
Planning for Human-Robot Collaboration using
Markov Decision Processes

Khansa Rekik∗†, Prof. Jörg Hoffmann†, Prof. Dr.-ing Rainer Müller∗, Marcel Steinmetz†

and Dr.-ing Matthias Vette-Steinkamp∗
∗ZeMA -Zentrum für Mechatronik und Automatisierungstechnik gemeinntzige GmbH, Saarbrücken, Germany

†Saarland University, Saarbrücken, Germany

Abstract—In semi-automated industrial applications, interac-
tion between humans and robots is essential. Such interactions re-
quire some level of mutual awareness and coordination. Precisely,
while interacting with humans, robots need to be aware of their
state and possible future actions in order to collaborate with them
and help achieve their goal more efficiently. The focus of this work
is the problem of planning for Human-Robot collaboration. First,
the robot actions and their dependency on the human’s activity
are modeled as a Markov Decision Process (MDP). Second, the
instances of the model are solved using an off-the-shelf planner.
Through analysis of the solutions to the model, results highlight
the influence of experimental parameters such as the size of the
task and the horizon on the efficiency of the solver. Finally, the
deployment of the MDP on a use-case assembly process scenario
inspired from an aerospace manufacturing industry is discussed.

Index Terms—Human-Robot collaboration, AI planning,
Markov Decision Processes

I. INTRODUCTION

Large scale industries are constantly seeking new tech-
nologies to increase overall efficiency in the production line.
To that end, attempts are continuously being made to auto-
mate production processes. One such an attempt is introduc-
ing robots to automate repetitive and non-ergonomic tasks.
However, introducing fully automated solutions can, in some
cases, be inefficient compared to manual or semi-automated
solutions. In such cases, one can use hybrid solutions involving
both humans and robots. For instance, one can use Human-
Robot Collaboration (HRC) based solutions. HRC solutions
embody challenges present in division of responsibilities,
action disambiguation etc [1].

Identifying the intended action by the human is important
for the robot to disambiguate what the former is trying to
achieve, hence to flexibly support him. However this dis-
ambiguation step can be significantly simplified in scenarios
where the worker workflow is known to the robot, for instance,
the ordering of steps in the workflow, the probabilities of
transitioning from one activity to the other, etc.

In the context of establishing a human aware collaboration,
the robot task can be viewed as “a Artificial Intelligence
planning task”; it is the task of selecting a goal-leading course
of actions based on observations and a model of the world and

This research was supported by ZeMA -Zentrum für Mechatronik und
Automatisierungstechnik gemeinntzige GmbH through the Robotix Academy
project.

action behaviour [2], [3]. In the aforementioned scenarios’
category the robot has to transition across states through
submitting actions until reaching the common goal. A state is
affected by multiple factors namely the observations about the
human worker and model of the human’s workflow, the model
of the environment, as well as the model of its own actions.
In other terms, based on the human work-flow as well as any
environmental factor that affect the decision making process,
the robot can infer which actions to pursue in order to achieve
the shared task.

Such dynamic can be modeled with different planning
frameworks (deterministic planning, stochastic planning etc.).
The challenge is to find trade-offs between accurately mod-
eling the problem and the planning complexity [4]. Planning,
as presented in [2], [4], assumes certainty about the initial
state and the actions’ effects. This assumption is relaxed for
probabilistic planning frameworks, such as Markov Decision
Processes (MDP) planning, where transitions are probabilistic.
According to [5], one can use MDPs for simulating a rational
human’s acting towards a certain intention. The result of
solving these models would be integrated in the robot’s model
and used as a reference for the observations gathered by the
robot. Similarly, the work-flow of both agents can be modeled
by means of MDP [6].

As an initial case study, we consider the riveting process
in the aircraft assembly for a use-case scenario as it is one
important use case among many others. Due to its complexity,
this process can be semi-automatized in a way where the
human can perform the hammering while a robot counter-
holds from the opposite side. This scenario is modeled as
an MDP, since MDPs represent a good compromise between
accuracy and complexity. On one hand, MDPs allow to model
stochastic workflows. on the other hand, they allow assuming
that the human workflow state is known so that no reasoning
about sensing and its implications is required. Note that the
methods we use are generic, thus potentially reusable for more
complex scenarios.

This work is divided into five main parts. First we introduce
a use-case scenario from the aircraft industry. Second we
give an overview about the MDP planning background. In
the third part we present the modeling of the use-case process
first as an MDP followed by results of the efficiency tests
performed using an off-the-shelf solver. Finally, we discuss
the deployment of the model to a real demonstration.

II. USE-CASE SCENARIO: RIVETING PROCESS IN
AIRCRAFT ASSEMBLY

The use-case scenario implemented in this work is the rivet-
ing process used for aircraft assembly. The body of an aircraft
consists of different segments, which are adjusted with respect
to each other employing handling systems and joined manually
with rivets. Riveting requires two workers; one for counter
holding and one for hammering. For ergonomical purposes
and to improve production conditions and thus efficiency, we
aim at contributing to the automatization of this process.

Previous work on this project, described in [7], replaced one
of the workers with a robot to perform the counter-holder role
during the riveting process. However, the remaining worker
has to send orders to the robot of the actions to be performed
through an interactive device. A more optimal solution would
be like follows; the robot observes the worker, infers the
current activity and plans actions to help reach the common
goal.

We call human workflow the set of activities the worker can
perform and the possible transitions between them. We restrict
the human possible activities to three: {waiting, riveting,
having a break}. Note that transitions are non-deterministic.

Once the robot has inferred the activity of the worker, it
can decide on what actions to perform avoiding making the
worker wait. The process is divided into three main parts.
First the riveting points have to be scanned to determine
their absolute positions with respect to the robot’s coordinate
system. Second, the riveting itself is performed i.e. the robot
navigates between point and counter-holds while the human
is hammering. Finally, points are inspected to verify their
compliance with quality standards.

In the frame of this work, we assume that the scanning step
has been accomplished, we focus on riveting and inspecting.

III. BACKGROUND: MDP PLANNING

We consider the formulation of [8] for a Markov Decision
Process (MDP), it is represented as a tuple P = 〈S,A, T,R〉
where:

· S stands for a set of state variables
· A represents a set of the agent’s actions, in analogy with

classical planning, one can extend this MDP formulation
by adding effects (eff(a)) and preconditions (pre(a))
to actions

· T is a function of the transition probabilities Pa(s′|s) for
a ∈ A, s′, s ∈ S , if one is in state s and performs and
action a, one gets to a state s′ with probability Pa(s′|s),

· R is a reward function for executing an action a in state
s

We define an MDP policy π as a function π : S → A
that maps actions to MDP states, a the policy that maximizes
the long-term expected reward is an optimal policy π∗. A
reward can be discounted by means of a discount factor γ
in [0, 1]. The role of the discount factor is to make earlier
rewards advantageous. For instance, a reward n steps away is
discounted by γn.

An MDP Horizon H is the number of actions the system
will take during its life time [5]. It gives a foresight in several
time steps in the future. Thus one can get a horizon-optimal
policy i.e a policy that, for every initial state s0, results in
the maximal expected reward from times 0 to the size of the
horizon. Note that MDPs assume the Markov Property [9],
more explicitly, the effects of an action a taken in a state
st do not depend on the prior history, they only depend on
that state (s). In addition, in a markov decision process the
dynamics of the environment are fully observable. In other
terms, the state s′ resulting from executing a is fully known
by the system.

One can evaluate a policy thanks to the value function V .
This function calculates the long-term expected reward of a
policy π, it can be computed using the Bellman equation:

V πt (s) = R(s, πt(s)) +
∑
s′∈S

T (s, πt(s), s
′) · γ · V πt−1(s′) (1)

Thus one can compute the optimal policy π∗ like follows:

π∗ = argmax
a∈A

[
R(s, π(s)) +

∑
s′∈S

T (s, πt(s), s
′) · γ · V ∗(s′)

]
(2)

and:

V ∗(s) = max
a∈A

[
R(s, πt(s)) +

∑
s′∈S

T (s, πt(s), s
′) · γ · V ∗(s′)

]
(3)

Algorithms for solving MDPs: There are several ways
to optimally solve MDPs namely Value-iteration and Policy-
iteration algorithms. In value-iteration algorithms, one keeps
improving the value function at each iteration until the value-
function converges. Whereas in Policy-iteration algorithms
one re-defines the policy at each step and computes the
value according to the new policy until it converges. Another
algorithm for planning under uncertainty is the UCT algorithm
[10]. UCT is one of the representatives of Monte-Carlo Tree
Search algorithms on which the planner PROST is based. Ac-
cording to [11], PROST implements techniques on top of the
UCT skeleton to show its applicability to domain independent
probabilistic planning and to adapt it to the stochastic planning
context. One such a context is creating strongly connected
search space. Moreover, unlike UCT, PROST detects reward
locks which makes it more efficient in domains presenting such
locks. Furthermore, PROST performs a Q-value initialization
step which prevents initial random walks in the search space.
The input language used by PROST is the Relational Dynamic
Influence Diagram Language (RDDL) [12]. Conventionally,
actions in MDPs do not explicitly have preconditions and
effects. However, planning domain languages like PPDDL and
RDDL specify these actions in a factored manner analogous
to classical planning. Thus actions can have preconditions and
effects. Winner of the IPPC 2011 and IPPC 2014 competitions,
PROST is mainly efficient for MDP planning. To this end, we
will use RDDL for the implementation of the MDP model of
our use-case task and PROST for running the experiments.

IV. THE PROPOSED MODEL FOR THE RIVETING PROCESS

In this section, the MDP model of the aforementioned rivet-
ing process is presented. The human’s work-flow is embedded
in the robot’s model. More precisely, the activity of the human
is represented as a state variable that evolves in a probabilistic
fashion. The state space is composed of the robot’s state
variables SR, the human’s state variables SR and the state
variables relative to the riveting points Srp :

S = SR × SH × Srp

The robot variables contain the robot position, which is a
number between one and the total number of riveting points,
and weather it has stopped i.e the task has been finished.
Moreover, the rivets variables contain the state of the riveting
point: scanned, riveted or inspected. Also if a point has been
inspected or riveted in the last time step. The human variables
contain the human position and current activity: waiting,
riveting or having-a-break.

Analogically to classical planning, in this model actions
have preconditions and effects. The possible actions are move
next or previous, counter-hold, inspect and stop. Those actions
are parametrized by the considered riveting point. Precondi-
tions restrict the applicability of the actions, they can depend
on the human state variables. For instance, counter-holding is
only possible if the human is waiting in the same position as
the robot, this point should be scanned and not previously
riveted, also the robot should not be “stopped”. Once this
action succeeds the state of the point switches from scanned
to riveted with a certain probability.

The transition function Pa(s
′|s) represents the uncertainty

of the output of the action performed by the robot, as well as
the uncertainty entailed by the change of the activity of the
human.

Pra(s
′|s) = Pr(st+1 = s′|st = s, at = a) (4)

In what follows, we divide a state s into its three different
components sh, sR and srp for respectively states variables
relatives to the human, the robot and the riveting points. The
transitions relative to the position of the robot are not proba-
bilistic as they depend only on the success of the move actions
which are chosen to be deterministic. They are independent of
the human and the rivets’ states. Note that this does not apply
for cases where a move-next is performed at the last point or
if a move-previous is performed at the first point.

The transitions of the state variable relative to the riveting
points are probabilistic. Their transition probabilities depend
on the success probabilities of either the counter-hold action
and the transition probabilities of the human state or on the
success probability of the inspect action.

Analogically the states relative to the human activity evolve
in a probabilistic scheme. The model of the human work-
flow can be seen as a sub-model of the MDP of the robot
where transitions are also probabilistic. Given that the human
is more likely to transition from “watiting” to “riveting” and
vice-versa, it is less likely that he takes a break very often

and thus the probability of “having a break” is lower. Note
that transitioning from a “having a break” to “riveting” is
not possible. In other terms, being in break the human can
only go to a waiting state. The model of the human, although
independent of the robot actions, influences the evolution of
the rest of the state variables as well as the applicability of
some actions e.g counter-hold.

The reward function is defined in a way that boosts the
human workers comfort and penalizes encumbering her plan
execution. As described in the following function a positive
reward is assigned each time a new point, that has not been
riveted previously, is riveted or a point, that has not been
inspected, is inspected. A negative reward is however assigned
if the robot keeps the human worker waiting or if none of the
aforementioned conditions are satisfied.

V. EXPERIMENTS AND PRELIMINARY RESULTS

The MDP model is implemented using RDDL. The flex-
ibility of the language and the broad range of modeling
possibilities it offers allows capture the real world setting
of the riveting task. However, this flexibility is constrained
by the solver that is used to run models encoded in RDDL
i.e. PROST. As the latter does not support all possibilities
offered by RDDL in terms of modeling, hence, assumptions
and simplifications need to be made while modeling the task.

One such a simplification is downgrading the models from
their factored form to a ground for in which each factorized
variable with a parameter x is transformed to set a variable
for which each variable is an instantiation of x.

The results, calculated considering an action time limit of
0.5 s and a total time limit of 60 min, and showed in Fig.1,
indicate that, PROST can time out during its heavy parsing
phase. To that end, the parsing method has been modified.
This has resulted in a significant improvement in performance
as shown in the figure.

0 50 100 150 200 250 300
10−2

10−1

100

101

102

103

Number of rivets N

To
ta

l
pa

rs
in

g
tim

e
[s

]

PROST parser
External generator

Fig. 1. Comparison of the parsing time between the internal parser of PROST
and an external parser given a horizon size H equal to the size of the MDP
model N .

The blue curve, representing the parsing time of PROST’s
conventional parser, shows a variation in the time needed for

0 50 100 150 200 250 300

−600

−500

−400

−300

−200

−100

0

Number of rivets N

A
ve

ra
ge

re
w

ar
d

H=N
H= 2*N
H= 3*N

Fig. 2. Change in the average reward for different MDP model sizes N in
accordance to change in the horizon size H

parsing with respect to the size of the task i.e. the number of
rivets. The whole experiment frequently times out during the
parsing namely for tasks with sizes between 40 and 60, and
above 120.

As the reward functions is parameter that drives the MDP
model, we evaluate the performance of the use-case models
solved by PROST in terms of average rewards. In Fig.2, we
show the reward values for different horizon sizes with respect
to the number of rivets. The rewards have negative values as
each action that does not result in a new riveted or inspected
point is penalized. In this analysis, it was shown that the solver
can solve models with sizes up to 300 riveting points within
the time limits imposed. Furthermore, the larger the horizon
is, the lower the reward values are for a fixed number of
rivets. This is due to the accumulated uncertainty. Note that,
having a lower reward for a larger horizon does not presume
that a restricted horizon is better. The horizon is not only the
foresight but also the number or actions to be performed. More
precisely, for a 5 rivets task, if H = N then the process would
stop after submitting 5 actions, whereas with H = 3 ∗ N
the process would stop after 15 actions. As a result, reward
values are lower for larger horizons for there is room for
submitting more actions, accumulating more uncertainties and
getting more penalized.

VI. DEPLOYMENT TO THE USE-CASE

The aforementioned model is deployed to a demonstrator
of the use-case scenario. The demonstrator consists of the a
Universal Robot 10, a lifting unit enabling the transportation
of the robot and the sections to be riveted. The section of the
demonstrator contains thousands of rivets, thus having a model
with hundreds of rivets it’s practical for that it helps limit the
number of runs launches.

Using a Markov decision process in a real application
requires assuming that sensors use for observations are noise
free. For the riveting process scenario sensors are used to
update the state variables as actions are being executed.
Theoretically each state variable should have a way to be
validated through the feedback of the sensors. As discussed

previously, there are variables relative to the robot, to the
human and to the riveting points. In order to observe those
variables three external sensors are used in addition to the
robot’s internal sensors. Detecting the position of the robot
is performed by means of the robot’s internal encoder. The
external sensors are a safety mat for detecting the presence of
the human in the workplace, a force-torque sensor to detect
if the human is waiting or riveting and also if the rivet has
been successfully riveted and a laser scanner to validate the
inspection.

Furthermore, bringing the models to practical use requires
replacing the RDDLSim server with the server of the real
demonstrator. The latter handles the sensor data as well as
the deployment of the actions by the robot.

For the tests run on the robot, it is possible to use an input
model describing a task with a maximum size of 240 riveting
points. At first, PROST is called once, its input is the initial
state of the demonstrator and a horizon size of 3 × N for
a model of N points. Once an action is submitted, it is sent
to the server. An internal clock of the server waits for six
seconds which is the time needed for the longest action to be
performed. After this period the server reads the new state s′

and sends it to the solver. The stopping criterion is the end
of the task which is reached once the state variable R-stopped
becomes true. However, as the horizon values considered for
testing are relatively small, it is unlikely to finish the task
within the horizon.

VII. DISCUSSION

In the simulated context, it was shown that a large horizon
allows a higher number of actions to be submitted. However,
with large horizons, the short term reward is not as maximized
as it can be with a restricted horizon. In other words, the
size of the horizon influences the decision making in terms of
prioritizing actions that give a higher accumulated reward over
several decisions instead of maximizing short term rewards.
It is important to mention that a different level of flexibility
is gained using planning tools in comparison to rule-based or
fixed controllers namely the possibility of looking several steps
ahead to gather information useful for making the decision.

In the real context, several test have been performed from
which one can only detect salient problems, therefore no actual
evaluation has been made so far. A further investigation is
considered for future work. Nevertheless, some preliminary
conclusions and remarks can be done.

On one hand, through the deployment of the model to
the real scenario, multiple flows in translating the behavior
established in the simulated environment has been detected.
For instance, assuming that sensors are noise free has resulted
in problems in detecting the current activity of the human
(waiting vs. riveting). More precisely, testing the sensor off
load shows already a significant variation in the force values
returned although no force is applied. This makes it challeng-
ing to opt for a specific threshold.

Moreover, using the external parser alleviated the pre-
computational but limits the horizon size which makes it
almost not possible to finish the whole process.

On the other hand, In comparison with the semi-automated
version of the process where the human needs to use an
interactive device and guide the robot, our version is flexible.
More precisely, one can adapt the time of the counter-holding
based on the pace of the worker (beginner or expert).

VIII. CONCLUSION

This work tackles Human-Robot Collaboration from an
MDP planning perspective for a simple industrial scenario.
This application represents a step towards deploying non-
deterministic planning tools in real life settings. In our case the
human model is known to the robot which facilitates deciding
on what actions to perform. Whereas if the human has a wider
range of activities that are not necessarily explicitly cited in the
robot’s MDP, the decision making would be more challenging.

In future work, we intend to expand our results to account
for more industrial like settings i.e. more uncertainty about the
human activity and environmental state.

ACKNOWLEDGMENT

We thank our colleagues from Loria Nancy in France
who provided insight and expertise that greatly assisted the
research.

REFERENCES

[1] B. Hayes and B. Scassellati, “Challenges in shared-environment human-
robot collaboration,” learning, vol. 8, no. 9, 2013.

[2] J. Hoffmann, “Everything you always wanted to know about planning,”
in Annual Conference on Artificial Intelligence. Springer, 2011, pp.
1–13.

[3] J. A. Hendler, A. Tate, and M. Drummond, “AI planning: Systems and
techniques,” AI magazine, vol. 11, no. 2, p. 61, 1990.

[4] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: theory and
practice. Elsevier, 2004.

[5] A.-B. Karami, “Modèles décisionnels d’interaction homme-robot,” Ph.D.
dissertation, Université de Caen, 2011.

[6] B. Bakker, Z. Zivkovic, and B. Krose, “Hierarchical dynamic program-
ming for robot path planning,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2005, pp. 2756–2761.

[7] R. Mueller, M. Vette-Steinkamp, A. Kanso, and T. Masiak, “Collab-
oration in a hybrid team of human and robot for improving working
conditions in an aircraft riveting process,” SAE Technical Paper, Tech.
Rep., 2019.

[8] M. Ramı́rez and H. Geffner, “Goal recognition over pomdps: Inferring
the intention of a pomdp agent,” in Twenty-Second International Joint
Conference on Artificial Intelligence IJCAI, 2011.

[9] L. D. Pitt, “A markov property for gaussian processes with a multi-
dimensional parameter,” Archive for Rational Mechanics and Analysis,
vol. 43, no. 5, pp. 367–391, 1971.

[10] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
European conference on machine learning. Springer, 2006, pp. 282–
293.

[11] T. Keller and P. Eyerich, “Prost: Probabilistic planning based on uct.”
in International Conference on Automated Planning and Scheduling
ICAPS, 2012.

[12] S. Sanner, “Relational dynamic influence diagram language (rddl):
Language description,” Unpublished ms. Australian National University,
p. 32, 2010.

