
Ranking Conjunctions for Partial Delete Relaxation Heuristics in Planning

Maximilian Fickert and Jörg Hoffmann
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

{fickert,hoffmann}@cs.uni-saarland.de

Abstract

Heuristic search is one of the most successful approaches
to classical planning, finding solution paths in large state
spaces. A major focus has been the development of domain-
independent heuristic functions. One recent method are par-
tial delete relaxation heuristics, improving over the standard
delete relaxation heuristic through imposing a set C of con-
junctions to be treated as atomic. Practical methods for se-
lecting C are based on counter-example guided abstraction
refinement, where iteratively a relaxed plan is checked for
conflicts and new atomic conjunctions are introduced to ad-
dress these. However, in each refinement step, the choice of
possible new conjunctions is huge. The literature so far offers
merely one simple strategy to make that choice. Here we fill
that gap, considering a sizable space of basic ranking strate-
gies as well as combinations thereof. We furthermore de-
vise ranking strategies for conjunction-forgetting, where the
ranking pertains to the current conjunctions and thus statis-
tics over their usefulness can be maintained. Our experiments
show that ranking strategies do make a large difference in per-
formance, and that our new strategies can be useful.

Introduction
Classical planning demands to find solution paths in large
state spaces, compactly represented in terms of a set of state
variables, an initial state, a set of actions, and a goal condi-
tion. Planning tools handle any input planning task repre-
sented in such a language, and the search for a solution is
required to be automatic, without any further human input.
Heuristic search is one of the most successful approaches
towards this endeavor (e. g. (Bonet and Geffner 2001; Hoff-
mann and Nebel 2001; Gerevini, Saetti, and Serina 2003;
Richter and Westphal 2010)). A major focus here has been
on the development of domain-independent heuristic func-
tions: How to automatically relax the planning input and
produce goal estimates based on relaxed solutions?

A highly successful answer to this question is based on the
delete relaxation, which ignores negative action effects (ef-
fectively pretending that state variables accumulate, rather
than switch between, their values). This preserves chains
of prerequisite-effect and yields highly informative goal
distance estimates in many planning domains (Hoffmann

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2005). At the same time, the delete relaxation has major
weaknesses in terms of disregarding the need for variables
(like a vehicle in transportation) to move to-and-fro (after
driving from A to B, under the delete relaxation the vehi-
cle is at both A and B), and in terms of disregarding re-
source consumption (a single drop of fuel suffices, under
the delete relaxation, to travel the world). Partial delete re-
laxation methods address these weaknesses systematically,
ultimately allowing to interpolate between the delete relax-
ation and full, un-relaxed, planning. Known methods are
red-black relaxation (Katz, Hoffmann, and Domshlak 2013;
Domshlak, Hoffmann, and Katz 2015), and explicit con-
junctions imposing a set C of atomic conjunctions (Keyder,
Hoffmann, and Haslum 2012; 2014). We continue the latter
line of work here. We focus on satisficing planning, where
no optimality guarantee needs to be given; in particular, the
heuristic functions we consider here are not admissible.

The delete relaxation can, at an abstract level, be viewed
as achieving each fact, in the goal condition as well as
regressed subgoals, in separation (ignoring negative inter-
actions across subgoal facts). The explicit conjunctions
method generalizes this by considering an arbitrary set C
of fact conjunctions as atomic, forcing the relaxed plan to
achieve each subgoal from C. The initial works (Haslum
2012; Keyder, Hoffmann, and Haslum 2012; 2014) com-
piled C into a standard planning syntax. Later works, es-
tablishing the most recent explicit-conjunctions heuristic
hCFF, observed that a compilation is not needed. This has
computational advantages through not suffering from poten-
tially large compilation size (Hoffmann and Fickert 2015;
Fickert, Hoffmann, and Steinmetz 2016). All these works
find the set C through offline counter-example guided ab-
straction refinement: before search begins, iteratively a re-
laxed plan for the initial state is checked for conflicts and
new atomic conjunctions are introduced to address these.
The process stops when a size bound is reached. Search
is then invoked using the same set C throughout. Recent
work has shown that it can be of advantage to learn C online
during search instead, from the conflicts – local minima in
a hill-climbing search – encountered (Fickert and Hoffmann
2017). But the core refinement step remains unchanged.

Here, we address the choice of conjunctions within each
refinement step. The choice of possible new conjunctions is
huge, up to millions. For computational reasons, most meth-

ods select just one out of these many possible conjunctions.
(Precisely: this is true for all except Haslum’s initial method
(Haslum 2012), which in difference to all later methods con-
sidered optimal planning.) The literature so far offers merely
one simple ranking strategy, preferring conjunctions incur-
ring a low computational overhead. This is despite the fact
that, even with that ranking in place, often a large choice of
(“best”) possible conjunctions persists; and it is despite the
fact that it was observed early on (Keyder, Hoffmann, and
Haslum 2012) that the choice of conjunctions is important,
with even small changes having a large impact on results.

Here we fill that gap. We consider a sizable space of ba-
sic ranking strategies, targeted not only at minimizing over-
head but also at capturing conjunction “importance”. We
systematically explore the performance of these strategies,
as well as that of combined ranking strategies with lexico-
graphic tie-breaking. We furthermore devise ranking strate-
gies for conjunction-forgetting, where the ranking pertains
to the current conjunctions and thus statistics over their use-
fulness can be maintained. We finally devise a new variant
of the conflict extraction preceding the conjunction ranking,
which gets rid of a major bottleneck in several standard plan-
ning benchmark domains. In terms of overall peformance,
we find that different ranking strategies do make a large dif-
ference, and that our new strategies can be useful. In partic-
ular, our best performing search configuration beats the pre-
vious best explicit-conjunctions search, and therewith beats
the state of the art on several domains.

Preliminaries
We introduce our basic notations, and the standard concepts
forming the background to our work.

Planning Framework
We use the STRIPS framework for classical planning (Fikes
and Nilsson 1971), the canonical simplest planning lan-
guage where all state variables are Boolean. We use the
standard notation where the state variables are notated as
propositional-logic facts.

A planning task is defined as a tuple Π = (F ,A, I,G),
where F is a set of facts, A is a set of actions, I ⊆ F is
the initial state, and G ⊆ F is the set of goal facts. An
action a ∈ A is composed of its preconditions pre(a), add
list add(a), and delete list del(a).

A state s ⊆ F is a set of facts. An action a is applicable
to s if pre(a) ⊆ s. Applying a to s results in the state
(s ∪ add(a)) \ del(a). A sequence of actions leading from
a state s to a goal state sG ⊆ G is called a plan for s. A plan
for a task Π is a plan for its initial state I . A plan is called
optimal if it has minimal length among all plans (we assume
action costs to be one for simplicity).

The set of all states is denoted by S. A heuristic function
(short heuristic) is a function h : S 7→ N0 ∪ {∞} that esti-
mates the goal distance for states s ∈ S , where∞ indicates
that there is no plan for s (in this case s is called a dead end).
The perfect heuristic h∗ evaluates to the length of an optimal
plan for any state s, or to∞ if no plan for s exists.

Standard Heuristic Functions
The family of critical path heuristics hm (Haslum and
Geffner 2000) is based on the assumption that in order to
achieve any set of facts g, it suffices to achieve their most
costly m-sized subset. The hC heuristic generalizes this to
an arbitrary set of conjunctions (fact sets) C, such that the
cost to achieve a fact set g is estimated by its most costly
subset g′ ⊆ g, g′ ∈ C (Hoffmann and Fickert 2015).

Throughout this paper we will assume C to contain all
singleton conjunctions c = {f}, f ∈ F . We will use the
shorthand “XC” to mean all conjunctions in a fact set X ,
i.e. {c ⊆ X | c ∈ C}.

We now define hC formally. This is done via the concept
of regression. A fact set g is regressable over an action a
if add(a) ∩ g 6= ∅ and del(a) ∩ g = ∅. In that case, the
regression of g over a is defined asR(g, a) = (g\add(a))∪
pre(a), otherwise we write R(g, a) = ⊥.

Given a state s and a set of conjunctions C, hC is defined
as hC = h(s,G) where h is the function that satisfies

h(s, g) =

{
0 if g ⊆ s
1 + mina∈A,R(g,a) 6=⊥ h(s,R(g, a)) if g ∈ C
maxg′∈gC h(s, g′) else

We can compute hC using a forward exploration until a
fixed point is reached. First, hC(s, c) is set to 0 for all
c ∈ sC . Now we can iteratively set the hC value for
conjunctions where hC is yet undefined, if there is an ac-
tion a such that hC is already assigned for all conjunctions
c′ ∈ R(c, a)C . In that case, hC(s, c) is set to the maximum
cost of the conjunctions c′, plus 1 for having to apply a. The
final hC(s) value is the maximum cost of the goal conjunc-
tions c ∈ GC .

This algorithm can be efficiently implemented using
counters that keep track on the number of precondition con-
junctions that need to be achieved before a conjunction can
be reached through a specific action. Specifically, coun-
ters count(a, c) are attached to (action, conjunction) pairs
(a, c) where R(c, a) 6= ⊥. The counters are initially set
to |R(c, a)C |, and are decremented whenever a conjunction
in R(c, a)C is reached for the first time. When a counter
reaches zero, all conjunctions that are necessary to achieve
c via a are reached and c can be used in the next iteration
(Fickert, Hoffmann, and Steinmetz 2016).

The delete relaxation simplifies the task by assuming all
delete lists to be empty. A corresponding plan is called a re-
laxed plan. The perfect delete relaxation heuristic h+ eval-
uates to the length of an optimal delete-relaxed plan for any
state s, or to ∞ if no such plan for s exists. The delete re-
laxation heuristic hFF (Hoffmann and Nebel 2001) also esti-
mates states by the length of a delete-relaxed plan, but does
not require the plans to be optimal. In contrast to h+, hFF

can be computed in polynomial time which makes it suitable
to use as a heuristic.

For hFF relaxed plans are usually generated using a best
supporter function bs , which assigns an action to each fact
that is deemed to be its cheapest achiever. A relaxed plan
can then be extracted by starting from the goal facts, adding
their best supporters to the relaxed plan, and propagating

their preconditions until all open facts are either already true
in the current state or achieved by an action in the relaxed
plan. In practice, hFF usually uses hadd as the best supporter
function, which corresponds to h1 but sums over facts in-
stead of taking the maximum.

hCFF and its Refinement Operation
The partial delete relaxation heuristic hCFF (Fickert, Hoff-
mann, and Steinmetz 2016) increases the accuracy of hFF by
forcing the relaxed plans to respect a given set of conjunc-
tions C. It arises from the combination of hFF and hC : the
transition from h1 to hFF can be seen as having to achieve
all facts of a subgoal G instead of only the most costly fact
p ∈ G. Similarly, hCFF has to achieve all subgoals g ∈ GC

instead of only the most costly one for hC . The correspond-
ing perfect delete relaxation heuristic respecting a set of con-
junctionsC is denoted by hC+. IfC is the set of all singleton
conjunctions, then hC+ = h+. However, hC+ eventually
converges to h∗ when adding more conjunctions to C, thus
allowing to interpolate between h+ and h∗ with the choice
of C.

The partially relaxed plans π[hCFF] generated by hCFF

consist of (action, supported conjunctions) pairs which we
call action occurrences. For an action occurrence (a,G),
the set of supported conjunctions G indicates which con-
junctions are achieved. The preconditions for an action oc-
currence are pre((a,G)) = (

⋃
c∈GR(c, a))C . In practice,

it suffices to consider only the non-dominated conjunctions
as preconditions, i.e. those that are not a subset of a different
conjunction that is also a precondition.

Similar to hFF, partially relaxed plans for hCFF are also
computed using a best supporter function based on hC . In
practice, we use hCadd, which is the equivalent extension for
hC as hadd is for h1.

C-Refinement
We use Keyder et al.’s refinement algorithm (Keyder, Hoff-
mann, and Haslum 2014) to generate a suiteable set of
conjunctions for hCFF. Given the current partially relaxed
plan, the algorithm generates a set of candidate conjunctions
Ccand ∩ C = ∅ if the plan fails to execute in the real world
(with delete semantics). A single candidate c ∈ Ccand is
selected to be added to C. The algorithm was originally
defined for hFF(ΠC), which is the compilation equivalent
of hCFF, but can be straightforwardly adapted to hCFF. We
summarize the algorithm in the following.

First, the relaxed plan is put into a data structure called
Best Supporter Graph (BSG):

Definition 1 (Best Supporter Graph) Given a state s for
a planning task Π, a set of action occurrences π[hCFF](s)
that can be sequenced to form a partially relaxed plan for s,
and the corresponding best supporter function bs , the best
supporter graph is a directed acyclic graph φ = 〈V,E〉,
where V = π[hCFF](s) ∪ {(aGOAL, ∅)}, E = {〈v, v′〉 |
∃c ∈ pre(v′) ∧ v = bs(c)}. Each vertex is labelled with the
action occurrence it represents, and each edge is labelled
with the set of (non-dominated) precondition conjunctions
{c | c ∈ pre(v′) ∧ v = bs(c)}.

The BSG models the dependencies between action occur-
rences: if there is an edge from a vertex v to another vertex
v′, the action occurrence represented by v achieves a con-
junction that is required as a precondition for the action oc-
currence represented by v′. There is an additional vertex for
the goal which is represented by an artificial action aGOAL

with pre(aGOAL) = G.
If the partially relaxed plan fails to execute in the origi-

nal planning task, there must be an action (the deleter) that
deletes a precondition of another action (or the goal) occur-
ring later in the plan (the failed action). The deleter and
failed action can either be ordered sequentially or have a
common descendant in the BSG, as shown in Figure 1.

vd . . . vf
c1 cn

¬c

(a) sequential conflict

vd . . .

vf . . .

vj

c1 cn

c′1
c′n

¬c

(b) parallel conflict

Figure 1: Conflict types in relaxed plans.

In the sequential case, there is a path from the deleter d to
the failed action f . LetL be the set of labels on the path from
d to f . Possible new conjunctions addressing this conflict
are {cL ∪ c | cL ∈ L}. In the parallel case, there is no
path from d to f but they have a common descendant j. Let
Ld be the set of edge labels on the path from d to j and Lf

be the edge labels on the path from f to j. Possible new
conjunctions are {cLd

∪ cLf
| cLd

∈ Ld, cLf
∈ Lf ∪ {c}}.

As only one conjunction will be selected to be added to C,
it suffices to consider one candidate for a single conflict to
avoid redundancy. The considered candidate conjunction is
cn∪c in the sequential case and cn∪c′n in the parallel case.

Candidate Ranking Strategies
The refinement algorithm returns a set of candidate conjunc-
tions Ccand that are not part of C yet. While it is possible
to add all the candidate conjunctions to C at once, in prac-
tice it is better to only add a single conjunction to minimize
the computational overhead and avoid redundant conjunc-
tions addressing the same conflicts (Keyder, Hoffmann, and
Haslum 2014). However, to select a suitable candidate, the
conjunctions must be ranked according to some criteria. We
now discuss a range of ranking strategies. These strategies
can be combined using lexicographic tie-breaking, which we
denote as 〈s1, s2, . . . 〉 (s1 is applied first, then s2 is used to
break the remaining ties etc.). If there are still multiple can-
didates remaining after applying all ranking strategies, the
remaining ties will be broken arbitrarily.

Keyder et al. introduced the following ranking strategies:

• min-distance: rank the candidates based on the number of
vertices between the deleter and the failed action in the
BSG for sequential conflicts (e.g. if the deleter and failed
action are ordered immediately after each other, this value
is 0). For parallel conflicts this is set to 1.

• min-counters: rank the candidates based on the number
of counters that are introduced when adding it to C. For
a candidate conjunction c, this is computed as |{a ∈ A |
R(c, a) 6= ⊥}|.1

The intuition of the min-distance strategy is that prefer-
ring conflicts with minimal distance between the deleter and
the failed action tends to yield more relevant conflicts. Ad-
ditionally, this also allows for a faster implementation of the
conflict extraction algorithm, because conflicts with lower
distance are computationally easier to find, and if those are
preferred anyway the algorithm can terminate earlier.

The two strategies are combined as 〈min-distance,
min-counters〉. From the conflicts with minimal distance the
one that introduces the minimal number of new counters is
chosen in order to minimize the computational overhead.

However, the overhead is not the only important metric
when considering which conjunctions to add to C. Some
conjunctions might yield a more informative heuristic than
others. Hence, we also consider strategies with very differ-
ent approaches:

• random: rank the candidates randomly.

• arbitrary: rank the candidates arbitrarily (i.e. they stay in
the order as generated).

• min-size and max-size: rank the candidates by their size.

• min-counters-estimate: estimate the number of additional
counters by

∑
f∈c |{a ∈ A | R({f}, a) 6= ⊥}| for a

candidate conjunction c.

• max-occurrences: the number of conflicts for which the
candidate conjunction was added to the set of candidates.

• min-influence and max-influence: rank the conjunctions
based on the number of counters where the conjunction
will appear as a precondition when added to C.

• min-deleter-alternatives and max-deleter-alternatives:
rank the conjunctions based on how many of the deleter’s
supported conjunctions could be achieved equally well by
different actions. Specifically, we calculate this as the per-
centage of supported conjunctions of the deleter that have
other best supporters that do not delete the missing pre-
condition of the failed action.

The strategies range from trivial methods (random and
arbitrary) over simple features of the candidate conjunctions
(e.g. min-size) to more complex strategies. First we briefly
discuss the ideas behind the non-trivial strategies.

The min-counters-estimate is an attempt to reduce
the computational overhead of the min-counters strategy:
min-counters requires computing R(c, a) for all candi-
dates c ∈ Ccand and actions a ∈ A, whereas for
min-counters-estimate we only need the regressions for all
unit conjunctions, which are already available as the unit
conjunctions are always contained in C.

1For the compilation-based hFF(ΠC), this corresponds to the
number of action representatives introduced in the compiled task
ΠC .

The max-occurrences strategy arises from the observation
that different conflicts may yield the same candidate con-
junctions. These candidates can fix multiple conflicts at once
when added to C.

The influence-based strategies estimate how many exist-
ing counters will be affected by a new conjunction.

Finally, the strategies considering the deleter-alternatives
attempt to predict the changes to the partially relaxed plans
when a conjunction is added. If there are no alternative ac-
tions to achieve the conjunctions supported by the deleter,
the structure of the next relaxed plan will probably change
more compared to the deleter just being exchanged for a dif-
ferent action.

Some of the strategies require additional computation or
memory. For example, the min-counters strategy requires
computing R(c, a) for all candidate conjunctions c ∈ Ccand
and actions a ∈ A, and for the max-occurrences strategy
we have to keep track of the number of times each conjunc-
tion is added to the set of candidates. Our implementation
avoids this overhead whenever it is not needed. For exam-
ple, if the min-counters strategy only appears as the second
tie-breaker, it is only evaluated for the remaining conjunc-
tions. Similarly, if max-occurrences is not used as a ranking
strategy, we do not need to count the number of times the
same candidate is added to Ccand.

Online Ranking Strategies
In addition to ranking candidates that are not yet in C, we
can also devise rankings for conjunctions that are already
used by the heuristic. For these online ranking strategies, we
can take features and statistics into account that can only be
measured during search. This way, we may get more precise
information about the conjunctions, which can be used to
remove conjunctions from C again if they turn out not to
be useful during search. We will evaluate these strategies
by periodically replacing existing conjunctions in C that are
deemed worst by the online ranking strategies by new ones.
We consider the following strategies:
• random: rank the conjunctions randomly.
• oldest: rank the conjunctions by how long they are con-

tained in C.
• max-counters: rank the conjunctions by the number of

attached counters.
• min-rp-frequency: rank the conjunctions by how often

they appear as a supported conjunction of any action oc-
currence in a partially relaxed plan (as a percentage of the
number of generated relaxed plans since this conjunction
was added to C).

• min-hCadd-increase: rank the conjunctions according to
how often their hCadd value increased over that of its dom-
inated conjunctions (as a percentage of the number of
evaluations since this conjunction was added to C).
For a more complex strategy, we first define the effective-

ness of a conjunction as follows:

Definition 2 A conjunction c is called effective in a state s
if ∀c′ ⊂ c, c′ ∈ C : hCadd(s, c′) < hCadd(s, c) and either

1. c ⊆ G and if hCadd(s, c) = ∞, then ∀c′ ⊆ G, c′ ∈
C, c′ 6= c : hCadd(s, c′) 6=∞ or

2. there exists a counter countc′,a attached to a conjunction
c′ and action a with c ⊆ R(c′, a) and either
• hCadd(s, c) <∞ and a is a best supporter of c′ or
• hCadd(s, c) = ∞, hCadd(s, c′) = ∞, and ∀c′′ ∈
R(c′, a)C , c′′ 6= c : hCadd(s, c′′) 6=∞

A conjunction c is considered effective in a state s if its
hCadd value increases over that of its subconjunctions c′ ⊂ c,
and the conjunction contributes in some way to the overall
hCadd value. The contribution is either by being part of the
goal, or by being required for another conjunction. If c is
unreachable (hCadd(s, c) =∞), it must make either the goal
or some other conjunction unreachable.

• min-effective: replace the conjunction that is effective the
least often (as a percentage of the number of evaluations
since this conjunction was added to C).

Since min-counters is already a successful ranking strat-
egy for refinement, it appears logical that during search, re-
placing conjunctions with many attached counters by new
ones with fewer counters can be beneficial.

The min-rp-frequency strategy considers how often con-
junctions appear in the partially relaxed plans, assuming that
conjunctions that are used in the relaxed plans often are more
useful than others.

The min-hCadd-increase and min-effective strategies rep-
resent the attempt to capture the importance of a conjunc-
tion. The former is rather simple, and just considers if the
conjunction tends to be more difficult to achieve than its sub-
conjunctions. The latter additionally requires the conjunc-
tion to be used for something: either as part of the goal; or in
a precondition of a counter attached to another conjunction,
and the other conjunction is reached through that counter.

Conflict Extraction Algorithm
We finally designed a variant of the conflict extraction step,
which precedes the selection of candidate conjunctions.

Keyder et al.’s implementation of the refinement algo-
rithm searches conflicts in the BSG and proceeds as follows.
First, only sequential conflicts with zero distance between
the deleter and failed action in the BSG are collected. Only
if no conflicts are found, the algorithm proceeds with the
computationally much more difficult procedures to collect
all other sequential conflicts and parallel conflicts. As such,
this implementation is well optimized for their lexicographic
tie-breaking, where candidates with minimal distance be-
tween the deleter and failed action are preferred.

Collecting conflicts from the BSG has the drawback that it
can lead to a very high number of conflicts (thus taking a lot
of time), and many of the conflicts may not actually appear
in the ordered relaxed plan that is returned by the heuristic.
We take a slightly different approach and extract the con-
flicts directly from the sequenced relaxed plan instead, only
using the BSG to identify the conflict type and generate the
candidate conjunction accordingly. In the experiments sec-
tion we will show that this is beneficial, both for the run-time

of the refinement algorithm and for the quality of the gener-
ated conjunctions.

Experiments
The described techniques are implemented in Fast Down-
ward (FD) (Helmert 2006). We evaluate different conjunc-
tion selection strategies in two search algorithms: enforced
hill-climbing with online-refinement (Online-EHC) (Fickert
and Hoffmann 2017), and greedy best-first search (GBFS)
where conjunctions can be learned before and during search.
The former uses helpful actions pruning, the latter uses FD’s
dual queue with preferred operators and lazy evaluation. The
best supporter function for hCFF is hCadd with random tie
breaking (the best-performing configuration in prior work).
All results are averaged over three different random seeds.
A problem instance counts as solved if it is solved with at
least two different random seeds by the same configuration.

The experiments were run on machines with Intel Xeon
E5-2650 processors with a clock rate of 2.3 GHz with time
and memory limits of 30 minutes and 4 GB respectively.
The experiments were run on the domains from the satis-
ficing tracks of all IPCs, excluding those (namely Gripper,
Miconic, Movie, Openstacks’06, and Openstacks’08) where
Online-EHC can solve all problems without learning any
conjunctions. This results in a total of 1465 benchmark in-
stances from 41 domains.

Online-EHC performs successive breadth-first explo-
rations from some state s until a state s′ with better heuristic
value is found. Then the next exploration starts from that
state etc. until a goal state is reached. If no such s′ with bet-
ter heuristic value can be found within a specific lookahead
bound (we use the default value of 3 in our experiments),
new conjunctions are added in iterative refinement steps in
s. The refinement process repeats until hCFF(s) increases
enough for s not to be a local minimum anymore.

We will use the statistic of how many conjunctions have
to be added to C during a run of Online-EHC as an indica-
tor for the quality of the generated conjunctions. If fewer
conjunctions are sufficient to guide search to the goal, the
conjunctions must have a better impact on the heuristic than
if more refinement steps were needed. As a measurement
of the computational overhead that is incurred by the set of
conjunctions, we use the increase in the number of counters
in the hC implementation.

GBFS with offline learning is configured to generate con-
junctions until the number of counters increases by a factor
of 1.5, or a timeout of 900 seconds is reached (this is the
overall most competitive configuration from (Fickert, Hoff-
mann, and Steinmetz 2016)). After C is generated, search is
started using the resulting hCFF heuristic.

Unless noted otherwise, the default lexicographical
tie-breaking for candidate conjunctions is 〈min-distance,
min-counters〉, i.e. the same one as used in prior work.

The experiments are structured as follows. We start out
by assessing the impact of our changes to the conflict ex-
traction algorithm. Then we evaluate the different ranking
strategies; first considering the candidate ranking strategies
and combinations of them before we turn to the online rank-
ing strategies.

10−3 10−2 10−1 100 101 102 103 104
10−3

10−2

10−1

100

101

102

103

104

Best Supporter Graph

R
el

ax
ed

Pl
an

Figure 2: Refinement iterations per second using the orig-
inal conflict extraction algorithm (“Best Supporter Graph”)
compared to our modified algorithm (“Relaxed Plan”).

Conflict Extraction Algorithm
The main difference in our modifications to Keyder et al.’s
conflict extraction algorithm is that we collect the conflicts
directly from the extracted relaxed plan instead of consider-
ing all conflicts that appear in the BSG. We ran both con-
flict extraction algorithms in both GBFS with offline learn-
ing and Online-EHC. We will compare the run-times of the
algorithms in GBFS since they are less influenced by other
effects than in Online-EHC (e.g. learning in different states).
In Online-EHC we will compare the overall performance
and quality of the generated conjunctions.

Figure 2 compares the number of refinement operations of
the original algorithm (labelled by “Best Supporter Graph”)
to our modified version (“Relaxed Plan”). Extracting the
conflicts from the relaxed plan takes less time on most in-
stances, in particular on instances where the refinement al-
gorithm is generally slow, and a faster conflict extraction al-
gorithm is especially desirable. Overall, our modified al-
gorithm offers a 20-25 percent speed increase. The do-
mains where our modified algorithm provides the biggest
speedup are VisitAll (3x), Parcprinter (3.5x), Pathways
(5.3x), Maintenance (5.9x), and Openstacks (50.5x). On
the largest Openstacks instances, it is two orders of mag-
nitude faster. The domains where the original algorithm has
the biggest advantage are GED (1.5x faster), Barman (1.6x),
and Sokoban (1.6x).

While we expected our algorithm to be faster because
of a reduced number of conflicts, the number of conflicts
generated by our modified algorithm is on average more
than three times greater than using the original algorithm.
In fact, the only domains where our modified algorithm
yields fewer conflicts are Tetris (−11%), CityCar (−32%),
Pathways (−73%), Maintenance (−92%), and Openstacks
(−96%). Our algorithm can only find more conflicts if the

original algorithm terminates early because of zero-distance
conflicts. Since this does occur often and we expect the orig-
inal algorithm to be superior in these cases, the difference
in computation time must be significantly more impactful
in the remaining cases where no zero-distance conflicts are
present.

Ref. Algorithm BSG RP BSG RP
Domain Coverage Conjunctions
Airport 50 40 45 144.5 36.6
Barman 40 24 38 4386.9 2867.9
ChildSnack 20 3 2 1304.5 1454.7
CityCar 20 12 10 1843.0 2028.2
Freecell 80 74 72 19.3 20.1
Nomystery 20 13 14 37.0 35.7
Parking 40 19 29 247.3 69.0
Pipes-NT 50 44 45 13.1 14.0
Sokoban 50 2 6 1771.2 2152.7
Storage 30 26 27 40.6 37.6
Tetris 20 15 16 354.3 300.8
Tidybot 20 14 15 384.5 144.5
Transport 70 61 60 75.3 76.7
Trucks 30 18 16 58.4 105.0
VisitAll 40 16 18 1119.4 1058.1
Others 885 859 859 30.4 28.2
Overall 1465 1240 1272 197.1 159.8

Table 1: Comparison of the original conflict extraction algo-
rithm (“BSG”) to our modified version (“RP”) in Online-
EHC. The table shows the coverage and number of con-
junctions added to C during search for commonly solved
instances. Domains with identical coverage are grouped to
“Others”.

We now evaluate the conflict extraction modifications in
the Online-EHC. Table 1 shows an overview. The overall
coverage increases significantly, with only slight losses of
up to −2 in five domains. This can be attributed to the in-
creased quality of the conjunctions, as shown by the num-
ber of added conjunctions for commonly solved instances
(right half of the table). Since the original conflict extrac-
tion algorithm also includes conflicts that do not occur in
the ordered relaxed plan computed by the heuristic, many
superfluous conjunctions may be added that do not signif-
icantly improve the informativeness of the heuristic. Here
the run-times of the algorithms only have a small impact on
the overall search time. In fact, the difference in the ratio
of learning time compared to the overall search time stays
within 5% for all domains except GED, where the modified
algorithm uses on average 23% of the overall search time for
learning compared to 36% for the original algorithm.

In the remainder of this paper we use our version of the
conflict extraction algorithm.

Candidate Ranking Strategies
We evaluate the different candidate ranking methods in
Online-EHC, starting with the basic strategies before con-
sidering their combinations. In the following experiments

remaining ties are broken randomly.

Strategy Cov. Conj. Overh. Ties
〈min-distance〉 1245 18.0 2.42 6.07
〈min-counters〉 1188 28.8 2.50 0.37
〈arbitrary〉 1072 39.8 3.85 0
〈random〉 1069 37.6 3.90 0
〈min-size〉 1148 28.8 2.95 7.71
〈max-size〉 1049 46.4 4.38 4.43
〈min-counters-est.〉 1176 32.5 2.63 0.39
〈max-occurrences〉 1099 44.4 3.96 0.13
〈min-influence〉 1165 22.6 2.82 0.59
〈max-influence〉 1070 40.9 3.56 1.21
〈min-del-alt〉 1094 35.8 3.76 13.90
〈max-del-alt〉 1093 39.8 3.77 5.25

Table 2: Overview of the results with the basic candi-
date ranking strategies in Online-EHC. Remaining ties are
broken randomly. The table shows the overall coverage
(“Cov.”), geometric mean of the number of added conjunc-
tions for commonly solved instances (“Conj.”), computa-
tional overhead as the geometric mean of the growth in the
number of counters (“Overh.”), and geometric mean of the
remaining number of ties after the ranking strategies are ap-
plied (“Ties”).

Table 2 shows an overview. The choice of the strategy has
a huge effect on the overall coverage, which ranges from
1049 for the worst to 1245 for the best performing strat-
egy. Overall, min-distance clearly outperforms the other
strategies and requires Online-EHC to learn fewer conjunc-
tions compared to any other ranking strategy. In almost
every single domain it reaches at least close to the high-
est coverage among all ranking strategies. Interestingly, the
max-size strategy results in the least informative conjunc-
tions while generating the largest computational overhead.
The min-counters-estimate strategy performs very similar
but slightly weaker than the min-counters. However, the in-
tended advantage by saving some computation time does not
really have an effect as the evaluation of the ranking strate-
gies takes only a very small share of the overall search time.

In some domains the results stay somewhat consistent
between the different ranking strategies, in others the re-
sults can fluctuate wildly. We highlight the results for
some selected domains and strategies in Table 3. The do-
mains with the highest variance in coverage are Barman,
Floortile, GED, and Parking. Parking is the domain where
min-distance is beaten by the highest margin as it loses by
−5 compared to min-counters.

We will now evaluate the ranking strategies as an addi-
tional tie breaker after the min-distance strategy, which per-
formed consistently best. In all domains, there is on average
still a choice among multiple equally good candidates after
applying the min-distance strategy. However, in most do-
mains the results are not affected much. An overview of
the coverage on domains that display the biggest differences
is given in Table 4, excluding some of the less interesting
configurations for space reasons. The last row shows the
average number of conjunctions added to C during search.

Coverage 〈m
in

-d
is

t.〉

〈m
in

-c
ou

nt
.〉

〈m
in

-s
iz

e〉

〈m
ax

-s
iz

e〉

〈m
in

-o
cc

.〉

〈m
in

-i
nfl

.〉

〈r
an

do
m
〉

Airport 50 45 38 41 26 25 41 36
Barman 40 39 40 9 3 8 26 3
Floortile 40 40 7 5 9 32 7 4
GED 20 20 0 20 2 1 20 6
Nomystery 20 12 8 12 12 11 15 7
Parking 40 21 26 10 3 1 15 5
Tetris 20 13 9 14 5 4 11 6
Tidybot 20 15 15 14 8 8 14 12
Others 1165 1040 1045 1023 981 1009 1016 990
Sum 1465 1245 1188 1148 1049 1099 1165 1069

Table 3: Coverage results for selected ranking strategies and
domains.

None of the new strategies manages to beat the state-of-
the-art tie-breaking 〈min-distance, min-counters〉. The im-
portant observation here is that while the min-counters strat-
egy only aims to reduce the computational overhead, it pro-
duces very informative conjunctions on top of that which
makes it the most successful strategy.

Although it does not manifest in coverage, there are
some domains where other strategies work better. In the
Floortile, Hiking, and Sokoban domains, 〈min-distance,
min-counters〉 performs worst both in terms of search time
as well as number of generated conjunctions on com-
monly solved instances. Aside from Sokoban, which only
has three commonly solved instances with the other rank-
ing strategies and thus doesn’t have the most meaning-
ful data, the biggest improvement can be made in Hiking
with a search time reduction of 62% using 〈min-distance,
max-deleter-alternatives〉 as lexicographic tie-breaking.

Applying another tie-breaker after 〈min-distance,
min-counters〉 becomes less interesting, as there are very
few domains in which there are still reasonably many
decisions to be made. Furthermore, none of them show any
significant differences between the ranking strategies used
as the third tie-breaker. The only meaningful observations
can be made in the Parking domain, where 〈min-distance,
min-counters, max-occurrences〉 performs better in terms
of search time than the other options (around 15-40%). In
terms of conjunction quality as measured by the number of
conjunctions that need to be added in Online-EHC, it only
concedes to 〈min-distance, min-counters, max-size〉, which
in turn generates more computational overhead.

Online Ranking Strategies
We now consider the strategies to rank conjunctions that are
already contained in C and used by the heuristic. In order to
evaluate these strategies, we use GBFS with offline learning,
and periodically (after every 25 evaluations) replace a single
conjunctions by a new one. The conjunction to be replaced
is selected according to each specific online ranking strat-

Coverage 〈m
d,

m
in

-c
ou

nt
.〉

〈m
d,

ar
bi

tr
ar

y〉

〈m
d,

ra
nd

om
〉

〈m
d,

m
in

-s
iz

e〉

〈m
d,

m
ax

-o
cc

.〉

〈m
d,

m
in

-i
nfl

.〉

〈m
d,

m
ax

-i
nfl

.〉

Barman 40 38 39 39 28 38 36 39
CityCar 20 10 8 8 9 7 8 5
Nomystery 20 14 12 12 14 13 16 13
Parking 40 29 21 21 22 20 23 28
Tetris 20 16 13 13 15 16 11 8
Tidybot 20 15 15 15 14 13 16 12
Transport 20 60 52 52 52 53 48 54
Others 1165 1090 1086 1085 1080 1073 1079 1082
Sum 1465 1272 1246 1245 1234 1233 1237 1241
Conjunctions 129 135 134 140 156 153 190

Table 4: Coverage results for lexicographic tie-breaking us-
ing the different candidate ranking strategies as an additional
tie-breaker after min-distance (abbreviated as md) on se-
lected domains. The last row shows the geometric mean of
the number of added conjunctions for commonly solved in-
stances.

egy, while the new conjunction is selected using the default
candidate selection strategy, 〈min-distance, min-counters〉.
In order to avoid removing conjunctions that have recently
been added, the removed conjunction must have been part
of C for at least 250 evaluations (except in the beginning
before the threshold of 250 evaluations is reached for any
conjunction). After replacing a conjunction, search is con-
tinued with the open and closed lists unchanged.

Strategy Coverage Evaluations Overhead
random 1277 696.4 1.49
oldest 1289 712.2 1.51
max-counters 1256 781.3 1.32
min-rp-frequency 1253 681.1 1.58
min-hCadd-increase 1199 766.7 1.48
min-effective 1213 729.3 1.54
fixed C 1177 980.6 1.45

Table 5: Overview of the results for the online ranking
strategies using GBFS and replacing an existing conjunc-
tion by a new one every 25 evaluations. The table shows
the overall coverage, geometric mean of the number of eval-
uations for commonly solved instances, and computational
overhead as the geometric mean of the growth in the number
of counters (“Overhead”). As a baseline, the last row shows
the results if C remains fixed throughout search.

An overview of the results is shown in Table 5. The table
contains an additional row for a baseline where conjunctions
are never replaced, and C remains fixed throughout search.

Periodically replacing the oldest conjunction works best
overall, with an impressive overall coverage of 1289. As ex-

pected, replacing the conjunctions with the greatest number
of attached counters can further reduce the overhead during
search. The min-rp-frequency strategy results in the overall
lowest number of evaluations. However, there is no domain
where it achieves a higher coverage than any other strategy,
though it is tied for first in 24 domains. In the Openstacks,
Pathways, and VisitAll domains the fixed-C baseline has the
highest coverage. The biggest difference can be observed
in Openstacks, where using a fixed-C solves 37 out of 40
instances, the min-effective and min-hCadd-increase strate-
gies only achieve a coverage of 6 respectively 7, and the
other strategies achieve a coverage of 25-26. Interestingly,
the random strategy performs very well, and is only slightly
worse than the oldest strategy overall.

All of the online replacement configurations beat the one
with a fixed C by some margin, especially considering the
number of evaluations. Since the heuristic steadily includes
new conjunctions, it adapts itself to the part of the search
space that is currently being explored. Conjunctions are
often only relevant in some areas of the search space, but
represent computational overhead in others without improv-
ing the informativeness of the heuristic. The oldest strategy
tackles this problem the most effectively, as the oldest con-
junctions tend to be the ones that were learned in now distant
parts of the search space and are not relevant in recently gen-
erated relaxed plans.

Coverage ol
de

st

O
nl

.-E
H

C

FF L
A

M
A

M
er

cu
ry

Airport 50 41 45 35 32 32
Childsnack 20 1 2 0 5 0
CityCar 20 15 10 1 5 5
Floortile 40 36 40 8 8 8
Maintenance 20 17 17 11 0 7
Nomystery 20 5 14 8 11 14
Openstacks 40 26 40 40 40 40
Parking 40 34 29 20 40 40
Pathways 30 22 30 23 23 30
Sokoban 50 46 6 48 48 44
Storage 30 28 27 20 19 19
Tetris 20 19 16 14 13 19
Thoughtful 20 14 20 15 16 13
Transport 70 52 60 32 61 70
VisitAll 40 19 18 7 40 40
Others 955 914 898 856 902 911
Sum 1465 1289 1272 1138 1263 1292

Table 6: Coverage results for the best performing online
ranking strategy compared to the best performing Online-
EHC configuration and the state of the art.

The best performing replacement configuration (using the
oldest ranking strategy) even beats the overall best Online-
EHC configuration and is competitive to the state of the art.
A comparison to Online-EHC as well as FF (Hoffmann and
Nebel 2001), LAMA (Richter and Westphal 2010), and Mer-

cury (Katz and Hoffmann 2014) is shown in Table 6. Do-
mains where differences are small are grouped to “Others”.

The biggest advantage for the online replacement config-
uration is in CityCar with 15 solved instances, compared to
10 for Online-EHC and 5 for the next best state-of-the-art
configuration. It also compares very well to the state of
the art in the Storage domain with +8 over the next best
planner (FF), although Online-EHC also works well here.
LAMA and Mercury use heuristics based on landmarks in
conjunction with delete relaxation heuristics, which works
especially well in the Transport and VisitAll domains.

Across almost all other domains, the online replacement
configuration is consistently among the best performing con-
figurations. In 8 domains it performs better than any of FF,
LAMA, and Mercury, in 21 domains it is tied for best, and
it is the worst configuration in only 4 domains.

Compared to Online-EHC, it has higher coverage in 11
domains, but also lower coverage in equally many domains.
Most notably, in Sokoban, where Online-EHC performs
worst, the replacement configuration has an improvement of
+40 in coverage.

Conclusion
Research on partial delete relaxation via explicit conjunc-
tions has so far all but ignored the intricacies of how to rank
conjunctions in the abstraction-refinement step. We have
filled that gap, with an extensive evaluation of strategies and
strategy combinations, both for candidates that have yet to
be added toC, and for already existing conjunctions. It turns
out that the previous simple strategies are already very com-
petitive. But they can be improved in particular domains,
and a simple online-replacement strategy achieves state-of-
the-art performance.

Of course, more things could be tried; we conjecture
though, given our already very broad set of strategies, that
not much more performance improvement can be obtained
through varying this particular algorithm parameter. The
only exception consists in more intelligent strategies for
choosing the time points of conjunction replacement, as well
as the number of conjunctions to be (removed or) replaced.
This is an interesting direction for further work.

Acknowledgments. This work was partially supported
by the German Research Foundation (DFG), under grant
HO 2169/5-1, “Critically Constrained Planning via Partial
Delete Relaxation”. We thank the anonymous reviewers,
whose comments helped significantly to improve this paper.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B.,
eds. 2012. Proceedings of the 22nd International Confer-
ence on Automated Planning and Scheduling (ICAPS’12).
AAAI Press.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-
black planning: A new systematic approach to partial delete
relaxation. Artificial Intelligence 221:73–114.

Fickert, M., and Hoffmann, J. 2017. Complete local search:
Boosting hill-climbing through online heuristic-function re-
finement. In Proceedings of the 27th International Confer-
ence on Automated Planning and Scheduling (ICAPS’17).
AAAI Press.
Fickert, M.; Hoffmann, J.; and Steinmetz, M. 2016. Com-
bining the delete relaxation with critical-path heuristics: A
direct characterization. Journal of Artificial Intelligence Re-
search 56(1):269–327.
Fikes, R. E., and Nilsson, N. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239–290.
Haslum, P., and Geffner, H. 2000. Admissible heuris-
tics for optimal planning. In Chien, S.; Kambhampati, R.;
and Knoblock, C., eds., Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS’00), 140–149. Breckenridge, CO: AAAI Press,
Menlo Park.
Haslum, P. 2012. Incremental lower bounds for additive cost
planning problems. In Bonet et al. (2012), 74–82.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Fickert, M. 2015. Explicit conjunctions
w/o compilation: Computing hFF(ΠC) in polynomial time.
In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein,
S., eds., Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15). AAAI
Press.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2005. Where ‘ignoring delete lists’ works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.
Katz, M., and Hoffmann, J. 2014. Mercury planner: Pushing
the limits of partial delete relaxation. In IPC 2014 planner
abstracts, 43–47.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013. Who
said we need to relax all variables? In Borrajo, D.; Fratini,
S.; Kambhampati, S.; and Oddi, A., eds., Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling (ICAPS’13), 126–134. Rome, Italy: AAAI
Press.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Bonet et al. (2012), 128–136.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Improving
delete relaxation heuristics through explicitly represented
conjunctions. Journal of Artificial Intelligence Research
50:487–533.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.

