
Proceedings of the SIGdial 2020 Conference, pages 53–56
1st virtual meeting, 01-03 July 2020. c©2020 Association for Computational Linguistics

53

MC-Saar-Instruct: a Platform for Minecraft Instruction Giving Agents

Arne Köhn and Julia Wichlacz and Christine Schäfer
Álvaro Torralba and Jörg Hoffmann and Alexander Koller

koehn@coli.uni-saarland.de, wichlacz@cs.uni-saarland.de, cschaef@coli.uni-saarland.de,
torralba@cs.uni-saarland.de, hoffmann@cs.uni-saarland.de, koller@coli.uni-saarland.de

Saarland University

Abstract

We present a comprehensive platform to
run human-computer experiments where an
agent instructs a human in Minecraft, a 3D
blocksworld environment. This platform en-
ables comparisons between different agents by
matching users to agents. It performs exten-
sive logging and takes care of all boilerplate,
allowing to easily incorporate new agents to
evaluate them. Our environment is prepared to
evaluate any kind of instruction giving system,
recording the interaction and all actions of the
user. We provide example architects, a Wizard-
of-Oz architect and set-up scripts to automati-
cally download, build and start the platform.

1 Introduction

Collaborative human-computer interaction can oc-
cur in different environments. While interaction
in the physical world is often a desirable goal, it
places a huge burden on automatic agents as per-
ception is a hard problem, raising the barrier of
setting up such experiments significantly. On the
other end, interactions on a custom-built platform
may be a good fit to explore specific phenomena,
but they do not scale easily to different or com-
plex problems. A good example for a custom-built
virtual 3D world is the GIVE challenge, where an
instruction system must guide a player to press a
specific sequence of buttons in a 3D environment
while avoiding to step into traps (Byron et al., 2009;
Striegnitz et al., 2011). We instead use a general-
purpose 3D environment.

We release an experimentation platform based
on Minecraft (see Figure 1). Minecraft is a game in
which the players are situated in a 3D world, which
mainly consists of blocks. The game can either be
played locally as a single-player game or one can
join an online server and play with others. The play-
ers can move around, place and remove blocks, and
even craft new blocks or items. As such, Minecraft

Figure 1: Example of instructions provided to a user.
New instructions appear at the bottom of the chat text
and old ones fade out after five seconds. In this case,
the world is initialized with a tiny river; the stripes are
the barriers for the user.

can be seen as a classic blocksworld that can be
scaled up a lot in complexity: Blocks can have
different types (wood, earth, stone, glass, lamps,
. . . ), they can be combined into high-level objects,
and special blocks even enable building circuits,
resulting in Turing-complete machinery. Minecraft
contains different game modes: a survival mode,
which focuses on exploration and survival in the
game world, and the creative mode, focusing on
building. We make use of the creative mode.

This feature-richness makes Minecraft a perfect
environment for the evaluation of all kinds of in-
telligent agents (Johnson et al., 2016), from rein-
forcement learning agents (Guss et al., 2019), to
instruction receiving (Szlam et al., 2019) and in-
struction giving assistants (Narayan-Chen et al.,
2019). Its popularity (Minecraft is the most sold
game of all time), together with the client-server
architecture make Minecraft a tool well-suited for
crowd-sourcing with volunteers from all over the
world. Moreover, there are tons of instruction
videos for Minecraft on the internet which could
be used as auxiliary datasets for offline instruction
giving. This addresses several of the limitations

mailto:koehn@coli.uni-saarland.de
mailto:wichlacz@cs.uni-saarland.de
mailto:cschaef@coli.uni-saarland.de
mailto:torralba@cs.uni-saarland.de
mailto:hoffmann@cs.uni-saarland.de
mailto:koller@coli.uni-saarland.de


54

Minecraft
Client

(Player 1)

Minecraft
Client

(Player N)

Minecraft
Server Broker

Architect
Server

Architect
Server

Architect 1

Architect K

Architect N

Database

... ...

...world
status

instructions

logging

Figure 2: Overview of the services in MC-Saar-Instruct. Updates on the world state are passed along the full lines,
instructions are forwarded along the dashed lines.

that previous frameworks like GIVE had: attracting
an even larger number of users for the experiments,
being more engaging, and allowing for a variety of
experiments of increasing complexity.

The platform presented here makes it easy to
set up and run instruction giving experiments in
Minecraft. In our research, we focus on instructing
the user to build complex objects (Wichlacz et al.,
2019; Köhn and Koller, 2019), but our platform
can easily be used for other generation tasks.

2 System Overview

MC-Saar-Instruct is implemented as a distributed
platform which is shown in Figure 2. It consists of
the following components, which can each run on
their own server:

• The Minecraft server accepts connections
from users.

• The Broker decides which scenario will be
played by the user, tells the Minecraft server
how to initialize the user’s world, pairs the
user with an architect and logs all interactions.

• The Architect is the agent with which the user
interacts. It receives status updates of the
world through the broker and sends natural
language instructions back.

While there is only one Minecraft server and
one broker, there can be several different kinds of
architects, each hosted by its own Architect Server.
All interactions between these components are han-
dled using the grpc library,1 abstracting away the
low-level networking and providing a succinct and
type-save remote procedure call (RPC) interface.

1https://grpc.io/

We provide example Architect Servers in Java,
but they can be written in any language with grpc
bindings, such as Python, Go, and many more.

2.1 The Minecraft Server

In contrast to other experimentation systems, such
as Johnson et al. (2016) (who modify the Minecraft
client) or Szlam et al. (2019) (who use the third-
party server Cuberite), we make use of the official
Minecraft server, which means that users can use
an unmodified up-to-date Minecraft client. Experi-
ments can also make use of all features introduced
by new Minecraft releases, if they wish. All func-
tionality in Minecraft, including building Turing-
complete apparatuses, can be used.

Upon entering the server, each player is tele-
ported into their own world, which is automatically
set up to reflect the start state of the scenario se-
lected by the broker (see Figure 1). All interaction
between players is inhibited and all changes made
by players are reset once they disconnect. Move-
ment is restricted to a square area and players can-
not remove the bottom-most layer of the world and
fall into the void. World changes not caused by
the player (e. g. weather, time) are disabled. The
Minecraft Server runs in creative mode so play-
ers have infinite access to building blocks and no
decreasing hunger or health bars.

Every 100ms, the server sends the current player
position and orientation to the broker. It also sends
updates whenever the state of the world changes,
i. e. whenever a block is placed or destroyed.

Whenever the architect or the broker sends a
message to a user, it is shown as a standard chat
message (see Figure 1). Players can also send chat
messages to the broker. This can be used for re-
sponses in experiment surveys (see Section 5) or for

https://grpc.io/


55

an architect that can handle clarification questions.
Because all modifications are implemented in a

server plugin, players can connect with an unmodi-
fied Minecraft client over the internet.

2.2 The Broker
The broker is the centerpiece of the whole system.
It connects to all Architect Servers and provides an
RPC interface for the Minecraft server. Whenever
a player joins the Minecraft server, the broker gets
a message and decides which scenario should be
played and what kind of architect the user should
be paired with. It then sends a request to the corre-
sponding Architect Server to initialize a new ar-
chitect and matches that architect to the player.
Other than these decisions, the broker is mostly
passive. All communication between architect and
player is routed over the broker. The broker logs
all messages to a database, i. e. block additions
and deletions, text messages sent to and from the
user and position and camera orientation updates.
It also logs the start and end times of experiments
and each questionnaire.

The broker provides a web interface to mon-
itor the experiments. It shows the status of the
newest experiments and can show a complete list
of all database records from a specific game. An
in-memory database can be used for development
purposes so that no local database needs to be set
up and the database is clean on every start.

2.3 The Architect
The architect generates the instructions for the
users. Each kind of architect is hosted by an Ar-
chitect Server. Every time an experiment is sup-
posed to start with this type of architect, the Ar-
chitect Server instantiates a new architect. The
server keeps track of which architect is connected
to which game and forwards messages from the
broker to the correct architect.

The architect is what a researcher developing and
evaluating a new instruction-giving agent needs to
implement, using e.g. our high-level Java API. The
Architect Server, which manages different archi-
tects, can then be reused without changes. Archi-
tects could also be implemented in other language
with grpc bindings; this would then require reimple-
menting the Architect Server in the new language.

In our Java API, an architect must implement
four functions (see Figure 3): one is called when
a block is placed, one when a block is destroyed,
one for every update of the position and orientation

handleStatusInformation(StatusM);
handleBlockPlaced(BlockPlacedM);
handleBlockDestroyed(BlockDestroyedM);
String getArchitectInformation();

Figure 3: Interface to implement for a new architect.
The base class provides a method to send text mes-
sages.

3,2,3,BLUE WOOL
1,1,4,WATER
2,1,4,WATER
...

Figure 4: Excerpt from world file for Figure 1. Each
line has the X, Y and Z coordinates plus the block type.

of the player and one to obtain the name of the
architect. The architect can then send a string to the
user at any time, to be displayed in their Minecraft
client. A basic architect can be implemented in 80
lines of Java code.

The architect also determines when the player
has reached the objective, as it is the only compo-
nent keeping track of the state of the game. This
design means that all experiment-specific logic is
encapsulated in the architect and both broker and
Minecraft server can always stay unchanged.

3 Defining and Running Experiments

An experiment is defined by two components: the
scenarios that the players are supposed to work on
and the architects that should be evaluated.

A scenario consists of a definition of an initial
state of the world and architect-specific informa-
tion instructing the architect of the goal. The initial
world state is given by a list of blocks with their
location and type (see Figure 4). Each scenario
is identified by a unique name. We use a shared
dependency for all components that contains the
necessary descriptions of the world state when start-
ing a scenario as well as the scenario-specific data
for the architects, ensuring that the architects and
the Minecraft server use the same initial setup.

4 Wizard-of-Oz Architect

We also ship a Wizard-of-Oz architect (woz) to per-
form human-human interaction experiments. This
architect runs in a second Minecraft server where
only one player may log in. That player can nei-
ther move nor place or destroy blocks. Once this
architect is paired with a player by the broker, the
viewpoint of the woz player is synchronized with
the player, i. e. the woz player always sees exactly



56

what the player sees. The woz player may send
text messages and these are forwarded as instruc-
tions in the same manner as those generated by an
automatic agent.

We conducted initial experiments with spoken
interaction and noticed that the instruction givers
used patterns only possible with spoken interaction
such as exactly timing single words to the instruc-
tion follower’s actions and self-correction. The
text-based Wizard-of-Oz setup on the other hand
mirrors the setup with an automatic architect as
closely as possible.

5 Post-experiment Questionnaires

After finishing an experiment, the participants fill
out a questionnaire using the in-game chat. Once
the architect determines that a game is over (hope-
fully in a successful way), the broker takes over
the communication channel and asks the user a se-
ries of configurable questions. The questions and
answers to this post-experiment questionnaire are
logged to the database.

The in-game questionnaire allows to keep all
interaction with the experiment platform inside a
single medium by removing the need to e. g. open
a website. It also ensures that the questionnaires
and experiment data are always correctly matched.
Finally, the questionnaire mechanism can be used
for fraud prevention (Villalba, 2019).

6 Conclusions

We introduced a system for researching situated
human-computer dialogue in the Minecraft domain.
While primarily focused on instruction giving, it
can potentially also be used for two-way text inter-
action. The framework abstracts away from most
of the low-level system, providing a clean and easy
to use interface for implementing instruction givers.
The system also takes care of matching study par-
ticipants with different architects and logging of all
interactions. We ship several example architects,
including a Wizard of Oz architect.

We plan to implement a replay viewer which
streams the previously recorded actions by a partic-
ipant to a Minecraft server. All necessary data is
already being stored in the database.

MC-Saar-Instruct as well as scripts to automati-
cally download, build and run specific versions of
it for reproducible experiments are available from
https://minecraft-saar.github.io.

Acknowledgements We thank the reviewers
for their comments. Funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation) – Project-ID 232722074 – SFB 1102.

References
Donna Byron, Alexander Koller, Kristina Striegnitz,

Justine Cassell, Robert Dale, Johanna D. Moore, and
Jon Oberlander. 2009. Report on the first NLG chal-
lenge on generating instructions in virtual environ-
ments (GIVE). In ENLG 2009 - Proceedings of the
12th European Workshop on Natural Language Gen-
eration, March 30-31, 2009, Athens, Greece, pages
165–173. The Association for Computer Linguistics.

William H. Guss, Brandon Houghton, Nicholay Topin,
Phillip Wang, Cayden Codel, Manuela Veloso, and
Ruslan Salakhutdinov. 2019. MineRL: A large-scale
dataset of Minecraft demonstrations. International
Joint Conference on Artificial Intelligence (IJCAI).

Matthew Johnson, Katja Hofmann, Tim Hutton, and
David Bignell. 2016. The Malmo platform for arti-
ficial intelligence experimentation. In International
Joint Conference on Artificial Intelligence (IJCAI),
pages 4246–4247.

Arne Köhn and Alexander Koller. 2019. Talking about
what is not there: Generating indefinite referring ex-
pressions in Minecraft. In Proceedings of the 12th
International Conference on Natural Language Gen-
eration, pages 1–10, Tokyo, Japan. Association for
Computational Linguistics.

Anjali Narayan-Chen, Prashant Jayannavar, and Ju-
lia Hockenmaier. 2019. Collaborative dialogue in
Minecraft. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5405–5415, Florence, Italy. Association for
Computational Linguistics.

Kristina Striegnitz, Alexandre Denis, Andrew Gargett,
Konstantina Garoufi, Alexander Koller, and Mariët
Theune. 2011. Report on the second second chal-
lenge on generating instructions in virtual environ-
ments (GIVE-2.5). In ENLG 2011 - Proceedings
of the 13th European Workshop on Natural Lan-
guage Generation, pages 270–279. The Association
for Computer Linguistics.

Arthur Szlam, Jonathan Gray, Kavya Srinet, Yacine
Jernite, Armand Joulin, Gabriel Synnaeve, Douwe
Kiela, Haonan Yu, Zhuoyuan Chen, Siddharth
Goyal, et al. 2019. Why build an assistant in
Minecraft? arXiv preprint arXiv:1907.09273.

Martin Villalba. 2019. Prediction, detection, and cor-
rection of misunderstandings in interactive tasks.
Ph.D. thesis, Saarland University.

Julia Wichlacz, Alvaro Torralba, and Jörg Hoffmann.
2019. Construction-planning models in Minecraft.
In Proceedings of the ICAPS Workshop on Hierar-
chical Planning, pages 1–5.

https://minecraft-saar.github.io
https://www.aclweb.org/anthology/W09-0628/
https://www.aclweb.org/anthology/W09-0628/
https://www.aclweb.org/anthology/W09-0628/
http://minerl.io
http://minerl.io
https://www.ijcai.org/Proceedings/16/Papers/643.pdf
https://www.ijcai.org/Proceedings/16/Papers/643.pdf
https://doi.org/10.18653/v1/W19-8601
https://doi.org/10.18653/v1/W19-8601
https://doi.org/10.18653/v1/W19-8601
https://doi.org/10.18653/v1/P19-1537
https://doi.org/10.18653/v1/P19-1537
https://www.aclweb.org/anthology/W11-2845/
https://www.aclweb.org/anthology/W11-2845/
https://www.aclweb.org/anthology/W11-2845/
https://arxiv.org/pdf/1907.09273.pdf
https://arxiv.org/pdf/1907.09273.pdf
https://doi.org/doi:10.22028/D291-29648
https://doi.org/doi:10.22028/D291-29648
http://fai.cs.uni-saarland.de/wichlacz/papers/whtn19.pdf

