
From Fork Decoupling to Star-Topology Decoupling

Daniel Gnad and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{gnad, hoffmann}@cs.uni-saarland.de

Carmel Domshlak
Technion

Haifa, Israel
dcarmel@ie.technion.ac.il

Abstract

Fork decoupling is a recent approach to exploiting problem
structure in state space search. The problem is assumed to
take the form of a fork, where a single (large) center compo-
nent provides preconditions for several (small) leaf compo-
nents. The leaves are then conditionally independent in the
sense that, given a fixed center path πC , the compliant leaf
moves – those leaf moves enabled by the preconditions sup-
plied along πC – can be scheduled independently for each
leaf. Fork-decoupled state space search exploits this through
conducting a regular search over center paths, augmented
with maintenance of the compliant paths for each leaf indi-
vidually. We herein show that the same ideas apply to much
more general star-topology structures, where leaves may sup-
ply preconditions for the center, and actions may affect sev-
eral leaves simultaneously as long as they also affect the cen-
ter. Our empirical evaluation in planning, super-imposing star
topologies by automatically grouping the state variables into
suitable components, shows the merits of the approach.

Introduction
In classical AI planning, large deterministic transition sys-
tems are described in terms of a set of finite-domain state
variables, and actions specified via preconditions and ef-
fects over these state variables. The task is to find a se-
quence of actions leading from a given initial state to a
state that satisfies a given goal condition. Factored plan-
ning is one traditional approach towards doing so effectively.
The idea is to decouple the planning task into subsets, fac-
tors, of state variables. In localized factored planning (Amir
and Engelhardt 2003; Brafman and Domshlak 2006; 2008;
2013; Fabre et al. 2010), two factors interact if they are af-
fected by common actions, and a global plan needs to com-
ply with these cross-factor interactions. In hierarchical fac-
tored planning (e. g. (Knoblock 1994; Kelareva et al. 2007;
Wang and Williams 2015)), the factors are used within a
hierarchy of increasingly more detailed abstraction levels,
search refining abstract plans as it proceeds down the hierar-
chy, and backtracking if an abstract plan has no refinement.

Both localized and hierarchical factored planning have
traditionally been viewed as the resolution of complex inter-
actions between (relatively) small factors. In recent work,

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Gnad and Hoffmann (2015) (henceforth: GH) proposed to
turn this upside down, fixing a simple interaction profile the
factoring should induce, at the cost of potentially very large
factors. They baptize this approach target-profile factoring,
and develop a concrete instance where the target profile is a
fork: a single (large) center factor provides preconditions for
several (small) leaf factors, and no other cross-factor inter-
actions are present. They introduce a simple and quick fac-
toring strategy which, given an arbitrary input planning task,
analyzes the state variable dependencies and either outputs a
fork factoring, or abstains if the relevant stucture is not there
(the task can then be handed over to other methods).

Say the factoring strategy does not abstain. We then face,
not a general planning problem, but a fork planning prob-
lem. GH’s key observation is that these can be solved via
fork-decoupled state space search: The leaves are condition-
ally independent in the sense that, given a fixed center path
πC , the compliant leaf moves – those leaf moves enabled by
the preconditions supplied along πC – can be scheduled in-
dependently for each leaf. This can be exploited by search-
ing only over center paths, and maintaining the compliant
paths separately for each leaf, thus avoiding the enumera-
tion of state combinations across leaves. GH show that this
substantially reduces the number of reachable states in (non-
abstained) planning benchmarks, almost always by at least
1 − 2 orders of magnitude, up to 6 orders of magnitude in
one domain (TPP). They show how to connect to classical
planning heuristics, and to standard search methods, guaran-
teeing plan optimality under the same conditions as before.

We herein extend GH’s ideas to star-topology structures,
where the center still supplies preconditions for the leaves,
but also the leaves may supply preconditions for the center,
and actions may affect several leaves simultaneously as long
as they also affect the center. The connection to standard
heuristics and search methods remains valid. We run exper-
iments on the planning competition benchmarks.

We place our work in the planning context for the direct
connection to GH. However, note that trying to factorize a
general input problem, and having to abstain in case the
saught structure is not present, really is an artefact of the
general-planning context. Star-topology decoupling applies,
in principle, to the state space of any system that naturally
has a star topology. As star topology is a classical design
paradigm in many areas of CS, such systems abound.

Preliminaries
We use a finite-domain state variable formalization of plan-
ning (e. g. (Bäckström and Nebel 1995; Helmert 2006)). A
finite-domain representation planning task, short FDR task,
is a quadruple Π = 〈V,A, I,G〉. V is a set of state vari-
ables, where each v ∈ V is associated with a finite domain
D(v). We identify (partial) variable assignments with sets
of variable/value pairs. A complete assignment to V is a
state. I is the initial state, and the goal G is a partial assign-
ment to V . A is a finite set of actions. Each action a ∈ A
is a triple 〈pre(a), eff(a), cost(a)〉 where the precondition
pre(a) and effect eff(a) are partial assignments to V , and
cost(a) ∈ R0+ is the action’s non-negative cost.

For a partial assignment p, V(p) ⊆ V denotes the sub-
set of state variables instantiated by p. For any V ′ ⊆ V(p),
by p[V ′] we denote the assignment to V ′ made by p. An
action a is applicable in a state s if pre(a) ⊆ s, i. e., if
s[v] = pre(a)[v] for all v ∈ V(pre(a)). Applying a in s
changes the value of each v ∈ V(eff(a)) to eff(a)[v], and
leaves s unchanged elsewhere; the outcome state is denoted
sJaK. We also use this notation for partial states p: by pJaK
we denote the assignment over-writing p with eff(a) where
both p and eff(a) are defined. The outcome state of applying
a sequence of (respectively applicable) actions is denoted
sJ〈a1, . . . , an〉K. A plan for Π is an action sequence s.t.
G ⊆ IJ〈a1, . . . , an〉K. The plan is optimal if its summed-
up cost is minimal among all plans for Π.

The causal graph of a planning task captures state
variable dependencies (e. g. (Knoblock 1994; Jonsson and
Bäckström 1995; Brafman and Domshlak 2003; Helmert
2006)). We use the commonly employed definition in the
FDR context, where the causal graph CG is a directed graph
over vertices V , with an arc from v to v′, which we de-
note (v → v′), if v 6= v′ and there exists an action a ∈ A
such that (v, v′) ∈ [V(eff(a)) ∪ V(pre(a))] × V(eff(a)). In
words, the causal graph captures precondition-effect as well
as effect-effect dependencies, as result from the action de-
scriptions. A simple intuition is that, whenever (v → v′) is
an arc in CG, changing the value of v′ may involve chang-
ing that of v as well. We assume for simplicity that CG is
weakly connected (this is wlog: else, the task can be equiv-
alently split into several independent tasks).

We will also need the notion of a support graph, SuppG,
similarly as used e. g. by Hoffmann (2011). SuppG is like
CG except its arcs are only those (v → v′) where there exists
an action a ∈ A such that (v, v′) ∈ V(pre(a)) × V(eff(a)).
In words, the support graph captures only the precondition-
effect dependencies, not effect-effect dependencies. This
more restricted concept will be needed to conveniently de-
scribe our notion of star topologies, for which purpose the
effect-effect arcs in CG are not suitable.

As an illustrative example, we will consider a simple
transportation-like FDR planning task Π = 〈V,A, I,G〉
with one package p and two trucks tA, tB , defined as fol-
lows. V = {p, tA, tB} where D(p) = {A,B, l1, l2, l3}
and D(tA) = D(tB) = {l1, l2, l3}. The initial state is
I = {p = l1, tA = l1, tB = l3}, i. e., p and tA start at
l1, and tB starts at l3. The goal is G = {p = l3}. The
actions (all with cost 1) are truck moves and load/unload:

{t, f}

p1 p2 p3 p4 p5

m1 m2 m3

{c(o1),s(o1)
t(o1),w(o1)}

{c(o2),s(o2)
t(o2),w(o2)}

{c(o3),s(o3)
t(o3),w(o3)}

Figure 1: (Gnad and Hoffmann 2015) Possible fork factor-
ings in transportation with fuel consumption (left), and job-
planning problems (right).

• move(x, y, z): precondition {tx = y} and effect {tx =
z}, where x ∈ {A,B} and {y, z} ∈ {{l1, l2}, {l2, l3}}.

• load(x, y): precondition {tx = y, p = y} and effect {p =
x}, where x ∈ {A,B} and y ∈ {l1, l2, l3}.

• unload(x, y): precondition {tx = y, p = x} and effect
{p = y}, where x ∈ {A,B} and y ∈ {l1, l2, l3}.

The causal graph and support graph of this task are identical.
Their arcs are (tA → p) and (tB → p).

Fork Decoupling
We give a brief summary of fork decoupling, in a form suit-
able for describing our extension to star topologies.

Definition 1 (Fork Factoring (GH)) Let Π be an FDR task
with variables V . A factoring F is a partition of V into
non-empty subsets F , called factors. The interaction graph
IG(F) of F is the directed graph whose vertices are the fac-
tors, with an arc (F → F ′) if F 6= F ′ and there exist v ∈ F
and v′ ∈ F ′ such that (v → v′) is an arc in CG.
F is a fork factoring if |F| > 1 and there exists FC ∈ F

s.t. the arcs in IG(F) are exactly {(FC → FL) | FL ∈ F \
{FC}}. FC is the center of F , and all other factors FL ∈
FL := F \ {FC} are leaves. We also consider the trivial
factoring where FC = V and FL = ∅, and the pathological
factoring where FC = ∅ and FL = {V }.

The only cross-factor interactions in a fork factoring con-
sist in the center factor establishing preconditions for actions
moving individual leaf factors. We use the word “center”,
instead of GH’s “root”, to align the terminology with star
topologies. Regarding the trivial and pathological cases, in
the former decoupled search simplifies to standard search,
and in the latter the entire problem is pushed into the single
“leaf”. Note that, when we say that F is a fork factoring, we
explicitly exclude these cases.

In our example, we will consider the fork factoring where
FC = {tA, tB} and the single leaf is FL = {p}.

Given an arbitrary FDR task Π as input, as pointed out
by GH, a fork factoring – if one exists, which is the case
iff the causal graph has more than one strongly connected
component (SCC) – can be found automatically based on
a simple causal graph analysis. We describe GH’s strategy
later, in the experiments, along with our own generalized
strategies. For illustration, Figure 1 already shows factorings
that GH’s strategy may find, on practical problems akin to
planning benchmarks. On the left, a truck t with fuel supply
f transports packages p1, . . . , pn. On the right, objects oi
are independent except for sharing the machines.

We need some terminology, that we will use also for star
topologies later on. Assume an FDR task Π = 〈V,A, I,G〉
and a fork factoringF with center FC and leaves FL ∈ FL.

We refer to the actions AC affecting the center as center ac-
tions, notation convention aC , and to all other actions as leaf
actions, notation convention aL. For the set of actions af-
fecting one particular FL ∈ FL, we writeAL|FL . As F is a
fork factoring, the center actionsAC have preconditions and
effects only on FC . The leaf actions AL|FL have precondi-
tions only on FC ∪ FL, and effects only on FL. The sets
AC and AL|FL form a partition of the original action set A.

A center path is a sequence of center actions applicable
to I; a leaf path is a sequence of leaf actions applicable to
I when ignoring preconditions on the center. Value assign-
ments to FC are center states, notated sC , and value assign-
ments to any FL ∈ FL are leaf states, notated sL. For the
leaf states of one particular FL ∈ FL, we write SL|FL ,
and for the set of all leaf states we write SL. A center state
sC is a goal center state if sC ⊇ G[FC], and a leaf state
sL ∈ SL|FL is a goal leaf state if sL ⊇ G[FL].

The idea in fork-decoupling is to augment a regular search
over center paths with maintenance of cheapest compliant
leaf paths for each leaf. A leaf path πL = 〈aL1 , . . . , aLn〉
complies with center path πC if we can schedule the aLi at
monotonically increasing points alongside πC so that each
aLi is enabled in the respective center state. Formally:

Definition 2 (Fork-Compliant Path (GH)) Let Π be an
FDR task, F a fork factoring with center FC , and πC a
center path traversing center states 〈sC0 , . . . , sCn 〉. For a leaf
path πL = 〈aL1 , . . . , aLm〉, an embedding into πC is a mono-
tonically increasing function t : {1, . . . ,m} 7→ {0, . . . , n}
so that, for every i ∈ {1, . . . ,m}, pre(aLi)[FC] ⊆ sCt(i).
We say that πL fork-complies with πC , also πL is πC-fork-
compliant, if an embedding exists.

Where the center path in question is clear from context,
or when discussing compliant paths in general, we will omit
“πC” and simply talk about compliant leaf paths.

In our example, πL = 〈load(A, l1)〉 complies with the
empty center path, and πL = 〈load(A, l1), unload(A, l2)〉
complies with the center path πC = 〈move(A, l1, l2)〉. But
πL = 〈load(A, l1), unload(A, l3)〉 does not comply with πC
as the required precondition tA = l3 is not established on
πC . And πL = 〈load(A, l1), unload(A, l2), load(A, l2),
unload(A, l1)〉 does not comply with πC as the last precon-
dition tA = l1 does not appear behind tA = l2 on πC .

The notion of compliant paths is a reformulation of plans
for the original input planning task Π, in the following sense.
Say π is a plan for Π, and say πC is the sub-sequence of
center actions in π. Then πC is a center path. For each leaf
FL ∈ FL, say πL is the sub-sequence of AL|FL actions in
π. Then πL is a leaf path, and is πC-fork-compliant because
π schedules πL along with πC in a way so that its center
preconditions are fulfilled. Vice versa, if a center path πC
reaches a goal center state, and can be augmented with πC-
fork-compliant leaf paths πL reaching goal leaf states, then
the embedding of the πL into πC yields a plan for Π. Hence
the plans for Π are in one-to-one correspondence with cen-
ter paths augmented with compliant leaf paths.

GH define the fork-decoupled state space Θφ, in which
each fork-decoupled state s is a pair 〈center(s), prices(s)〉
of a center state center(s) along with a pricing function

prices(s) : SL 7→ R0+ ∪ {∞}. The paths in Θφ corre-
spond to center paths, i. e., the fork-decoupled initial state
Iφ has center(Iφ) = I[FC], and the transitions over cen-
ter states are exactly those induced by the center actions.
The pricing functions are maintained so that, for every cen-
ter path πC ending in fork-decoupled state s, and for ev-
ery leaf state sL, prices(s)[sL] equals the cost of a cheap-
est πC-fork-compliant leaf path πL ending in sL. The fork-
decoupled goal states are those s where center(s) is a goal
center state, and, for every FL ∈ FL, at least one goal leaf
state sL ∈ SL|FL has a finite price prices(s)[sL] < ∞.
Once a fork-decoupled goal state s is reached, a plan for Π
can be extracted by augmenting the center path πC leading
to s with cheapest πC-fork-compliant goal leaf paths, i. e.,
leaf paths ending in goal leaf states. Observe that this plan is
optimal subject to fixing πC , i. e., the cheapest possible plan
for Π when comitting to exactly the center moves πC .

Say πC = 〈move(A, l1, l2), move(B, l3, l2),
move(B, l2, l3)〉 in our example, traversing the fork-
decoupled states s0, s1, s2, s3. Then prices(s0)[p = l1]
= 0, prices(s0)[p = A] = 1, prices(s1)[p = l2] = 2,
prices(s2)[p = B] = 3, and prices(s3)[p = l3] = 4. To
extract a plan for Π from the fork-decoupled goal state s3,
we trace back the compliant leaf path supporting p = l3 and
embed it into πC . The resulting plan loads p onto tA, moves
tA to l2, unloads p, moves tB to l2, loads p onto t2, moves
tB to l3, and unloads p.

The core of GH’s construction is the maintenance of pric-
ing functions. For forks, this is simple enough to be de-
scribed in a few lines within the definition of Θφ. For star
topologies, we need to substantially extend this construction,
so we hone in on it in more detail here. We reformulate it in
terms of compliant path graphs, which capture all possible
compliant graphs for a leaf FL given a center path πC :

Definition 3 (Fork-Compliant Path Graph) Let Π be an
FDR task,F a fork factoring with center FC and leavesFL,
and πC a center path traversing center states 〈sC0 , . . . , sCn 〉.
The πC-fork-compliant path graph for a leaf FL ∈ FL,
denoted CompGφ(πC , FL), is the arc-labeled weighted di-
rected graph whose vertices are the time-stamped leaf states
{sLt | sL ∈ SL|FL , 0 ≤ t ≤ n}, and whose arcs are:

(i) sLt
aL−−→ s′

L
t with weight c(aL) whenever sL, s′L ∈

SL|FL and aL ∈ AL|FL such that pre(aL)[FC] ⊆ sCt ,
pre(aL)[FL] ⊆ sL, and sLJaLK = s′

L.
(ii) sLt

0−→ sLt+1 with weight 0 for all sL ∈ SL|FL and
0 ≤ t < n.

In words, the πC-fork-compliant path graph includes a
copy of the leaf states at every time step 0 ≤ t ≤ n along
the center path πC . Within each t, the graph includes all
leaf-state transitions enabled in the respective center state.
From each t to t + 1, the graph has a 0-cost transition for
each leaf state. Consider again the example, and the center
path πC = 〈move(A, l1, l2)〉. The πC-fork-compliant path
graph for the package is shown in Figure 2.1

1Note that CompGφ(πC , FL) contains redundant parts, not
reachable from the initial leaf state I[FL], i. e., (p = l1)0 in the

(p = A)0 (p = B)0 (p = l1)0 (p = l2)0 (p = l3)0

(p = A)1 (p = B)1 (p = l1)1 (p = l2)1 (p = l3)1

(un)load(A, l1) (un)load(B, l3)

0 0 0 0 0

(un)load(A, l2) (un)load(B, l3)

Figure 2: The fork-compliant path graph for πC =
〈move(A, l1, l2)〉 in our illustrative example.

The πC-fork-compliant leaf path πL = 〈load(A, l1),
unload(A, l2)〉 can be embedded by starting at (p = l1)0,
following the arc labeled load(A, l1) to (p = A)0, follow-
ing the 0-arc to (p = A)1, and following the arc labeled
unload(A, l2) to (p = l2)1. The non-compliant leaf path
πL = 〈load(A, l1), unload(A, l2), load(A, l2), load(A, l1)〉
cannot be embedded, as (un)load(A, l2) appears only at
t = 1, while load(A, l1) is not available anymore at t ≥ 1.

Lemma 1 Let Π be an FDR task, F a fork factoring with
center FC and leaves FL, and πC a center path. Let FL ∈
FL, and sL ∈ SL|FL . Then the cost of a cheapest πC-fork-
compliant leaf path πL ending in sL equals the cost of a
cheapest path from I[FL]0 to sLn in CompGφ(πC , FL).

Proof: Given a πC-fork-compliant leaf path πL =
〈aL1 , . . . , aLm〉, we can schedule each aLi as a (i) arc in
CompGφ(πC , FL) at the time step t(i) assigned by the
embedding. Connecting the resulting partial paths across
time steps using the (ii) arcs, we get a path π from I[FL]0
to sLn in CompGφ(πC , FL), whose cost equals that of
πL. Vice versa, given a path π from I[FL]0 to sLn in
CompGφ(πC , FL), remove the time indices of the vertices
on π, and remove the arcs crossing time steps. This yields
a πC-fork-compliant leaf path πL ending in sL, whose cost
equals that of π. So the πC-fork-compliant leaf paths ending
in sL are in one-to-one correspondence with the paths from
I[FL]0 to sLn in CompGφ(πC , FL), showing the claim. �

To prepare our extension in the next section, we now re-
formulate the fork-decoupled state space Θφ. Each fork-
decoupled state s is a center path πC(s), associated for ev-
ery leaf FL ∈ FL with the πC-fork-compliant path graph
CompGφ(πC(s), FL). The fork-decoupled initial state Iφ
is the empty center path πC(Iφ) = 〈〉. The successor states
s′ of s are exactly the center paths extending πC(s) by one
more center action. The fork-decoupled goal states are those
s where πC(s) ends in a center goal state, and for every
FL ∈ FL there exists a goal leaf state sL ∈ SL|FL s.t.
sL|πC(s)| is reachable from I[FL]0 in CompGφ(πC(s), FL).

This formulation is different from GH’s, but is equivalent
given Lemma 1: Instead of maintaining the pricing func-
tions prices(s) explicitly listing the costs of cheapest πC-
fork-compliant paths, we maintain the fork-compliant path
graphs CompGφ(πC(s), FL), from which these same costs
can be obtained in terms of standard graph distance.

figure. This is just to keep the definition simple, in practice one
can maintain only the reachable part of CompGφ(πC , FL).

Star-Topology Decoupling
We now extend the concepts of compliant paths, and compli-
ant path graphs, to handle star topologies instead of forks. A
star topology is one where the center may interact arbitrarily
with each leaf, and even effect-effect dependencies across
leaves are allowed so long as they also affect the center:

Definition 4 (Star Factoring) Let Π be an FDR task, and
let F be a factoring. The support-interaction graph
SuppIG(F) of F is the directed graph whose vertices are
the factors, with an arc (F → F ′) if F 6= F ′ and there exist
v ∈ F and v′ ∈ F ′ such that (v → v′) is an arc in SuppG.
F is a star factoring if |F| > 1 and there exists FC ∈ F s.t.
the following two conditions hold:
(1) The arcs in SuppIG(F) are contained in {(FC →

FL), (FL → FC) | FL ∈ F \ {FC}}.
(2) For every action a, if there exist FL1 , F

L
2 ∈ F \ {FC}

such that FL1 6= FL2 and V(eff(a))∩ FL1 6= ∅ as well as
V(eff(a)) ∩ FL2 6= ∅, then V(eff(a)) ∩ FC 6= ∅.

FC is the center of F , and all other factors FL ∈ FL :=
F \ {FC} are leaves.

A star factoring F is strict if the arcs in IG(F) are con-
tained in {(FC → FL), (FL → FC) | FL ∈ F \ {FC}}.

We cannot characterize star factorings in terms of just the
causal graph, because the effect-effect arcs in that graph are
inserted for all variable pairs in the effect: If there is an arc
between two leaves, we cannot distinguish whether or not
the same action also affects the center. In contrast, in a strict
star factoring every action affects at most one leaf, which
can be characterized in terms of just the causal graph. Hence
strict star factorings are interesting from a practical perspec-
tive, allowing different/simpler factoring strategies.

Obviously, Definition 4 generalizes Definition 1. Per-
haps less obvious is how far this generalization carries. As
pointed out, an FDR task has a fork factoring iff its causal
graph has more than one SCC. In contrast, every FDR task
has a star factoring. In fact, any partition of the variables
into two non-empty subsets is a star factoring: Calling one
half of the variables the “center”, and the other the “leaf”,
we have a (strict) star factoring, as Definition 4 does not ap-
ply any restrictions if there is a single leaf only.2 That said, it
is not clear whether single-leaf factorings are useful in prac-
tice. We get back to this when discussing our experiments.

To illustrate, consider what we will refer to as the no-
empty example, where we forbid “empty truck moves”. This
is as before, except the precondition of move(x, y, z) is no
longer {tx = y}, but is {tx = y, p = x}: A truck can only
move if the package is currently inside it. The causal graph
arcs now are not only (tA → p) and (tB → p) as before,
but also (p→ tA) and (p→ tB). Hence there exists no fork
factoring. But our previous factoring with FC = {tA, tB}
and the single leaf FL = {p} is now a strict star factoring.

2Observe also that Definition 4 (2) can always be enforced
wlog, simply by introducing redundant effects on FC . However,
actions affecting FC are those our search must branch over, so this
is just another way of saying “cross-leaf effects can be tackled by
centrally branching over the respective actions”. Doing so weakens
the decoupling obtained, and for now we do not consider it.

To define compliance, we will be using the same ter-
minology as before, i. e. center actions/paths and leaf ac-
tions/paths. These concepts are (mostly) defined as before,
however their behavior is more complicated now.

The notions of center/leaf states, and of goal center/leaf
states, remain the same. The center actions AC are still all
those actions affecting the center, and the leaf actionsAL|FL

for FL ∈ FL are still all those actions affecting FL. How-
ever, AC and AL|FL are no longer disjoint, as the same
action may affect both AC and AL|FL .

A leaf path still is a sequence of leaf actions applicable to
I when ignoring all center preconditions. The notion of cen-
ter path changes, as now there may be leaf preconditions;
we ignore these, i. e., a center path is now a sequence of
center actions applicable to I when ignoring all leaf pre-
conditions. As center and leaf paths may overlap, we need
to clarify where to account for the cost of the shared actions.
Our search, as we explain in a moment, views allAC actions
as part of the center, so we account for their costs there. To
that end, the cost of a leaf path πL now is the summed-up
cost of its (AL|FL \ AC) actions. By construction, these
actions do not affect any factor other than FL itself.

We will define star-compliant paths, and star-compliant
path graphs CompGσ(πC(s), FL), below. For an overview
before delving into these details, consider first the star-
decoupled state space Θσ . A star-decoupled state s is a cen-
ter path πC(s) associated for every leaf FL ∈ FL with the
πC-star-compliant path graph CompGσ(πC(s), FL). The
star-decoupled initial state Iσ is the empty center path
πC(Iσ) = 〈〉. The star-decoupled goal states are those
s where πC(s) ends in a center goal state, and for every
FL ∈ FL there exists a goal leaf state sL ∈ SL|FL s.t.
sL|πC(s)| is reachable from I[FL]0 in CompGσ(πC(s), FL).

The definition of successor states s′ of a star-decoupled
state s changes more substantially. For forks, these simply
were all center paths extending πC(s) by one more center
action aC . This worked due to the absence of leaf precondi-
tions: by definition of “center path”, pre(aC) was satisfied at
the end of πC(s). Given a star factoring instead, the succes-
sor states s′ still result from extending πC(s) by one more
center action aC , but restricted to those aC whose leaf pre-
conditions can be satisfied at the end of πC(s). Namely, we
require that, for every FL ∈ FL, there exists sL ∈ SL|FL

such that pre(aC)[FL] ⊆ sL and sL|πC(s)| is reachable from
I[FL]0 in CompGσ(πC(s), FL).

In our original example, the star-decoupled ini-
tial state has two successors, from move(A, l1, l2)
and move(B, l3, l2). In the no-empty example, only
move(A, l1, l2) is present: Its precondition p = A is reach-
able from I[FL]0 given the empty center path. But that is
not so for the precondition p = B of move(B, l3, l2).

Like for forks, we first identify a notion of compliant
paths which captures how plans for the input task Π can be
understood as center paths augmented with compliant leaf
paths; and we then capture compliant paths in terms of com-
pliant path graphs. However, the notion of “compliance” is
now quite a bit more complicated. Given center path πC and
leaf path πL, we require that (1) the sub-sequences of shared

actions in πL and πC coincide, and (2) in between, we can
schedule πL at monotonically increasing points alongside
πC s.t. (2a) the center precondition of each leaf action holds
in the respective center state and (2b) the FL precondition
of each center action holds in the respective leaf state.

Definition 5 (Star-Compliant Path) Let Π be an FDR
task, F a star factoring with center FC and leaves FL, and
πC a center path. Let πL be a leaf path for FL ∈ FL.
We say that πL star-complies with πC , also πL is πC-star-
compliant, if the following two conditions hold:
(1) The sub-sequence of AC actions in πL coincides with

the sub-sequence of AL|FL actions in πC .
(2) Assume, for ease of notation, dummy AC ∩ AL|FL ac-

tions added to start and end in each of πC and πL. For
every pair 〈a, a′〉 of subsequent AC ∩AL|FL actions in
πL and πC , there exists an embedding at 〈a, a′〉.

Here, denote the sub-sequence of πC between a and a′ (not
including a and a′ themselves) by 〈aC1 , . . . , aCn 〉, and the FC
states it traverses by 〈sC0 , . . . , sCn 〉. Denote the sub-sequence
of πL between a and a′ by 〈aL1 , . . . , aLm〉, and the FL states
it traverses by 〈sL0 , . . . , sLm〉. An embedding at 〈a, a′〉 then
is a monotonically increasing function t : {1, . . . ,m} 7→
{0, . . . , n} so that both:
(a) For every i ∈ {1, . . . ,m}, pre(aLi)[FC] ⊆ sCt(i).
(b) For every t ∈ {1, . . . , n}, pre(aCt)[FL] ⊆ sLi(t) where

i(t) := max{i | t(i) < t} (with max ∅ := 0).
To illustrate this, consider our no-empty example, the

center path πC = 〈move(A, l1, l2)〉, and the leaf path
πL = 〈load(A, l1), unload(A, l2)〉. Definition 5 (1) is triv-
ially fulfilled because the sub-sequences it refers to are
both empty. For Definition 5 (2), we assume dummy
shared actions, πC = 〈a,move(A, l1, l2), a′〉 and πL =
〈a, load(A, l1), unload(A, l2), a′〉. The only pair of subse-
quent shared actions then is 〈a, a′〉. We need to find an em-
bedding t : {1, 2} 7→ {0, 1} of 〈aL1 = load(A, l1), aL2 =
unload(A, l2)〉 traversing FL states 〈sL0 = {p = l1}, sL1 =
{p = A}, sL2 = {p = l2}〉, into 〈aC1 = move(A, l1, l2)〉
traversing FC states 〈sC0 = {tA = l1}, sC1 = {tA =
l2}〉. Given their center preconditions, we must sched-
ule load(A, l1) before move(A, l1, l2) and unload(A, l2) be-
hind move(A, l1, l2). So the only possibility is t(1) :=
0, t(2) := 1. Indeed, that is an embedding: For Defini-
tion 5 (2a), pre(aL1)[FC] = {tA = l1} ⊆ sCt(1) = sC0 , and
pre(aL2)[FC] = {tA = l2} ⊆ sCt(2) = sC1 . For Definition 5
(2b), i(1) = max{i | t(i) < 1} = 1 because t(1) = 0 i. e.
aL1 = load(A, l1) is scheduled before aC1 = move(A, l1, l2).
So pre(aC1)[FL] = {p = A} ⊆ sLi(1) = sL1 as required.

Despite the much more complex definition, the correspon-
dence of compliant paths to plans for the original input plan-
ning task Π is as easily seen as for fork factorings. Say π is
a plan for Π. The sub-sequence πC of center actions in π
is a center path. For a leaf FL ∈ FL, the sub-sequence πL
of AL|FL actions in π is a leaf path. The sub-sequence of
AC ∩ AL|FL actions in πL coincides by construction with
the sub-sequence of AC ∩ AL|FL actions in πC , so we ful-
fill Definition 5 (1). Furthermore, between any pair of subse-
quent shared actions, all FC preconditions of πL, and all FL

preconditions of πC , must be satisfied because π is a plan,
so we can read off an embedding fulfilling Definition 5 (2),
and πL is πC-star-compliant. Vice versa, say center path πC
ends in a goal center state, and can be augmented for every
FL ∈ FL with a πC-star-compliant leaf path πL ending in a
goal leaf state. Note that, if an action a affects more than one
leaf, by the definition of star factorings amust also affect the
center, so by Definition 5 (1) the sub-sequences of such ac-
tions are synchronized via πC : They must be identical for
every leaf involved, and correspond to the same action oc-
curences in πC . Hence, sequencing all actions in πC and
every πL according to the embeddings, we get an executable
action sequence π achieving the overall goal in Π. Recall,
finally, that we defined the cost of leaf paths to account only
for those actions affecting just the leaf in question and noth-
ing else. So, in both directions above, the cost of π equals
the summed-up cost of the center path and leaf paths. We
get that the plans for Π are in one-to-one correspondence
with center paths augmented with compliant leaf paths.

We finally show how to capture πC-star-compliant paths
in terms of the weighted graphs CompGσ(πC(s), FL) we
maintain alongside search over center paths in Θσ:

Definition 6 (Star-Compliant Path Graph) Let Π be an
FDR task, F a star factoring with center FC and leaves
FL, and πC = 〈aC1 , . . . , aCn 〉 a center path traversing cen-
ter states 〈sC0 , . . . , sCn 〉. The πC-star-compliant path graph
for a leaf FL ∈ FL, denoted CompGσ(πC , FL), is the arc-
labeled weigthed directed graph whose vertices are {sLt |
sL ∈ SL|FL , 0 ≤ t ≤ n}, and whose arcs are as follows:

(i) sLt
aL−−→ s′

L
t with weight c(aL) whenever sL, s′L ∈

SL|FL and aL ∈ AL|FL \AC s.t. pre(aL)[FC] ⊆ sCt ,
pre(aL)[FL] ⊆ sL, and sLJaLK = s′

L.

(ii) sLt
0−→ s′

L
t+1 with weight 0 whenever sL, s′L ∈ SL|FL

s.t. pre(aCt)[FL] ⊆ sL and sLJaCt K = s′
L.

Item (i) is a benign change of Definition 3. Exactly as
before, within each time step t the arcs correspond to those
leaf-only actions whose center precondition is enabled at t.
The only difference is that we need to explicitly exclude ac-
tions aL affecting also the center (which for fork factorings
cannot happen anyway). Item (ii) differs more substantially.
Intuitively, whereas for fork factorings the t → t + 1 arcs
simply stated that whichever leaf state we achieved before
will survive the center action aCt (which could neither rely
on, nor affect, the leaf), these arcs now state that the sur-
viving leaf states are only those which comply with aCt ’s
precondition, and will be mapped to possibly different leaf
states by aCt ’s effect. Note that, if aCt has no precondition
on FL, then all leaf states survive, and if aCt has no effect on
FL, then all leaf states remain the same at t+1. If both is the
case, then we are back to exactly the arcs (ii) in Definition 3.

For our no-empty task and πC = 〈move(A, l1, l2)〉, the
πC-star-compliant path graph is as shown in Figure 3.

Note the (only) difference to Figure 2: From time 0 to
time 1, the only (ii) arc we have now is that from (p = A)0
to (p = A)1. This is because move(A, l1, l2) now has pre-
condition p = A, so all other values of p do not comply with
the center action being applied at this time step.

(p = A)0 (p = B)0 (p = l1)0 (p = l2)0 (p = l3)0

(p = A)1 (p = B)1 (p = l1)1 (p = l2)1 (p = l3)1

(un)load(A, l1) (un)load(B, l3)

0

(un)load(A, l2) (un)load(B, l3)

Figure 3: The star-compliant path graph for πC =
〈move(A, l1, l2)〉 in our no-empty example.

Lemma 2 Let Π be an FDR task, F a star factoring with
center FC and leaves FL, and πC a center path. Let FL ∈
FL, and sL ∈ SL|FL . Then the cost of a cheapest πC-star-
compliant leaf path πL ending in sL equals the cost of a
cheapest path from I[FL]0 to sLn in CompGσ(πC , FL).
Proof: Consider first a πC-star-compliant leaf path πL =
〈aL1 , . . . , aLm〉 for leaf FL ∈ FL. By Definition 5 (1),
the AC ∩ AL|FL sub-sequences in πC and πL coincide.
Scheduling these at the respective time steps t → t + 1 in
CompGσ(πC , FL), corresponding (ii) arcs must be present
by construction. In between each pair of such actions, by
Definition 5 we have embeddings t mapping the respective
sub-sequence of πL to that of πC . Schedule each πL ac-
tion at its time step assigned by t. Then corresponding (i)
arcs must be present by Definition 5 (2a). By Definition 5
(2b), if a πC action here relies on an FL precondition, then
the corresponding leaf state satisfies that precondition so we
have the necessary (ii) arc. Overall, we obtain a path π from
I[FL]0 to sLn in CompGσ(πC , FL), and clearly the cost of π
accounts exactly for the FL-only actions on πL, as needed.

Vice versa, consider any path π from I[FL]0 to sLn in
CompGσ(πC , FL). Removing the time indices of the ver-
tices on π, and removing those (ii) arcs sLt

0−→ s′
L
t+1 where

sLt = s′
L
t+1, clearly we obtain a πC-star-compliant leaf path

πL ending in sL, whose cost equals that of π.
So the πC-star-compliant leaf paths ending in sL are in

one-to-one correspondence with the paths from I[FL]0 to
sLn in CompGσ(πC , FL), showing the claim. �

Overall, goal paths in the star-decoupled state space
Θσ correspond to center goal paths augmented with star-
compliant leaf goal paths, which correspond to plans for the
original planning task Π, of the same cost. So (optimal)
search in Θσ is a form of (optimal) planning for Π.

Heuristic Search
GH show how standard classical planning heuristics,
and standard search algorithms, can be applied to fork-
decoupled search. All these concepts remain intact for star
topologies; one issue requires non-trivial attention. (For
space reasons, we omit details and give a summary only.)

A heuristic for Θσ is a function from star-decoupled states
into R0+ ∪ {∞}. The star-perfect heuristic, hσ∗, assigns
to any s the minimum cost for completing s, i. e., reaching
a star-decoupled goal state plus embedding compliant goal
leaf paths. A heuristic h is star-admissible if h ≤ hσ∗.

Given an FDR task Π and a star-decoupled state s, one can
construct an FDR task Πσ(s) so that computing any admissi-
ble heuristic h on Πσ(s) delivers a star-admissible heuristic

value for s. Πσ(s) is like Π except for the initial state (center
state of s, initial state for the leaves), and that new actions
are added allowing to achieve each leaf state at its price in s.

Star-decoupled goal states are, as GH put it, goal states
with price tags: Their path cost accounts only for the cen-
ter moves, and we still have to pay the price for the goal
leaf paths. In particular, hσ∗ is not 0 on star-decoupled goal
states. We can obtain a standard structure Θ′ for search as
follows. Introduce a new goal state G. Give every star-
decoupled goal state s an outgoing transition to G whose
cost equals the summed-up cost of cheapest compliant goal
leaf paths in s. Given a heuristic h for Θσ , set h(G) := 0.

The generalization to star-decoupling incurs one impor-
tant issue, not present in the special case of fork factor-
ings. If center moves require preconditions on leaves, then
we should “buy” these preconditions immediately, putting
their price into the path cost g, because otherwise we lose
information during the search. For illustration, in our no-
empty example, say the goal is tA = l2 instead of p =
l3, and consider the star-decoupled state s after applying
move(A, l1, l2). Then tA = l2 is true, g = 1, and h∗ on
the compiled FDR task Πσ(s) returns 0 because the goal
is already true. But hσ∗(s) = 1 and the actual cost of the
plan is 2: We still need to pay the price for the precon-
dition p = A of move(A, l1, l2). This is not captured in
Πσ(s) because it is needed prior to s only. The solution
is to perceive this “price” as a “cost” already committed to.
In our modified structure Θ′, when applying a center ac-
tion aC to star-decoupled state s, we set the local cost of
aC (its cost specifically at this particular position in Θ′) to
cost(aCt) +

∑
FL g(FL). Here, g(FL) is the minimum over

the price in s of those sL ∈ SL|FL that satisfy aC’s pre-
condition. Intuitively, to apply aC , we must first buy its leaf
preconditions. To reflect that g(FL) has already been paid,
the respective (ii) arcs in CompGσ(πC(s), FL) are assigned
weight −g(FL). In our example above, the path cost in s is
g = 2 giving us the correct g + h = 2. The “0” arc in Fig-
ure 3 is assigned weight −1, so that the overall cost of the
compliant path for p will be 0 (as the only action we need to
use has already been paid for by the center move).

Any (optimal) standard heuristic search algorithm X on
Θ′ yields an optimal heuristic search algorithm for Θσ ,
which we denote Star-Decoupled X (SDX).

Experiments
Our implementation is in FD (Helmert 2006), extending that
for fork decoupling by GH. We ran all international plan-
ning competition (IPC) STRIPS benchmarks (’98–’14), on
a cluster of Intel E5-2660 machines running at 2.20 GHz,
with time (memory) cut-offs of 30 minutes (4 GB).

Our experiments are preliminary in that we perform only
a very limited exploration of factoring strategies. Factor-
ing strategy design for star topologies is, in contrast to fork
topologies, quite challenging. The space of star factor-
ings includes arbitrary two-subset partitions of single-SCC
causal graphs, where fork factorings do not exist at all. Even
for the simplest possible optimization criterion, maximizing
the number of leaves in a strict star factoring, finding an op-

timal factoring is NP-complete (this follows by a straightfor-
ward reduction from Maximum Independent Set (Garey and
Johnson 1979)). An additional complication is that leaves
may be “frozen”: As we need to branch over all actions af-
fecting the center, for a leaf FL to yield a state space size
reduction there must be at least one action affecting only
FL (not affecting the center). For example, in IPC Visit-
All, while the robot position may naturally be viewed as the
“center” and each “visited” variable as a leaf, every leaf-
moving action also affects the center so nothing is gained.

We shun this complexity here, leaving its comprehensive
exploration to future work, and instead design only two sim-
ple strict-star factoring strategies by direct extension of GH’s
fork factoring strategy. That strategy works as follows.

Denote by FSCC the factoring whose factors are the SCCs
of CG. View the interaction graph IG(FSCC) over these
SCCs as a DAG where the root SCCs are at the top and the
leaf SCCs at the bottom. Consider the “horizontal lines”
{T,B} (top, bottom) through that DAG, i. e., the partitions
of V where every F ∈ FSCC is fully contained in either of
T or B, and where the only arc in IG({T,B}) is (T → B).
LetW be the set of weakly connected components of FSCC

within B. Then a fork factoring F is obtained by setting
FC := T and FL := W . Any fork factoring can be ob-
tained in this manner, except the redundant ones where some
FL ∈ FL contains several weakly connected components.

GH’s strategy moves the horizontal line upwards, from
leaves to roots in IG(FSCC), in a greedy fashion, thereby
generating a sequence F1, . . . ,Fk of fork factorings. They
select the factoring Fi whose number of leaf factors is max-
imal, and whose index i is minimal among these factor-
ings. The rationale behind this is to maximize the number
of leaves (the amount of conditional independence) while
keeping these as small as possible (reducing the runtime
overhead). If k = 0 (no horizontal line exists i. e. CG is
a single SCC), or Fi has a single leaf only, then GH abstain
from solving the input task. The rationale is that, in GH’s
experiments, single-leaf factorings hardly ever payed off.

We design two new (non-fork) strategies, inverted forks
and X-shape. The former is exactly GH’s strategy but invert-
ing the direction of the arcs in the causal graph. The latter
runs GH’s fork factoring first, and thereafter runs inverted
forks on the fork center component FC . If an inverted-fork
leaf FL has an outgoing arc into a fork leaf, then FL is in-
cluded into FC . We abstain if no factoring exists or if the
selected factoring has a single leaf only. Note that this still
abstains on single-SCC causal graphs, and that frozen leaves
cannot occur as neither forks nor inverted forks allow leaf-
affecting actions to affect the center. The strategies take neg-
ligible runtime (rounded to 0.00 in most cases, much faster
than FD’s pre-processes in the few other cases).

For optimal planning (with LM-cut (Helmert and Domsh-
lak 2009)), while GH reported dramatic gains using fork fac-
toring, our new factoring strategies do not improve much
upon these gains. Inverted forks do sometimes help, most
notably in Satellite where Star-Decoupled A∗ (SDA∗) with
inverted fork factoring solves 3 more instances than each of
A∗ and fork-factoring SDA∗, reducing evaluations on com-
monly solved instances by up to two orders of magnitude.

(A): Coverage (B): Evaluations: Improvement factor relative to GBFS (C): Runtime: Improvement factor relative to GBFS
X-shape inverted fork fork X-shape

no preferred operators with preferred operators no preferred operators with preferred operators
npo po npo po npo po SDGBFS SDGBFS LAMA SDGBFS SDGBFS LAMA

base sd base sd LAMA # sd sd # sd sd
∑

D GM max #
∑

D GM max
∑

D GM max #
∑

D GM max #
∑

D GM max
∑

D GM max
Childsna 20 0 0 3 +1 -3 20 0 +1 0 0 0 0 0
Depots 22 14 -1 18 -1 +3 22 -1 -1 0 12 0.5 1.1 14.0 17 1.5 2.1 54.5 3.4 2.3 299 10 0.3 0.3 5.7 14 1.0 0.7 22.5 0.8 1.3 91.0
Driver 20 18 +1 20 -2 0 0 20 +1 -2 17 1.2 2.2 8.3 18 0.1 0.9 4.0 0.7 0.9 21.0 5 0.3 0.4 3.3 12 0.0 0.2 1.0 0.5 0.6 2.1
Elev08 30 30 0 30 0 0 30 0 0 0 30 5.5 5.4 18.1 30 4.2 3.5 12.1 1.0 1.1 3.8 24 2.0 1.5 4.0 20 1.4 1.1 2.0 0.6 0.6 1.4
Elev11 20 18 +2 20 0 0 20 +2 0 0 18 12.6 7.5 46.8 20 11.5 5.6 37.3 1.8 1.1 4.3 18 4.8 2.7 18.5 20 4.7 1.8 13.0 1.3 0.7 2.8
Floor11 20 6 -5 6 -4 0 20 -5 -4 0 1 0.4 0.4 0.4 2 0.7 0.7 0.7 0.8 0.8 1.0 1 0.1 0.1 0.1 2 0.1 0.1 0.1 0.2 0.2 0.3
Floor14 20 2 -2 2 0 0 20 -2 0 0 0 2 0.6 0.6 0.7 0.9 0.9 1.1 0 2 0.1 0.1 0.1 0.2 0.2 0.3
Log00 28 28 0 28 0 0 28 0 0 28 0 0 28 11.8 9.4 18.8 28 5.2 4.7 6.8 0.8 0.9 1.0 0 0
Log98 35 26 +9 35 0 0 35 +9 0 35 +9 0 26 37.3 12.7 60.0 35 49.4 3.5 177 9.0 1.1 28.1 16 19.0 6.7 34.9 24 19.1 1.5 65.8 4.3 0.8 18.0
Mico 145 145 0 145 0 0 0 145 0 0 145 2.4 2.2 4.4 145 4.3 3.6 8.4 1.0 1.0 1.8 26 1.1 1.1 1.6 45 1.0 1.0 1.2 0.5 0.6 0.9
Mystery 2 0 0 1 0 0 2 0 0 0 0 1 0.9 0.9 0.9 1.4 1.3 1.3 0 1 0.6 0.6 0.6 1.0 1.0 1.0
NoMy 20 9 +10 10 +9 +3 0 20 +10 +9 9 141 34.0 1250 10 43K 33.5 15M 1697 4.5 135K 5 2.6 2.2 5.9 8 1033 3.8 12K 468 2.1 10K
Pathw 30 11 +2 20 0 +4 0 29 +2 0 11 12.7 3.8 26.5 20 1.4 1.5 1.8 0.6 0.7 1.2 7 3.5 1.3 10.7 10 0.4 0.6 1.0 0.3 0.4 1.0
PSR 3 3 0 3 0 0 0 3 0 0 3 1.6 1.7 1.9 3 1.3 1.2 1.6 1.0 1.0 1.0 0 0
Rovers 40 23 -1 40 0 0 38 +5 -1 40 -1 0 22 1.2 1.7 12.3 40 1.3 1.7 3.1 0.7 0.8 1.8 12 0.4 0.5 1.7 22 0.6 0.7 1.0 0.3 0.4 0.8
Satell 36 30 +3 36 0 0 34 +1 0 36 +3 0 30 2.7 2.0 38.7 36 1.8 1.3 6.8 0.4 0.5 1.5 19 1.1 1.8 21.9 25 1.9 1.0 3.9 0.1 0.3 0.8
TPP 29 22 +1 29 0 0 26 -5 0 27 +1 0 22 3183 454 31K 29 0.1 3.4 41.9 0.8 0.8 1.8 14 95.8 52.7 987 17 0.0 0.2 1.3 0.5 0.6 0.9
Transp08 30 16 +14 28 +2 +2 30 +14 +2 0 16 693 35.7 2226 28 305 21.0 4360 1.0 1.0 3.3 10 135 17.6 262 22 18.0 2.0 156 0.6 0.7 1.7
Transp11 20 0 +20 11 +9 +7 20 +20 +9 0 0 11 500 114 4360 1.0 1.1 8.9 0 11 19.0 5.2 141 0.7 0.7 4.7
Transp14 20 0 +20 6 +14 +9 20 +20 +14 0 0 6 168 130 407 1.1 1.1 6.9 0 6 8.7 7.4 23.9 0.6 0.8 4.4
Wood08 26 26 0 26 0 0 25 0 0 25 0 0 26 0.4 1.2 121 26 1.2 2.3 111 7.8 14.8 145 20 0.1 0.2 2.1 22 0.2 0.3 7.9 2.1 2.4 6.3
Wood11 19 18 0 19 0 0 18 +1 0 18 +1 0 2 0.4 0.5 4.3 19 1.2 1.2 3.0 11.8 15.8 53.8 16 0.0 0.1 0.5 18 0.0 0.1 0.2 2.1 2.1 4.9
Zeno 20 20 0 20 0 0 18 0 0 20 0 0 20 29.3 12.1 103 20 4.6 3.0 6.3 0.8 0.8 1.3 7 4.2 3.8 10.6 7 0.9 0.8 1.1 0.4 0.4 0.7∑

655 465 +73 556 +28 +25 426 +59 +20 446 +26 +7

Table 1: Results in satisficing planning with hFF. Each table section fixes a factoring strategy (2nd row from top), and uses
only the instances which that strategy does not abstain on; of these, (B) uses the subset of commonly solved ones (with vs.
without preferred operators), (C) the same but excluding ones commonly solved in ≤ 0.1 seconds. The respective numbers of
underlying instances are shown in columns “#”. GBFS: Greedy Best-First Search; npo: no preferred ops; po: with preferred
ops (FD’s dual-queue search); base: baseline (GBFS on standard state space); sd: star-decoupled base;

∑
D: factor over the

per-domain sums; GM/max: Geometric mean/maximum over the per-instance factors; K: thousand; M: million.
But such cases are rare. It remains future work to explore
more sophisticated star-factoring strategies for optimal plan-
ning. Here, we focus on satisficing planning where even our
current simple factoring strategies yield good results.

Consider Table 1. X-shape factoring abstains much less
than each of the “base strategies”, forks and inverted forks,
on its own. X-shape factoring substantially improves cover-
age, overall and in several domains, without preferred opera-
tors, and does so in NoMystery and Transport with preferred
operators. It even beats LAMA (Richter and Westphal 2010)
overall, thanks to excelling in Transport. Indeed, with pre-
ferred operators, Transport is solved almost instantly, with a
maximum (average) of 69 (36.1) state evaluations and 14.7
(2.7) seconds runtime. Without preferred operators, the av-
erage is 1236.8 evaluations and 127.1 seconds. Substantial
reductions of evaluations, with corresponding smaller but
still significant reductions of runtime, are obtained also in
Elevators, Logistics, NoMystery, Pathways, TPP, and Zeno-
travel, plus smaller improvements in various other cases.

The strength of X-shape factoring is inherited from fork
factoring in NoMystery and Pathways, where inverted fork
factoring abstains. It stems from inverted fork factoring,
and is thus entirely thanks to the new techniques introduced
herein, in Elevators and Transport where fork factoring ab-
stains. For Logistics, TPP, and Zenotravel, where neither
base strategy abstains, our current configuration of X-shape
factoring uses exactly the fork factorings, because the fork
strategy is run first and thus given a “preference”. To il-
lustrate, in Logistics, the fork makes each package a leaf.
The inverted fork would make the trucks leaves, but they
have outgoing arcs to the packages so are re-included into
the center. Symmetrically, if the X-shape ran the inverted
fork strategy first, it would end up with exactly the inverted
fork factorings. In Logistics98, these have a consistent ad-

vantage (
∑

D evaluations improvement factor over forks is
6.4 with preferred operators). In Logistics00 they have a
consistent small disadvantage (

∑
D factor 0.9). In TPP and

Zenotravel, there is significant per-instance variance, up to
14 times worse respectively 537 times better in TPP, and up
to 2 times worse respectively 5 times better in Zenotravel.
So there may be room for improvement by combining forks
and inverted forks in a less simplistic manner.

As we are mainly interested in speed, the above consid-
ers uniform action costs. The results for non-uniform ac-
tion costs are very similar, except in Elevators where both
the baseline and X-shape factoring get worse, in Transport
where only the baseline gets worse, and in Woodworking
where only X-shape factoring without preferred operators
gets worse. The overall coverage gain is then 49 without
preferred operators, and 35 with preferred operators.

Conclusion
For our current simple factoring strategies, the upshot from
our experiments is that the main empirical advantage of star
topologies over forks (as far as IPC benchmarks are con-
cerned) stems from the Transport domain, which this tech-
nique “kills” completely. The most important research ques-
tion in planning remains the exploration of factoring strate-
gies. We need methods able to identify sophisticated star
topologies, and we need to understand the strengths of dif-
ferent factorings as a function of problem structure.

Beyond planning, an interesting opportunity is to apply
star-topology decoupling to star-topology systems. Verifica-
tion & synthesis appear especially relevant, possibly with
adversarial or probabilistic extensions to star-decoupling.
Some classical puzzles may also be amenable; e. g., in the
Peg Solitaire game, one can take the “center” to be the mid-
dle of the board and the “leaves” to be its peripheral parts.

Acknowledgments. We thank the anonymous reviewers,
whose comments helped to improve the paper. Daniel
Gnad’s travel to SoCS’15 was partially supported by the AI
section of the German Informatics Society (GI).

References
Amir, E., and Engelhardt, B. 2003. Factored planning. In
Gottlob, G., ed., Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI-03), 929–935.
Acapulco, Mexico: Morgan Kaufmann.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Brafman, R., and Domshlak, C. 2003. Structure and com-
plexity in planning with unary operators. Journal of Artifi-
cial Intelligence Research 18:315–349.
Brafman, R. I., and Domshlak, C. 2006. Factored plan-
ning: How, when, and when not. In Gil, Y., and Mooney,
R. J., eds., Proceedings of the 21st National Conference of
the American Association for Artificial Intelligence (AAAI-
06), 809–814.
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Rin-
tanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E., eds., Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS’08), 28–35.
Brafman, R., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198:52–71.
Fabre, E.; Jezequel, L.; Haslum, P.; and Thiébaux, S. 2010.
Cost-optimal factored planning: Promises and pitfalls. In
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds., Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS’10), 65–72.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability—A Guide to the Theory of NP-Completeness.
San Francisco, CA: Freeman.
Gnad, D., and Hoffmann, J. 2015. Beating lm-cut with
hmax (sometimes): Fork-decoupled state space search. In
Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein, S.,
eds., Proceedings of the 25th International Conference on
Automated Planning and Scheduling (ICAPS’15).
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS’09), 162–169.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J. 2011. Analyzing search topology without run-
ning any search: On the connection between causal graphs
and h+. Journal of Artificial Intelligence Research 41:155–
229.
Jonsson, P., and Bäckström, C. 1995. Incremental planning.
In European Workshop on Planning.

Kelareva, E.; Buffet, O.; Huang, J.; and Thiébaux, S. 2007.
Factored planning using decomposition trees. In Veloso, M.,
ed., Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI-07), 1942–1947. Hyder-
abad, India: Morgan Kaufmann.
Knoblock, C. 1994. Automatically generating abstractions
for planning. Artificial Intelligence 68(2):243–302.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Wang, D., and Williams, B. C. 2015. tburton: A divide
and conquer temporal planner. In Bonet, B., and Koenig, S.,
eds., Proceedings of the 29th AAAI Conference on Artificial
Intelligence (AAAI’15), 3409–3417.

