Jani planning task models, in our ex-
periments, we instead fall back on a simple function inspired
from the Manhattan distance. In our case, states are vectors of
real-valued variable-value assignments, and the unsafety con-
dition ϕu is a Boolean combination of linear constraints. We
estimate the distance h(s, ϕu) from a state s to the satisfaction
of ϕu through h(s, ϕ) = 0 if s |= ϕ; h(s, ϕ) = |

∑
i
wis(xi)− b|

for the linear constraint ϕ :
∑

i
wixi ≤ b; and decompose

conjunctions and disjunctions by using summation and mini-
mization over the decompositions respectively.

6 State-Safety Deciding Algorithms for
Test Oracles and Fault Analysis

After having identified an unsafe policy path σ, we proceed
in the testing pipeline (cf. Fig. 1) with the analysis of the
states visited on σ to determine which ones are indeed policy
bugs and which ones are faults. This analysis relies on meth-
ods that decide whether a given state is safe, i.e., whether
a different policy can guarantee to avoid the unsafety condi-
tion when run from that state. Such methods are discussed
next. Note that, due to non-determinism, σ can contain mul-
tiple faults. In order to identify all faults efficiently, we share
state-safety information between the fault checks, avoiding re-
dundant computations, and process σ in reverse, which tends
to make use of this shared information effectively.

To decide state safety efficiently, we developed two orthogo-
nal approaches: via well-known MDP algorithms, respectively
a search algorithm geared for this purpose. Our methods de-
cide r-safety in general, which as previously pointed out, sub-
sumes safety for r =∞.

6.1 MDP Algorithms
Non-deterministic transition systems can be seen as MDPs
with unspecified transition probabilities. We next show how
to use standard MDP algorithms for computing a proxy to the
optimal safety value function, based on an MDP objective
that characterizes r-safety and is amenable to optimization
via common dynamic programming approaches.

The core idea is combining state and action costs, where
action costs reflect deviations from the policy under testing



and a termination cost penalizes unsafe states. We are inter-
ested in the MDP policy solution that minimizes the worst-
case summed up cost over all runs of that policy. Formally,
this optimal solution is characterized by the piecewise small-
est function J∗

π,r that satisfies J∗
π,r(s) = Bπ,rJ∗

π,r(s), for all
states s, under the Bellman operator Bπ,rJ(s) :=

Ur if s |= ϕu

0 else if s ∈ S∗

mina∈app(s)
(
Cπ,r(s, a) + maxs′∈T (s,a) J(s′)

)
else

where J : S 7→ R+
0 is any function, Ur = r + 1 if r < ∞ and

Ur = 1 else, which gives the cost of reaching an unsafe state;
and Cπ,r(s, a) = 1 if r < ∞ and π(s) ̸= a, Cπ,r(s, a) = 0
otherwise, which represents the policy deviation cost. Goal
states and unsafe states are considered to be terminating. It
is straightforward to show that r-safety on the policy π under
testing is characterized exactly by the J∗

π,r values:

Theorem 1. For all policies π, states s, and radii r <∞, s
is r-safe on π iff J∗

π,r(s) ≤ r. s is ∞-safe iff J∗
π,∞(s) = 0.

J∗
π,r can be computed via value iteration and MDP heuris-

tic search algorithms (e.g., LAO* [16] or LRTDP [5]). In a
nutshell, those approaches start from some cost-value initial-
ization J(0) and repeatedly apply Bellman updates J(i) :=
Bπ,rJ(i−1) until a fixed point J(k) = J(k−1) is reached.

The standard correctness argument establishing J(k) = J∗
π,r

upon termination requires (1) the actual existence of a fixed
point, and (2) that this fixed point coincides with J∗

π,r. How-
ever, it is not immediately evident why Bπ,r from above would
satisfy either of the properties. Namely, while the definition of
Bπ,r closely resembles the standard cost-minimization MDP
objective, there is the important difference that we do not en-
force any requirement on reaching goal states eventually (cy-
cling forever while avoiding unsafety is a valid strategy). Ad-
ditionally, as opposed to general reward-maximization MDP
objectives, we consider the optimization over an infinite hori-
zon without discount factor.

That there actually exists any fixed point, (1), follows from
the Knaster-Tarski theorem [34] and the fact that J∗

π,r is
bounded from above by Ur and that the cost-value func-
tions Ĵ(0), Ĵ(1), . . . increase monotonically, if one starts from
Ĵ(0)(s) := 0, where Ĵ(i) := Bπ,rĴ(i−1) for i ≥ 1. (2) is actu-
ally not satisfied in general. In our case, there can be multiple
solutions to the Bellman equation J = Bπ,rJ due to 0-cost
cycles. However, by definition, J∗

π,r is the least of those solu-
tions. So, given that Ĵ(0) ≤ J∗

π,r and that J ≤ J∗
π,r implies

Bπ,rJ ≤ Bπ,rJ∗
π,r = J∗

π,r, the sequence of cost-value functions
starting from 0 must converge to J∗

π,r necessarily:

Theorem 2. Let Ĵ(0)(s) := 0 and Ĵ(i)(s) := Bπ,rĴ(i−1)(s)
for i ≥ 1 and all states s. Then limi7→∞ Ĵ(i)(s) = J∗

π,r(s).

Given this property, existing MDP algorithms like value
iteration and heuristic search can be applied as is, as long as
the cost-value function is initialized to 0.

6.2 r-Safety Search
On top of the general purpose MDP algorithms just presented,
we further designed a method that is specifically tailored to

Algorithm 2: TarjanSafe algorithm deciding r-safety
Data: Policy π, safety radius r ∈ Z+

0 ∪ {∞}, state s0
Result: True if s0 is r-safe on π, and false otherwise

1 yes[s]←∞ for all states s; // cache pos. results
2 no[s]← −∞ for all states s; // cache neg. results
3 bs0 ← r; // initial “budget”
4 return FindSafePolicy(s0, bs0 )
5 Function FindSafePolicy(s, bs):
6 if s |= ϕu or no[s] ≥ bs then return false ;
7 if s ∈ S∗ or yes[s] ≤ bs then return true ;
8 allUnsafe← true;
9 foreach a ∈ app(s) and while allUnsafe do

10 b′ ← bs − Jπ(s) ̸= aK;
11 if b′ < 0 then continue;
12 isSafe← true;
13 foreach s′ ∈ T (s, a) and while isSafe do
14 if s′ with budget b′ has not been expanded or

⟨s′, b′⟩ is not in current call’s SCC then
15 isSafe← FindSafePolicy(s′, b′);
16 allUnsafe← not isSafe;
17 if allUnsafe then no[s] = bs ;
18 else
19 if ⟨s, bs⟩ is the root of its SCC then
20 yes[s] = min{yes[s], bs};
21 return not allUnsafe

proving r-safety quickly. Algorithm 2 shows the pseudocode,
referred to by TarjanSafe in the following. The core proce-
dure FindSafePolicy(s, bs) runs a backtracking search to check
whether a safe policy for s exists within the “policy-divergence
budget” bs that is remaining for s according to the recur-
sion path started from the initial call arguments ⟨s0, r⟩. The
method greedily tries to construct a safe policy for s by testing
in turn each possible action that is applicable in s and whose
selection remains within the remaining budget. For each such
action a, FindSafePolicy determines safety by calling itself on
all the non-deterministic successor states s′ of applying a in
s with the remaining budget b′ updated from bs accordingly.
When a safe action is found within the budget, FindSafePolicy
terminates. Otherwise, FindSafePolicy continues until having
exhausted all possibilities.

If no safe action was found, the state is provably not bs-safe
on π. On the other hand, however, if an action that is poten-
tially safe is found, the actual bs-safety status might depend
on the result of some parent call FindSafePolicy(s′, bs′ ), whose
safety confirmation is currently still in progress. This situation
arises exactly when the chosen action at s introduces a cycle
to some state-budget pair ⟨s′, b′⟩ still under expansion. We
identify such cycles by incorporating Tarjan’s algorithm for
finding maximal SCCs [33] (hence the name TarjanSafe). If
FindSafePolicy(s, bs) returns true while the state-budget pair
⟨s, bs⟩ marks the entry point into an SCC, there are no depen-
dencies to the pending parent FindSafePolicy calls. Hence, at
this point (and only at this point), we know that s is bs-safe
on π. We want to remark in particular that for the initial
call on ⟨s0, r⟩, FindSafePolicy always determines s0’s r-safety
status, as this call never has dependencies.

To speed up the process and to avoid redundant computa-
tions, we cache intermediate b-safety respectively non-b-safety
results in forms of the minimal budget yes[s] for each state



s for which a yes[s]-safe policy for s has been found, respec-
tively the maximal budget no[s] for which s was proven to be
not no[s]-safe. Both caches are updated accordingly when re-
turning from FindSafePolicy using the computed safety status
information as discussed in the previous paragraph.

In summary, our method guarantees:

Theorem 3. For every policy π, state s0, and radius r ∈
Z+

0 ∪ {∞}, Algorithm 2 returns true iff s0 is r-safe on π.

7 Experiments
Our implementation is in C++ and is available online2. We
evaluate each component of the testing pipeline (cf. Fig. 1) in
isolation, proceeding in the order: 1. fuzzing (test-case gener-
ation); 2. test-oracle performance of the safety-deciding algo-
rithms, considering individual states, and 3. performance of
fault analysis as a whole, processing an entire unsafe policy
path. For 2. and 3., we use the test cases generated by our
best fuzzing method. We next describe our benchmarks, be-
fore diving into the empirical results. All experiments were
run on machines with Intel Xeon E5-2660 CPUs.

7.1 Benchmarks
A testing-benchmark instance is a pair of non-deterministic
planning task described in the Jani language [6] and policy
solving that problem. Our benchmark set is composed of three
parts: (B1) benchmarks (beluga, and two variants of block-
world and n-puzzle) from prior work on action-policy safety
assessment [36, 21]; (B2) we created new Jani benchmarks,
modeling the control problems Bouncing ball, Follow Car,
Cartpole and Inverted Pendulum often considered in reinforce-
ment learning [3, 2]; and (B3) two completely new bench-
marks: one-way line and two-way line. In the latter bench-
marks, a truck moves along a discrete line in one respectively
both directions. The truck can accelerate and decelerate by
one speed unit at a time, and pick up and drop packages
if its velocity is 0. Non-determinism might cause the truck
to drop packages while moving. Acceleration and decelera-
tion might fail. We additionally consider variants with an ad-
ditional parking action and one disabling non-determinism.
The safety constraint requires not driving past either ends of
the line. The planning tasks from (B2) are deterministic and
contain bounded real-valued state variables; all other bench-
marks are non-deterministic and use bounded integer state
variables.

For each Jani benchmark instance, we train multiple feed-
forward neural-network policies via Q-learning, similar to
prior work [36]. We use ReLU activation and experimented
with hidden layer sizes {16, 32, 64, 128, 256}, choosing for each
Jani benchmark instance the best-performing policy which
was not safe. For the benchmarks from (B1), we did not train
new policies, but used those provided by [21].

7.2 Fuzzing
We ran a total of 5 configurations of our fuzzing algorithm (Al-
gorithm 1), considering lookahead depths of Dlimit ∈ {1,∞}
2 link omitted to preserve anonymity

and three different successor selection strategies: uniform,
a baseline which samples successors uniformly at random;
greedy and weighted distribution sampling, i.e., the two
strategies introduced in Section 5. For uniform sampling, we
did not run Dlimit = ∞, which does not make sense. For
each testing-benchmark instance, each configuration is exe-
cuted 1000 times. Fig. 2 reports the results.

The control benchmarks from (B2) are deterministic, in
which case, all the fuzzing algorithm configurations behave
identically. In blocksworld, no unsafe policy path was found by
any configuration. In all other domains, the unsafety distance
estimates have a clear positive effect on test-case generation.
That advantage is especially evident for the depth-unlimited
variants, which however also come with the by far most sig-
nificant overhead. Sampling versus greedily choosing succes-
sor states makes a difference primarily if the lookahead is
bounded. This makes sense, intuitively, as distance estimates
become more accurate the deeper the lookahead, reducing the
benefits of the additional randomness introduced by sampling
as the depth-bound is increased. All remaining experiments
are based on the test cases generated by ∞-greedy.

7.3 Test Oracles
We evaluated the performance of 4 different safety-deciding
algorithms – value iteration, LRTDP [5], LAO* [16], and
TarjanSafe – for deciding (∞-)safety. We additionally con-
sider each of the algorithms to compute the r-safety approxi-
mation, for r ∈ {1, 2}. We compare their performance to prove
whether an individual state is a bug. To this end, we collect
for each benchmark instance all states from the generated test
cases. To balance state numbers between instances, we pick
for each benchmark instance the whole collection, if that con-
tains at most 1000 states, and pick from the collection 1000
states at random otherwise. We run every algorithm config-
uration on every state of the post-processed collection of all
the benchmark instances, enforcing memory and time limits
for 12 GB and 30 minutes per run. Value iteration almost
always exceeded the memory budget during its state-space
construction process, and is omitted in the following.

Consider first the coverage plots in Fig. 3. Regardless of
the algorithm, bug confirmation tends to be cheap. Almost
all test states were processed within split seconds. Compar-
ing the algorithms, ∞-TarjanSafe turned out to be most ef-
fective for both proving and disproving whether a state is a
bug. For the former cases, we observed that the search often
was lucky in quickly finding alternative action choices that,
e.g., via forming cycles, guarantee maintaining safety. For the
latter cases,∞-TarjanSafe’ caching feature turned out highly
effective. ∞-LRTDP offers a similar performance profile, but
has a small but consistent runtime disadvantage. Not visible
in the coverage plots, ∞-LRTDP however turned out slightly
more effective than∞-TarjanSafe in the very hard cases prov-
ing that a state is indeed not safe, i.e., is not a bug. Maybe
most surprisingly, the r-safety variants for finite r seem to not
offer any advantage in terms of efficiency, yet overall, identify
much fewer bug states due to their under-approximation na-
ture.

The runtime plots in Fig. 3 provide additional information.
Consider the one for the bug states. ∞-TarjanSafe proves
most bug-states safe within split seconds by quickly finding
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Figure 2. Per-domain comparison of different fuzzing algorithm configurations. The left plot shows the total time to run the
algorithms for 1000 times. The right plot shows the number of unsafe policy paths found in these runs.
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Figure 3. Test-oracle performance statistics for the bugs in the test-state collection respectively the non-bugs. Left plot in each
category shows coverage in forms of the fraction of (non-)bug states proven (not-)r-safe over time. Right plot compares runtime (s) per

test state between ∞-TarjanSafe (x-axis) and 1-LRTDP and 1-TarjanSafe (y-axis).

safety-guaranteeing cycles. However, to prove 1-safety, policy
deviations cannot be included in cycles, which makes bug con-
firmation significantly harder despite allowing even just one
policy deviation per policy execution run. Moreover, as indi-
cated by the X entries, 1-safety is insufficient for considerable
fraction of the bug states. On the other hand, proving that
states are not 1-safe is almost always significantly cheaper
than proving non-∞-safety. This is expected, given that dis-
proving ∞-safety requires the exploration of all the policy al-
ternatives whereas the option space for 1-safety is much more
constrained. One needs to keep in mind, however, that non-1-
safety is weaker than non-∞-safety in that non-1-safety does
not necessarily imply that a state is not a bug.

7.4 Fault Analysis
Lastly, we evaluate the performance of the previously con-
sidered safety-deciding algorithms to identify all faults on an
entire unsafe-path test case. The algorithms maintain a single
cache (value function), which is continuously updated while
processing each state on the unsafe path. In contrast to the
test-oracle performance evaluation, we also evaluate how ef-
fectively each algorithm uses this caching functionality across
multiple safety-decision calls.

Fig. 4 provides a runtime comparison between the different
algorithms. Among the ∞-safety deciding algorithms, Tar-
janSafe carries over its test-oracle performance, having a con-
sistent and considerable advantage over LRTDP (and a sig-
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Figure 4. Fault analysis: runtime (s) of processing an entire
test case of ∞-TarjanSafe (x-axis) vs. ∞-LRTDP/LAO* (left plot

y-axis) and r-TarjanSafe (right plot y-axis).

nificant one over LAO*). Different from the previous results,
fault-analysis performance of the approximative r-TarjanSafe
variants turned out highly complementary to ∞-TarjanSafe.
In the vertical lines,∞-TarjanSafe shows its strength in prov-
ing∞-safety quickly. In the cases below the diagonal, the ap-
proximative r-TarjanSafe exploit the stronger requirements
of proving states not-r-safe. ∞-TarjanSafe identified at least
one fault in 86% of the test cases. In almost all test cases,
there was just a single fault, but there are cases where more
than one fault was found. The latter can be observed to a
much higher degree for the approximative variants, indicat-
ing some variability of the difficulty of resolving different bugs
on the same unsafe path.



8 Conclusion
Testing is a natural method for quality assurance of learned
action policies π. Here we transfer ideas from prior work to
safety testing in non-deterministic planning, extending the
testing pipeline with an additional fault-detection step, and
covering approximate analyses via constraining alternate poli-
cies to a radius around π. Adapting a broad range of algo-
rithms for these purposes, our empirical results indicate that
this form of policy testing can be quite feasible. As one key
outcome of this research and our implemented machinery, we
are now able to identify specific faults in a given learned pol-
icy. This opens the possibility, for future work, to improve the
policy leveraging this fault information. There are manifold
possibilities for this, ranging from shielding over continued RL
to neurosymbolic methods facilitating a guarantee to avoid
known faults.
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