
Towards a Methodology for Semantic Business
Process Modeling and Configuration

Ingo Weber1, Jörg Hoffmann2, Jan Mendling3, Jörg Nitzsche4

1 SAP Research Karlsruhe, Germany
ingo.weber@sap.com

2 University of Innsbruck, DERI, Austria
joerg.hoffmann@deri.at

3 BPM Cluster, Queensland University of Technology, Australia
j.mendling@qut.edu.au

4 Institute of Architecture of Application Systems, University of Stuttgart, Germany
joerg.nitzsche@iaas.uni-stuttgart.de

Abstract. This paper discusses potential benefits from adding seman-
tics to Business Process Management from a methodological point of
view, with a focus on the Modeling and Configuration phases. For this
purpose, in each of these phases the established activities are examined
and new activities are suggested: Firstly, we suggest combining exist-
ing control flow validation techniques with semantic process validation
techniques. Second, discovery and composition techniques can be used
to find implementations, e.g. services (or combinations of services), for
the implementation of process activities at modeling time. The discovered
implementations allow for mapping the process steps to the IT infrastruc-
ture according to several strategies during process configuration, which
helps clearly separating modeling from configuration concerns. Further-
more, a new way of testing executable process models is suggested.

1 Introduction

Business process models are used in a variety of scenarios, among others, docu-
mentation of business requirement and specification of implementation aspects.
In order to serve the latter purpose, which is in the focus of this paper, an exe-
cutable business process model has to specify not only the control flow, but also
data flow, interfaces to the services that implement the activities, and run-time
binding to service implementations. For each of these specification steps there
are different quality and correctness considerations to be taken into account such
that the resulting implementation meets the overall goals of the stakeholders.

In traditional Business Process Management (BPM) many of these specifica-
tion steps cannot be handled automatically or facilitated by appropriate tools,
since the meaning of process artifacts is not captured in the process model. Fur-
thermore, design artifacts such as existing process models or existing service

interfaces are hardly reused in practice. The Semantic BPM (SBPM) approach5

addresses these challenges by annotating semantic descriptions to process arti-
facts, yielding the opportunity to ease a business analysts job by providing tools
that facilitate various parts of the BPM lifecycle.

In this paper we describe a methodology, i.e. “a documented approach for
performing activities in a coherent, consistent, accountable, and repeatable man-
ner” [2], which structures the usage of the new semantics-enabled techniques that
can be used when creating an executable process model. The aim is not to give
an complete discussion containing all aspects that may ever arise in relation to
a methodology for SPBM, but to provide methodological guidance with respect
to a number of the new opportunities. In particular, after an overview of our
approach in Section 2, Section 3 discusses the modeling phase and four individ-
ual activities that we identified, three of which are important from correctness
considerations. Then, Section 4 details the configuration phase and shows how
four more activities should be carried out to arrive at an executable process
specification. Finally, Section 5 discusses the contributions and points to future
work.

2 Guidance for the Semantic BPM life cycle

Several textbooks on BPM such as [3,4] discuss the business process management
life cycle on a very abstract level such that it provides only limited method-
ological guidance for the implementation of executable process models. Other
approaches such as [5,6] focus on partial aspects of BPM design and do not
cover implementation details. This section takes the semantic BPM life cycle
as a starting point and describes our proposal of a methodology for semantic
business process modeling and configuration. The traditional BPM life cycle has
shortly been introduced in [4], and in [7] it has been extended into the Semantic
Business Process life cycle. While the life cycle of [7] is followed here on a high
level, the content of the modeling and configuration as described in this paper
is quite different. To mention just one difference: composition per process task
is described in [7] as an activity of the configuration or execution phase, while
we argue below that this activity should be part of the modeling phase.

The overall semantic BPM life cycle depicted in Fig. 1 identifies four principal
phases: semantic business process modeling, configuration, execution, and analy-
sis - typically performed in this order. In short, the modeling phase comprises the
creation or adaptation of a business process model. The configuration phase deals
with refining this model into an executable form, traditionally by implementing
it. The execution phase is concerned with how process instances are executed
in the organization, often through its IT systems. Logs and other perceptions
from the execution phase serve as input to the analysis phase, where the execu-
tion behavior of processes is inspected and recommendations regarding changes
5 Cf. SUPER IP(EU-funded Integrated Project, http://www.ip-super.org), Seman-

tic Business Process Management Working Group (http://www.sbpm.org), SBPM
workshop [1]

and optimization are made. The strategic and the foundational layer define the
context for these phases. The strategy of an organization defines its long-term
business goals, and serves as the basis for operational decisions. The foundational
layer in the SBPM life cycle consists of ontologies which capture generic knowl-
edge about processes, services, etc., along with domain and organization-specific
knowledge. These ontologies are referenced in the specific business processes.

Text Text

Text

4. Semantic
Business Process

Analysis

1. Semantic
Business Process

Modelling

3. Semantic
Business Process

Execution

2. Semantic
Business Process

Configuration

Strategic Semantic Business
Process Management

Ontological Foundation

Fig. 1. Semantic BPM life cycle, adapted from [7].

In this paper we focus on the modeling and configuration phases of the SBPM
life cycle. We hereby assume that a conceptual business process model needs to
be refined into an executable model, and deployed to an IT-based execution
environment. Fig. 2 gives an overview of the activities we identify. The goal
of the modeling phase is to create or adapt a process model that can be ex-
ecuted correctly. Therefore, beyond conceptual modeling (M.1) and discovery
and composition of tasks (M.3), it is important to consider control flow verifica-
tion (M.2) and semantic validation (M.4) to guarantee this level of correctness.
In the configuration phase, the process model is translated to an executable
language (C.1), yielding an executable model. After the service binding (C.2)
the executable process is tested (C.3) and finally deployed (C.4). The process
designer conducts each of these four plus four activities and is supported by
respective tools. In many cases there will be two process designers with partially
overlapping expertise: a business analyst being responsible for the activities of
the modeling phase, and a software engineer being in charge of the configuration
phase.

 Modeling Phase Configuration Phase

Control Flow
Verification

Discovery /
Composition

per task

Conceptual
Modeling

Service
Binding

Deployment
Semantic
Validation

Testing the
executable

process

Translation
to execution

language

 M.1 M.2

 M.3 M.4

 C.1

 C.4 C.3

 C.2

Fig. 2. Detailed view of the Modeling and Configuration phases in the BPM
life cycle. The arrows depict a suggested usage of the various activities in the
absence of problems.

Note that the activities related to quality assurance (M.2, M.4, C.3) are
optional, and the arrows show one possible recommended order of their execu-
tion. However, if a process model is created for execution in an industry setting,
model quality and correct execution are of crucial importance. Accordingly, it is
strongly recommended to consider control flow verification (M.2), semantic vali-
dation (M.4), and testing (C.3) before deploying an executable process model. In
the subsequent sections, we discuss each modeling and configuration activity in
detail. To illustrate feasibility we describe several instantiations of the respective
concepts, in particular with a focus on findings of the SUPER IP5.

Since we aim at a generic methodology, a number of the suggested activities
must be tailored to a specific notation or language in order to provide a thorough
solution. For instance, the control flow verification depends on the execution
semantics of the process modeling language at hand. Each of the activities in
our methodology is subject to ongoing work on the basis of particular languages.

3 The Modeling Phase

In this section we describe the added value and functionality of the SBPM ap-
proach during modeling of a business process. The goal of this phase is to create
a conceptual process model which depicts the ideal structure (to-be process)
from a business analyst’s point of view and at the same time is meaningful input
to the creation of the executable process.

3.1 Conceptual Modeling (M.1)

Business Process Modeling can serve various purposes ranging from documen-
tation to reorganization and workflow automation. Before starting the actual
modeling task the process designer has to carefully decide for a suitable model-
ing language, a respective tool to facilitate the modeling, required perspectives
on the process, and modeling conventions [8]. The choice for a modeling language

can hardly be made without considering potential tool support since industry-
scale modeling projects require sophisticated management features such as multi-
user support or persistent storage in a database. Several languages are used for
modeling business processes including EPCs, Petri nets, YAWL, UML Activity
Diagrams, and BPMN – see e.g., [4] for an overview. Modeling conventions stan-
dardize the way processes are modeled in order to provide comparability and
consistency across models. The required perspectives on the process depend on
the purpose of modeling. Since it is our goal to finally arrive at executable pro-
cesses we would need not only to model the control flow, but also the data flow
between the activities. Furthermore, in the case of semantic BPM the user has
to annotate references to ontologies to the model. In [9] the authors present an
approach towards user-friendly annotation of semantic information. SBPM offers
further modeling support, e.g., content-aware process model auto-completion as
in [10], which also facilitates re-use.

3.2 Control Flow Verification (M.2)

It is an important design goal for a business process model that no matter which
decisions are taken at run-time the process will always complete properly without
deadlocking. The soundness property originally defined for Workflow nets, i.e. a
Petri net with one source and one sink, captures this requirement and demands
that (i) for every state reachable from the source, there exists a firing sequence
to the sink (option to complete); (ii) the state with a token in the sink is the
only state reachable from the initial state with at least one token in it (proper
completion); and (iii) there are no dead transitions [11]. The soundness property
can be verified with Petri net analysis tools such as Woflan [12].

Petri-net analysis techniques are not directly applicable for other languages,
but need to be adapted to the routing elements these languages provide. The
OR-join that is included in EPCs, YAWL, and BPMN has been a challenge from
a verification perspective for quite a while. One solution in this context is to use
the notion of relaxed soundness instead of soundness. A process is relaxed sound
if every transition in a Petri net representation of the process model is included in
at least one proper execution sequence [13]. A problem though is that this relaxed
soundness notion does not guarantee that the process always completes properly.
As a consequence, dedicated verification techniques have recently been defined
for the verification of EPCs including OR-joins [14] and for YAWL nets including
cancellation regions [15]. Since these languages cover most of the control flow
features of other languages, these verification techniques can easily be adapted
for UML Activity Diagrams or BPMN. This way the process designer can make
sure that a process model will not deadlock at run-time.

3.3 Discovery/Composition per Task (M.3)

One of the obstacles when creating an executable process from a to-be process
is finding out if the tasks in the process model may be implemented in the
specified way. For a process task which should be performed by an IT system

there may be an existing service, there may be services at a different level of
granularity, or there may be no implementation at all. In the activity of finding
suitable existing services, the process designer is supported by an intelligent
software tool for automatic discovery and composition, which in term makes use
reasoning techniques over domain ontologies. We will focus on semantic Web
services in the following.

In discovery the tool searches, for each task, in the service infrastructure to
check whether an existing service can implement that task. This check involves
matching the services against the requirements of the task. To be able to do so,
both the services and the task are annotated with a semantic description, e.g., in
the WSMO language, of the provided/requested functionality. If no single service
can implement the task, then the tool tries to find a composition of services
that matches the task based on the semantic annotations. A key difference to
other approaches here is that the tool only supports the assignment of services
to tasks at design time, and that discovery and composition are performed per
task. More ambitious approaches, like e.g. [16], try to compose the entire process.
While such a technology would be nice to have, composing entire processes is
essentially a form of automatic programming, which is a notoriously hard and
unsolved problem /* give an authoritative reference here! (jm)*/. To
mention just one of the technological challenges, formulating the “goal” for such
a composition – a specification of what the process must fulfill in order to be
suitable – is often more difficult than formulating the process itself. In that sense,
our approach trades some generality for pragmatics: for a single task, specifying
a goal is often quite easy, and it is tedious to go look for appropriate services.

The goal of a task may be refined with the semantic annotations of the
found services, or in case a composition is necessary, the original task may be
replaced with a container holding the tasks that relate to the services which were
composed together, i.e., the tasks in the newly created container are annotated
with semantic goals that correspond to the composed services and are ordered
as specified by the composition. This way, the granularity of the process tasks
can be adapted to the granularity of the available services, which is usually a
challenge in process modeling.

Importantly, the discovered/composed “services” are identified with their
semantic descriptions. Having such a semantic description in a task means that
we can, later on in the Configuration Phase, replace this description with any
service that satisfies it. In other words, we can separate between discovery of
services, and binding of services – links to the found services may be kept, but
during modeling no particular implementation of a service is chosen. This is
advantageous because in this way we do not force a premature decision on what
the actual implementation technology will be: the semantic task description can
be mapped onto all sorts of technologies whichever is available and/or suits best
the requirements of the particular deployment scenario.

If discovery/composition reports that there is no implementation, then ac-
cording action must be taken by the process designer, e.g., process model might
be changed, or the particular task may be marked, such that it is clear that an

implementation for it must be created during the configuration phase. In con-
trast, if discovery/composition succeeds, the results should be displayed to the
process designer for checking, if only for safety reasons (the semantic descriptions
might be flawed, or not precise enough to obtain a fully implemented process).

In the sense outlined here, discovery/composition can be seen as a further
quality assurance activity, in that it can provide feedback if a process model is
implementable or not – even to a modeler who is not trained in IT or the system
landscape: if discovery/composition succeeds, the modeler knows that there is
at least one service for each task to implement it.

3.4 Semantic Validation (M.4)

After the Discovery/Composition phase each task is associated with one or more
semantic representations of services. If the Discovery/Composition is not done
on the process level, conflicts may arise between different tasks. As an example
consider a computer hardware procurement process for replacing the old equip-
ment of a manager. This process includes the tasks Buy Computer and Buy
Printer. Since the company pursues a double-sourcing strategy in procurement,
computers and printer have to be bought from different vendors. This constraint
cannot be checked unless one examines the behavior of different tasks across the
process. Other issues beyond control flow could be that two services that may
be executed in parallel and that have conflicting effects.

Control Flow Verification (cf. M.2, section 3.2) ignores such issues, and takes
care only of checking whether the process model as such is sound. In Semantic
Business Process Management, our aim instead is to have a formal model of what
happens in the business, and to validate the processes against that model. In
such a setting, checking constraints on the combined behavior of different tasks
is essentially a model checking problem. This leads to the possible application
of techniques such as linear temporal logic (LTL) [17] or access control policies
for processes [18].

The basic novelty in model checking for Semantic Validation as done in (M.4)
lies in the use of semantic techniques, i.e., of ontologies. Hence, to be applicable,
traditional model checking techniques must be adapted in this regard. Further,
in business process management, different special cases may be of interest than in
other model checking scenarios, and hence such special cases – where validation
may be doable in polynomial time – need to be investigated.

4 The Configuration Phase

The Configuration phase aims at mapping a semantically described conceptional
process model to an executable model that is bound to a particular IT infras-
tructure. That is, the process model has to be translated from the formalism
used by business experts to a formalism that can be executed for instance by
an execution engine and the semantic descriptions of tasks have to be mapped

to concrete implementations, e.g. services. Given the conceptual model is suf-
ficiently well described and no errors occur, the configuration phase could be
performed mostly automated.

We use the conceptual model of WSMO to describe the functionality a (set
of) task(s) of a process requires and the functionality services provide. As a
process execution language we use BPEL4SWS (BPEL for Semantic Web Ser-
vices) [19], an extension of BPEL 2.0 [20] that allows using both WSDL (Web
Service Description Language) [21] and Semantic Web Service frameworks like
WSMO to describe activity implementations. We use particular technologies in
describing the configuration phase for reasons of increased tangibility. Never-
theless, most of the concepts can be easily ported to other concrete technology.
In this manner, the configuration phase starts with a conceptual process model
in (s)BPMM and translates and refines this model into an executable process
model in BPEL4SWS.

4.1 Translation to executable process (C.1)

The modeling phase leads to a process model that is both sound regarding its
control flow and validated against domain constraints using reasoning techniques.
In the translation phase this process model is mapped to an executable language
such as BPEL. There are several challenges for the transformation exercise since
executable languages are often more restrictive in the way they represent control
flow [22]. Still, there are some standard solutions to automate the transforma-
tion if there are no unstructured loops in the conceptual models [23]. For the
transformation of BPMN to BPEL there are several implementations of a trans-
formation, among others the one defined in [24].

4.2 Service Binding (C.2)

/* Relation to M.3 unclear as yet (iw)*/
During discovery and composition per task the semantic descriptions of tasks

are used to discover a (set of) service(s) that is able to implement the given tasks.
This can for instance be done using the WSMO framework. Therefore, semantic
task descriptions are transformed to full WSMO goals and subsequently corre-
sponding WSMO Web services are discovered. Given this setting there are several
strategies for binding services to executable process models during configuration:

1. WSDL services as activity implementations
WSMO provides a grounding mechanism to WSDL for both, goals and web
services. In case the WSMO goal and the WSMO Web service are grounded
to WSDL these WSDL interfaces can be used to build a partner link type
which can be used within the process model. Note that a grounding in the
goal is only required in case of asynchronous communication [25]. Interaction
activities representing the tasks of the conceptual process model reference a
corresponding partner link and the WSDL operations the WSMO descrip-
tions are grounded to. This configuration strategy results in a conventional

BPEL process that runs on a conventional BPEL engine which invokes con-
ventional Web services.
However, as a result, the flexibility of the executable process model is lim-
ited because using WSDL for describing activity implementations hampers
using functionally equal services that implement different WSDL interfaces.
The actual implementation, i.e. endpoint, can be either extracted from the
discovered WSMO service and determined during deployment (design time
binding) or discovered during runtime (runtime binding).

2. WSMO Goals as activity implementations
Using WSMO goals as activity implementations implies the existence and
usage of a WSMO enabled middleware (e.g. WSMX (Web Service Model
eXecution environment) [26]). Goals can be used with and without a re-
striction on Services that might be used. The restriction might be a single
service (which corresponds to design time binding of WSDL services with
respect to flexibility) or a set of services. Even more flexibility is achieved
by using a goal without any restrictions on services that might be used. In
this case any WSMO Web Service that meets the functional requirements
can be discovered and invoked during runtime.

4.3 Testing the executable process (C.3)

Creating correctly executing processes is a cumbersome task, due to the fact that
the precision of the process then is the same as the precision of a programming
language. Practical experience shows that producing correctly executing BPEL
even with state of the art tools requires several attempts and hours. Therefore,
even though control flow and semantic validity have been checked, it is necessary
to test an executable process before deployment.

For this purpose, [27] presents an approach to BPEL testing through “unit
tests”, which is related to traditional white box tests from software engineering.
While this work is focused on BPEL exclusively, the methodology presented in
this paper is independent of a specific format for executable processes. While
the approach from [27] should be adaptable to other languages and is certainly
worthwhile considering, two additional ways for testing an executable process are
mentioned below. Both of these testing scenarios require some infrastructure.

The first additional option is inspired by traditional software engineering,
where a replication of the productive systems is made available as a test in-
frastructure. Within a single organization, this approach may be extended to
executable processes in the obvious way. For cross-organizational processes, a
dummy replication of the remote systems within the own testing infrastructure
may be beneficial.

The second option requires an abstract communication layer, e.g. in form
of an Enterprise Service Bus (ESB)[28]. This bus can then be extended with a
test mode, such that it reacts to messages with a “test” flag with one of a set
of predefined test replies, e.g., chosen by random. The test reply messages for a
particular service are stored in the ESB when this service is deployed, and may
be updated over time. With this mechanism, the test message never reaches the

productive application systems, and the tested executable service may only make
use of the services which are available through the ESB. However, there are a few
pitfalls to this approach, e.g., when a process relies on instance-related replies
the predefined test answers may not be sufficient. Although this approach aims
at a lean and elegant testing infrastructure with minimal overhead, the practical
applicability remains yet to be shown.

Regardless of the particular approach chosen, as soon as a process is critical
and non-trivial to the least extent, testing an executable process before deploying
it to productive systems is a must.

4.4 Deployment (C.4)

Deployment is the step of making processes productive and available. Processes
are deployed to the infrastructure and registered, e.g. as a service. In case a
service binding strategy was chosen that is different from a static binding (in
our scenario different from WSDL design time binding and WSMO Goal with
restriction that only one concrete service might be used) additional parameters
like Quality of Service can be applied to make the (runtime) discovery of services
more precise.

5 Discussion

In this paper, we described a structured methodological approach to business
process modeling and configuration. This methodology easily facilitates reuse
of existing process artifacts, and by doing so, aims to bridge the gap between
conceptual modeling of business requirement and information system implemen-
tation. Our methodology introduces several activities for quality assurance that
benefit from semantic annotations.

Let us briefly discuss our proposed order of activities as per Fig. 2 and the
motivations behind it. A process model with sound control flow is not invali-
dated by discovery and composition, but potentially the model grows through
these activities. Therefore, control flow verification is best done before discov-
ery/composition, because it is easier for a modeler to correct a smaller model.
Moreover, semantic process validation can only be done on the basis of a sound
control flow, and of course semantic validation should happen after discov-
ery/composition. In the configuration phase, the language translation takes place
before service binding, because binding mechanisms are language-specific. Test-
ing the executable process is done after service binding, because it of course
requires concrete services. Deployment finalizes the configuration phase, and
thus is performed last.

The utilization of semantic technologies in this methodology differs from pre-
vious approaches in several important aspects. For example, performing compo-
sition per task, rather than for an entire process, has a much better chance to
yield useful results at a low modeling cost. Semantic validation is an entirely new
step. Our arrangement takes the appropriate measures to deal with the subtle

interplay between discovery and binding. Composition is best viewed as part of
the modeling phase, since getting to the desired IT-level model may require an
iteration of human and computer-supported activities; at least, a final approval
by the human user is needed before a composed process is deployed.

In future research, we aim to provide a complete instantiation of our method-
ology based on sBPMN [29] and BPEL4SWS. This implementation will provide
us with practical insight into the applicability of the methodology. In particu-
lar, it offers the opportunity for a validation by case studies and an in-depth
comparison with current BPM practice.

Acknowledgements

The work described in this document is partly funded by the European Com-
mission under the IST project SUPER (FP6-026850).

References

1. Hepp, M., Hinkelmann, K., Karagiannis, D., Klein, R., Stojanovic, N., eds.: Pro-
ceedings of the Workshop on Semantic Business Process and Product Lifecycle
Management (SBPM 2007), Innsbruck, Austria (2007)

2. US Dept. of the Treasury, CIO Council: Treasury Enterprise Architecture Frame-
work Version 1.0. http://www.eaframeworks.com/TEAF/teaf.doc [Retrieved Sept.
4, 2007] (2000)

3. Leymann, F., Roller, D.: Production Workflow - Concepts and Techniques. Prentice
Hall (2000)

4. Dumas, M., Hofstede, A., Aalst, W., eds.: Process Aware Information Systems:
Bridging People and Software Through Process Technology. Wiley Publishing
(2005)

5. Hee, K., Sidorova, N., Somers, L., Voorhoeve, M.: Consistency in model integration.
Data & Knowledge Engineering 56 (2006) 4–22

6. Frederiks, P., Weide, T.: Information modeling: The process and the required
competencies of its participants. Data & Knowledge Engineering 58 (2006) 4–20

7. Fantini, P., Savoldelli, A., Milanesi, M., Carizzoni, G., Koehler, J., Stein,
S., Angeli, R., Hepp, M., Roman, D., Brelage, C., Born, M.: SUPER
Deliverable D2.2: Semantic Business Process Life Cycle. http://www.ip-
super.org/res/Deliverables/M12/D2.2.pdf as of 6 Aug 2007 (2007)

8. Becker, J., Kugeler, M., Rosemann, M., eds.: Preparation of Process Modeling.
In: Process Management: A Guide for the Design of Business Processes. Springer-
Verlag (2003) 41–78

9. Born, M., Dörr, F., Weber, I.: User-friendly Semantic Annotation in Business Pro-
cess Modeling. In: Hf-SDDM-07: Workshop on Human-friendly Service Description,
Discovery and Matchmaking, at WISE-07, Nancy, France (2007) (to appear).

10. Markovic, I., Pereira, A.C.: A formal framework for reuse in business process mod-
eling. In: Workshop on Advances in Semantics for Web services (semantics4ws),
at BPM-07, Brisbane, Australia (2007) (to appear).

11. Aalst, W.: Verification of Workflow Nets. In Azéma, P., Balbo, G., eds.: Application
and Theory of Petri Nets 1997. Volume 1248 of Lecture Notes in Computer Science.,
Springer Verlag (1997) 407–426

12. Verbeek, H., Basten, T., Aalst, W.: Diagnosing Workflow Processes using Woflan.
The Computer Journal 44 (2001) 246–279

13. Dehnert, J., Aalst, W.: Bridging The Gap Between Business Models And Workflow
Specifications. International J. Cooperative Inf. Syst. 13 (2004) 289–332

14. Mendling, J., Aalst, W.: Formalization and Verification of EPCs with OR-Joins
Based on State and Context. In Krogstie, J., Opdahl, A., Sindre, G., eds.: Pro-
ceedings of the 19th Conference on Advanced Information Systems Engineering
(CAiSE 2007). Volume 4495 of Lecture Notes in Computer Science., Trondheim,
Norway, Springer-Verlag (2007) 439–453

15. Wynn, M., Edmond, D., Aalst, W., Hofstede, A.: Achieving a General, Formal
and Decidable Approach to the OR-join in Workflow using Reset nets. In Ciardo,
G., Darondeau, P., eds.: Applications and Theory of Petri Nets 2005. Volume 3536
of Lecture Notes in Computer Science., Springer-Verlag (2005) 423–443

16. Pistore, M., Traverso, P., Bertoli, P.: Automated composition of web services by
planning in asynchronous domains. In: 15th International Conference on Auto-
mated Planning and Scheduling (ICAPS-05). (2005)

17. Pnueli, A.: The Temporal Logic of Programs. In: Proceedings of the 18th IEEE
Annual Symposium on the Foundations of Computer Science, IEEE Computer
Society Press, Providence (1977) 46–57

18. Bertino, E., Ferrari, E., Atluri, V.: The Specification and Enforcement of Autho-
rization Constraints in Workflow Management Systems. ACM Transactions on
Information and System Security (TISSEC) 2 (1999)

19. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPEL for Semantic
Web Services. Submitted for publication (2007)

20. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,
Goland, Y., Gúızar, A., Kartha, N., Liu, C.K., Khalaf, R., König, D., Marin, M.,
Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web Services
Business Process Execution Language version 2.0. Committee specification, OASIS
(2007)

21. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1 (2001)

22. Recker, J., Mendling, J.: On the Translation between BPMN and BPEL: Con-
ceptual Mismatch between Process Modeling Languages. In Latour, T., Petit, M.,
eds.: Proceedings of the CAiSE Workshops at the 18th Conference on Advanced
Information Systems Engineering (CAiSE 2006), Luxembourg, Luxembourg (2006)
521–532

23. Mendling, J., Lassen, K., Zdun, U.: On the transformation of control flow between
block-oriented and graph-oriented process modeling languages. International Jour-
nal of Business Process Integration and Management 2 (2007)

24. Ouyang, C., Dumas, M., Breutel, S., ter Hofstede, A.: Translating standard process
models to bpel. In Dubois, E., Pohl, K., eds.: Advanced Information Systems En-
gineering, 18th International Conference, CAiSE 2006, Luxembourg, Luxembourg,
June 5-9, 2006, Proceedings. Volume 4001 of Lecture Notes in Computer Science.,
Springer (2006) 417–432

25. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: WSMO/X in the
Context of Business Processes: Improvement Recommendations. International
Journal of Web Information Systems, ISSN: 1744-0084 (2007)

26. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX – a semantic
service-oriented architecture. In: In Proceedings of the International Conference
on Web Services (ICWS 2005), Orlando, USA (2005)

27. Li, Z., Sun, W., Du, B.: Bpel4ws unit testing: Framework and implementation.
International Journal of Business Process Integration and Management 2 (2007)

28. Chappell, D.A.: Enterprise Service Bus. O’Reilly (2004)
29. Abramowicz, W., Filipowska, A., Kaczmarek, M., Kaczmarek, T.: Semantically

enhanced Business Process Modelling Notation. In: Proceedings of the Workshop
on Semantic Business Process and Product Lifecycle Management (SBPM 2007),
Innsbruck, Austria (2007)

	Towards a Methodology for Semantic Business Process Modeling and Configuration
	Ingo Weber, Jörg Hoffmann, Jan Mendling, Jörg Nitzsche

