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Abstract. OpenCCG sentence generation is a prominent approach to surface re-
alization – choosing the formulation of a sentence – via search. Such searches of-
ten visit many infeasible composites (partial sentences), not part of any complete
sentence because their grammar category cannot be extended to a sentence in a
way covering exactly the desired sentence meaning. Formulating the completion
of a composite into a sentence as finding a solution path in a large state-transition
system, we exhibit a connection to AI Planning, and we design a compilation
from OpenCCG into planning allowing to detect infeasible OpenCCG compos-
ites via AI Planning dead-end detection methods. Our experiments show that this
can filter out large fractions of infeasible states in, and thus benefit the perfor-
mance of, complex surface realization processes.

1 Introduction

OpenCCG sentence generation is a prominent approach to surface realization via search
[22, 23]. It is based on combinatory categorial grammars (CCG), where words from a
lexicon are annotated with syntactic categories (e. g. NP for “noun phrase”), and sim-
ple combination rules dictate how categories can be combined. The target of the real-
ization process is a sentence, category S, that conveys the desired meaning, formalized
in terms of a set of semantic items, where each item must be covered exactly once. The
search space (a so-called chart realization algorithm, e. g. [11, 2, 3]) traverses collec-
tions of partial sentences (composites, so-called edges). One important source of com-
plexity in this context are infeasible edges, not part of any complete sentence because
their category cannot be extended to a sentence in a way covering exactly the remain-
ing semantic items. Our contribution is a new technique to automatically identify, and
prune, infeasible OpenCCG edges, via a connection to AI Planning.

Connections between sentence generation and AI Planning were previously estab-
lished for so-called tree-adjoining grammars [14, 12, 13], showing how to formulate the
entire generation problem as planning. Here we design a new connection for combina-
tory categorial grammars, and we focus on the objective of identifying infeasible edges,
keeping the overall generation process in the hands of OpenCCG. This is better suited
for surface realization as a planning compilation would be agnostic of sentence-quality



2 Schwenger et al.

measures, such as n-grams, which are difficult, perhaps impossible, to capture with
standard AI Planning quality notions like action costs.

We observe that edge feasibility in OpenCCG – the ability to complete an edge e0
into a sentence – can be formulated in terms of a state-transition system. We design a
compilation of that ability into an AI Planning task Π , where unsolvability of Π – the
absence of a path to the planning goal – implies infeasibility of e0. Applying dead-end
detection algorithms from AI Planning (e. g. [6, 9, 8, 19]) to the compiled task Π , and
doing so for every edge e0 during the OpenCCG realization process, then allows to
detect and filter out infeasible edges. Our experiments show that this can filter out large
fractions of infeasible edges in, and thus benefit the performance of, complex realization
processes.

2 Background and State-Transition System Notation

We briefly introduce background and basic notations for OpenCCG and planning, in a
manner geared at our compilation techniques.

2.1 OpenCCG

Combinatory categorial grammar (CCG) is a grammar formalism, which, in a nut-
shell, assigns (syntactic) categories to words or sequences thereof, and provides a set of
combination rules to combine these. Categories can be either atomic, e. g. noun phrase
NP, or complex, e. g. NP/N, where a slash indicates that the sequence NP/N N
can be combined, via application of the forward application rule, to obtain a noun
phrase. A backslash requires the combination partner, in backward application, to be
on the left hand side. As an example, consider the sentence Winter is coming,
where Winter as proper name has category NP, is as verb modifier has category
S\NP/(S\NP), and coming as intransitive verb has category S\NP. We can com-
bine is coming to acquire S\NP, and a combination thereof with Winter results
in a sentence, i. e., in category S. There are also unary rules, allowing to change a word
sequence’s category on its own, to enable different combinations.

In OpenCCG’s realization process, a logical formula consisting of a conjunction of
elementary predications – the semantic items – is transformed into a sentence covering
the semantic items. In this process, a lexicon provides entries – words associated with
categories – potentially useful in terms of their semantics. Composed entries, enriched
with additional information, are called edges during the search.1

Towards our compilation, we next give notations for OpenCCG, and OpenCCG re-
alization, already following AI Planning terminology. In doing so, we will not keep
track of the word sequences in edges, and we will not incorporate any notion of word-
sequence quality. This is because the purpose of our work merely is to filter out infea-
sible edges. We specify only those aspects relevant to that purpose.

We refer to the input of the realization process as an OpenCCG task, notated Ω =
(CΩ0 , SI

Ω , RΩ , sΩI , e
Ω
G). Here, CΩ0 is the finite set of atomic categories c0. SIΩ is the

1 We find the name clash with “edges” in a graph unfortunate, but stick to this terminology here
as it is standard in the OpenCCG literature.
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finite set of semantic items si. RΩ is the set of combination rules. We will denote the
set of all categories, that can be formed from CΩ0 through applying the rules RΩ , by
CΩ . sΩI is what we call a state, a set of edges, namely those edges already reached in
the state. sΩI specifically is the initial state. An edge e is a pair (c, σ) where c ∈ CΩ is
a category and σ ⊆ SIΩ is the subset of semantic items covered by e (which we will
also refer to as the edge’s coverage). We denote the set of all edges by EΩ . The initial
state sΩI ⊆ EΩ corresponds to the words in the lexicon. Finally, eΩG is the goal edge,
defined as eΩG = (S, SIΩ).

Given this input, OpenCCG realization conducts a search – a chart realization pro-
cess – over the possible constructions of new edges from previous ones. Each step of
the search either applies a unary rule to an edge already reached, i. e., an edge contained
in the current state; or applies a combination rule to a pair of edges e1 = (c1, σ1) and
e2 = (c2, σ2) from the current state, where c1 and c2 can be combined, and the truth
value assignments have empty overlap, σ1 ∩ σ2 = ∅. The resulting new edge is added
into the outcome state. The details of how this search process is organized are not rele-
vant to our purpose. Relevant to us are the states and their transitions, which we notate
as Ω’s OpenCCG state space, ΘΩ = (SΩ , TΩ , sΩI , S

Ω
G ). Here, SΩ = P(EΩ) is the

set of all possible states; TΩ ⊆ SΩ × SΩ contains the transitions over states, as just
explained; sΩI is the initial state; and SΩG := {sΩG ∈ SΩ | eΩG ∈ sΩG}, the goal states, are
those containing eΩG . We say that a state sΩ is reachable in ΘΩ if there is a transition
path from sΩI to sΩ in ΘΩ . The reachable states in ΘΩ correspond to the OpenCCG
search space. We say that Ω is solvable if ΘΩ contains a reachable goal state.

Formulating our example above in this manner, say the semantic items SIΩ are
{Winter, be, comes}. Say the lexicon contains exactly the three words needed, so that
the initial state sΩI contains the edges (NP, {Winter}), (S\NP/(S\NP), {be}), and
(S\NP, {come}). A solution to ΘΩ then is the path sΩI → sΩ1 → sΩ2 where sΩ1 =
sΩI ∪ {(S\NP, {be, come})} and sΩ2 = sΩ1 ∪ {(S, {Winter, be, come})}.

We say that an edge e0 is feasible in an OpenCCG task Ω iff, in the OpenCCG state
space ΘΩ , there is a reachable goal state sΩG ∈ SΩG containing a derived tree T0 for eΩG
where e0 appears in T0. Here, the derived tree T for an edge e is a tree combining edges
to get from elements of sΩI to e; and a state sΩ contains T if all edges in T are elements
of sΩ . In other words, e0 is feasible if it forms part of a derived tree for a complete
sentence. Otherwise, e0 is infeasible.

2.2 AI Planning

We consider STRIPS Planning [5], over Boolean variables (facts), extended with con-
ditional effects [17]. This has wide-spread support in modern planning techniques, and
matches the needs of our desired OpenCCG compilation.

A planning task is a tupleΠ = (FΠ , AΠ , sΠI , G
Π). Here, FΠ is a finite set of facts;

sΠI ⊆ FΠ is the initial state (the facts initially true); and GΠ is the goal (the facts we
need to be true at the end). AΠ is a finite set of actions. Each action a ∈ AΠ is a tuple
(prea, adda, dela,CEff a) where prea ⊆ FΠ is the action’s precondition, adda ⊆ FΠ
is the action’s add list, dela ⊆ FΠ is the action’s delete list, and CEff a is the action’s
finite set of conditional effects. Each e ∈ CEff a is a triple (cone, adde, dele) of fact
sets, namely the effect’s condition, add list, and delete list respectively.
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Given a planning taskΠ , the task’s state space is a tupleΘΠ = (SΠ , TΠ , sΠI , S
Π
G ).

Here, SΠ = P(FΠ) is the set of all possible states, i. e., fact subsets interpreted as those
facts currently true; sΠI is Π’s initial state; and SΠG := {sG ∈ SΠ | GΠ ⊆ sG} are
the goal states, where Π’s goal is true. The state transitions TΠ ⊆ SΠ × SΠ arise
from action applications. Action a is applicable in state s if prea ⊆ s; in that case,
the outcome state is defined as s′ := (s ∪ adda ∪

⋃
e∈CEff a:cona⊆s adde) \ (dela ∪⋃

e∈CEff a:cona⊆s dele). In other words, s′ results from s by including the add lists of
the action plus those effects whose condition holds in s, and afterwards removes the
delete lists of the action and those effects.2 We say that Π is solvable if ΘΠ contains a
reachable goal state.

3 Partial Compilation of OpenCCG Sentence Generation into AI
Planning

There is a correspondence between AI Planning and OpenCCG realization – at the
level of category combination rules and semantic item coverage – in that both require
to reach a goal, from an initial state, in a transition system described in terms of ac-
tions/transition rules. We aim at exploiting this connection, via a compilation from
OpenCCG into AI Planning, for automatic filtering of infeasible edges.

Our compilation is partial in that it does not attempt to preserve OpenCCG edge
reachability exactly. The compilation makes approximations – losing information –
aimed at practically viability. It consists of (1) a finite approximation of the set of reach-
able categories; (2) a planning task capturing solvability of Ω, modulo approximation
(1) plus an approximation of semantic coverage; (3) a modified planning task capturing
edge feasibility. We introduce these constructions in this order.

3.1 Finite Approximations of Reachable Categories

In CCG, combination rules specify how to create new categories from old ones. It is
possible in principle to simulate this behavior in terms of AI Planning actions, designed
to emulate the behavior of CCG combination rules. But this yields large and complex
planning encodings, and it is not clear how to exploit those effectively. Therefore, here
we take a different approach, pre-compiling all combined (non-atomic) categories that
will be considered by the planning process. Our starting point is what we call the cate-
gory space, capturing all possible categories and compositions:

Definition 1. Let Ω = (CΩ0 , SI
Ω , RΩ , sΩI , e

Ω
G) be an OpenCCG task. The category

space of Ω is the pair (CΩ , γΩ) where γΩ : CΩ × CΩ ∪ CΩ 7→ P(CΩ) is the partial
function where c′ ∈ γΩ(c) iff c can be transformed into c′ using a unary rule from RΩ ,
and c′ ∈ γΩ(c1, c2) iff c1 and c2 can be combined into c′ using a binary rule from RΩ .

Note that γΩ is a function onto subsets of possible outcome categories, rather than
onto a unique outcome category, as several different rules may be applicable to the same

2 For some purposes, one needs to design a special treatment for conflicting effects, adding vs.
deleting the same fact. This will not be relevant in our context.
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input categories. Note further that, in the presence of unary rules (like type raising)
which are always applicable in CCG, the category space is infinite. To compile it into a
finite planning task, we need to restrict ourselves to a finite sub-space. We do so via a
size-bound parameter k, in an optimistic vs. a pessimistic manner:

Definition 2. Let Ω = (CΩ0 , SI
Ω , RΩ , sΩI , e

Ω
G) be an OpenCCG task. Let k be a nat-

ural number. For c ∈ CΩ , let the degree of c, denoted #(c), be the overall number of
slashes and backslashes in c. By CΩ [k] := {c ∈ CΩ | #(c) ≤ k} ∪ {∗}, we denote the
set of all categories whose degree is at most k, plus the wildcard symbol ∗.

The pessimistic category space of Ω given k is the pair (CΩ [k], γ−Ω) where γ−Ω

is defined like γΩ but replacing any category c′ where #(c′) > k by ∗. The optimistic
category space of Ω given k is the pair (CΩ [k], γ+Ω) where γ+Ω is defined like γΩ but
replacing any category c′ where #(c′) > k by ∗; and including c′ ∈ γΩ(∗) whenever
γΩ(c) = c′; and including c′ ∈ γΩ(c1, ∗) whenever γΩ(c1, c2) = c′; and including
c′ ∈ γΩ(∗, c2) whenever γΩ(c1, c2) = c′.

In other words, we cut off the generation of categories once their degree exceeds
a user-defined threshold k. In the pessimistic (under-approximating) variant, no further
combinations are possible behind ∗. In the optimistic (over-approximating) variant, all
combinations are possible behind ∗.3

Say that, in our example, the lexicon contains only the words (S\NP, {come})
and (S\NP/(S\NP), {be}). If we set k := 3, then γ+Ω preserves γΩ sufficiently
to determine that S cannot be reached from the initial state categories. For k := 2,
however, S\NP/(S\NP) is replaced by ∗, and we can reach S by “pretending” that ∗
stands for NP.

The optimistic approximation variant preserves solutions and can be used to provide
guarantees, i. e., using our edge-feasibility compilation below, to prune only edges that
are indeed infeasible. The pessimistic variant does not provide that guarantee, but tends
to be more successful in practice as we will show in Section 5. Observe that the approx-
imations approach γΩ from opposite sides, in the sense that they are coarsest for k = 1,
and become more precise as k grows, γ+Ω getting less optimistic and γ−Ω getting
less pessimistic. The approximations converge to γΩ in that, for any finite sub-space of
(CΩ , γΩ), there is a k so that both approximations are exact. In terms of edge pruning,
this means that the optimistic variant prunes more for larger k, and eventually is precise
enough to find any edge that can be pruned; while the pessimistic variant prunes less for
larger k, and eventually is precise enough to preserve any edge that cannot be pruned
(in particular: precise enough to preserve any one solution).

3.2 Planning Compilation for Solvability

To capture solvability relative to the optimistic/pessimistic finite category space approx-
imation, our compiled planning task combines facts keeping track of category creation

3 One can (and our implementation does) define γ+Ω in a more fine-grained manner, replacing
only the sub-categories behind the threshold k with ∗, and accordingly being less generous in
the over-approximation of γ. As this refined version is cumbersome to spell out formally, and
leads to similar results in practice, we omit this here.
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with facts keeping track of semantic coverage. Here again we face a design choice: we
could, in principle, keep track of the actual category/coverage pairs, i. e., of edges. This
would allow us to check for empty overlap when combining two edges. However, that
would (a) again yield rather large planning encodings, and (b) require the AI Planning
dead-end detection method to be able to reason about delete lists. The most canonical
dead-end detection method, that we employ here, does not qualify for (b), so we can
just as well circumvent (a). We do so by abstracting from edges, associating a category
c with a semantic item si if at least one reached edge has category c and covers si. We
compile this into a planning task as follows:

Definition 3. Let Ω = (CΩ0 , SI
Ω , RΩ , sΩI , e

Ω
G) be an OpenCCG task. Let k be a nat-

ural number. The optimistic solvability-compilation is the planning task Π+Ω [k] =
(FΠ , AΠ , sΠI , G

Π) where:

(i) FΠ = {c | c ∈ CΩ [k]} ∪ {c[si] | c ∈ CΩ [k], si ∈ SIΩ}.
(ii) sΠI = {c | e = (c, σ) ∈ sΩI } ∪ {c[si] | e = (c, σ) ∈ sΩI , si ∈ σ}.

(iii) GΠ = {S} ∪ {S[si] | si ∈ SIΩ}.
(iv) AΠ = {a[c, c′] | γ+Ω(c) = c′} ∪ {a[c1, c2, c′] | γ+Ω(c1, c2) = c′}, where:

(a) a[c, c′] := ({c}, {c′}, ∅, {({c[si]}, {c′[si]}, ∅) | si ∈ SIΩ}).
(b) a[c1, c2, c′] := ({c1, c2}, {c′}, ∅, {({cj [si]}, {c′[si]}, ∅) | j ∈ {1, 2}, si ∈

SIΩ}).
The pessimistic solvability-compilation is the planning taskΠ−Ω [k], defined likeΠ+Ω [k]
but using γ−Ω .

Items (i)–(iii) should be easy to understand: in the compiled planning task, facts
c indicate whether category c has been reached yet, and facts c[si] indicate whether c
covers si yet; in the initial state, these flags are set according to sΩI , i. e., according to
the words in the lexicon; the goal is to have a sentence covering the entire semantics.
To understand item (iv), recall that actions have the form (prea, adda, dela,CEff a). In
item (iv a), encoding unary rule applications γ+Ω(c) = c′, the precondition is {c} and
the (unconditional) add list is {c′}, effectively saying that, if c is already reached, then
applying the action (the rule) yields c′. The conditional effects simply transfer, for each
si, the coverage from c (if already reached) to c′. The encoding of binary rules in item
(iv b) is similar.

Note that, as indicated above, the delete lists in the compilation are empty. On the
one hand, this corresponds to the monotonic nature of the OpenCCG search space,
where new edges are being added without removing the old ones. On the other hand,
delete effects would be needed to capture empty coverage overlap in combination-rule
applications. Yet, as explained, in the present approach we forsake that information as
our dead-end detector would not be able to handle it anyhow.

Theorem 1. Let Ω be an OpenCCG task. Let k be a natural number. If Ω is solvable,
then so is Π+Ω [k].

Proof. The proof compares Ω’s state space ΘΩ = (SΩ , TΩ , sΩI , S
Ω
G ) with that of

Π+Ω [k]. Denote the latter by Θ = (S, T, sI , SG). Define the mapping α : SΩ 7→ S
as α(sΩ) := {c | e = (c, σ) ∈ sΩ} ∪ {c[si] | e = (c, σ) ∈ sΩ , si ∈ σ}. As α+Ω

over-approximates the category combinations in αΩ , it is easy to see that transitions are
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preserved by α, i. e., whenever (sΩ1 , s
Ω
2 ) ∈ TΩ , we have (α(sΩ1 ), α(s

Ω
2 )) ∈ T . Fur-

thermore, goal states are preserved, i. e., whenever sΩ ∈ SΩG , we have α(sΩ) ∈ SG.
Finally, α(sΩI ) = sI . The claim follows.

Given Theorem 1, if Π+Ω [k] is not solvable, i. e., if an AI Planning dead-end de-
tector is able to detect that this is so, then we can safely conclude that Ω is not solvable
either. The pessimistic compilation Π−Ω [k] does not give that guarantee.

For illustration, consider again the example variant where the lexicon contains only
the words (S\NP/(S\NP), {be}) and (S\NP, {come}), so Ω is unsolvable. Then
Π+Ω [3] is unsolvable as S cannot be reached using γ+Ω , cf. above. Π+Ω [2] also is
unsolvable, because the semantic item “Winter” cannot be covered; but if we remove
that semantic item from the OpenCCG task (and thus from Π+Ω [2]), then Π+Ω [2] has
a one-step solution combining the two initial-state categories.

3.3 Planning Compilation for Edge Feasibility

The above compilation provides a necessary criterion for an OpenCCG task to be solv-
able. However, our actual purpose requires a necessary criterion for an OpenCCG edge
e0 to be feasible, i. e., to form part of a solution. This can be achieved by a simple modi-
fication of the compilation, propagating markers to make sure that e0’s category is used
in the solution:4

Definition 4. Let Ω = (CΩ0 , SI
Ω , RΩ , sΩI , e

Ω
G) be an OpenCCG task, and let e0 =

(c0, σ0) be an edge inΩ. Let k be a natural number. The optimistic feasibility-compilation
is the planning task Π+Ω [k, e0] = (FΠ , AΠ , sΠI , G

Π) where:

(i) FΠ = {c, c[0] | c ∈ CΩ [k]} ∪ {c[si] | c ∈ CΩ [k], si ∈ SIΩ}.
(ii) sΠI = {c0[0]} ∪ {c | e = (c, σ) ∈ sΩI , σ ∩ σ0 = ∅} ∪ {c[si] | e = (c, σ) ∈

sΩI , σ ∩ σ0 = ∅, si ∈ σ}.
(iii) GΠ = {S,S[0]} ∪ {S[si] | si ∈ SIΩ}.
(iv) AΠ = {a[c, c′] | γ+Ω(c) = c′} ∪ {a[c1, c2, c′] | γ+Ω(c1, c2) = c′}, where:

(a) a[c, c′] := ({c}, {c′}, ∅, {({c[0]}, {c′[0]}, ∅)} ∪ {({c[si]}, {c′[si]}, ∅) | si ∈
SIΩ}).

(b) a[c1, c2, c′] := ({c1, c2}, {c′}, ∅, {({c1[0]}, {c′[0]}, ∅), ({c2[0]}, {c′[0]}, ∅)}∪
{({cj [si]}, {c′[si]}, ∅) | j ∈ {1, 2}, si ∈ SIΩ}).

The pessimistic feasibility-compilation is Π−Ω [k, e0], defined like Π+Ω [k, e0] but us-
ing γ−Ω .

Relative to Definition 3, we add the c[0] markers to keep track of whether an an-
cestor of c uses e0’s category. The initial state includes this marker only for e0’s own
category c0, the goal is for S to be marked. The actions propagate the markers through
conditional effects, marking the outcome category c′ if at least one of the input cate-
gories is already marked. The additions “σ ∩ σ0 = ∅” in (ii) introduce a limited form
of empty coverage overlap reasoning, excluding in the initial state those edges whose
semantics overlaps with e0 (and that thus won’t be used in a solution incorporating e0).

4 In this definition, the modifications relative to Definition 3 are shown in red for the benefit of
on-screen reading.
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Theorem 2. LetΩ be an OpenCCG task, and let e0 be an edge inΩ. Let k be a natural
number. If e0 is feasible in Ω, then Π+Ω [k, e0] is solvable.

Proof. Say that e0 is feasible in Ω. Then there is a solution θ to Ω using e0, and not
using any e ∈ sΩI whose semantics overlaps with that of e0. By Theorem 1, Π+Ω [k] is
solvable, via a transition path π corresponding to θ. By construction, π is a solution for
Π+Ω [k, e0].

Given Theorem 2, if an AI Planning dead-end detector proves Π+Ω [k, e0] to be
unsolvable, then we can conclude that e0 is infeasible. The pessimistic compilation
Π−Ω [k, e0] does not give that guarantee.

Say that, in our example, the lexicon contains the words e1 = (NP, {Winter}),
e2 = (S\NP/(S\NP), {be}), and e3 = (S\NP, {come}) as before, but contains
also the transitive form of “coming”, e4 = ((S\NP)/NP, {come}), infeasible for our
purposes. Consider the edge e0 = (S\NP, {Winter, come}), where we combined e1
with e4. Consider the compilation Π+Ω [3, e0]: In the initial state, as e1 overlaps e0, e1
is not included. But without NP, S is unreachable given γ+Ω for k = 3, soΠ+Ω [3, e0]
is unsolvable and we correctly detect that e0 is infeasible.5

4 Practical Compilation Use and Optimizations

Our idea is to create, and check the solvability of, the compiled planning taskΠ+Ω [k, e0]
respectivelyΠ−Ω [k, e0], every time a new edge e0 is created during the OpenCCG real-
ization process. If the compiled planning task is unsolvable, e0 is deemed infeasible, and
is discarded. This filtering method is provably sound when usingΠ+Ω [k, e0]. When us-
ing Π−Ω [k, e0], it is a practical heuristic, and converges to sound pruning – eventually
preserving the best solution – as k grows.

To realize this approach, we require a method for checking solvability of plan-
ning tasks. In general, however, deciding solvability (“plan existence”) is PSPACE-
complete [1]. For fast solvability detection, planning research therefore concentrates
on polynomial-time solvable fragments of the plan existence problem. The most wide-
spread such fragment is the one where all delete lists are required to be empty (e. g. [1,
6, 9]). Hence the design of our compilation, which incorporates approximations result-
ing in empty delete lists. For planning tasks with empty delete lists, plan existence can
be decided in time low-order polynomial in the size of the task, using so-called relaxed
planning graphs [9].

Though polynomial time, testing delete-free plan existence does incur a runtime
overhead, especially in our context where we need to do so for every edge during re-
alization. Efficient implementation is therefore important. One key to this is the re-use
of information/computation shared across individual tests. First, every call to sentence
realization based on the same lexicon shares the same category space. Hence we can

5 Note that the same is not true for k = 2; and neither for e4 because, there, ignoring overlap
in rule applications means that e1 could be used twice. These are weaknesses of our current
approach, which could potentially be tackled by more informed compilations. We get back to
this in the conclusion.



On AI Planning Techniques in OpenCCG Sentence Generation 9

build the category space approximation, (CΩ [k], γ+Ω) respectively (CΩ [k], γ−Ω), of-
fline, just once for the lexicon at hand, prior to realization. Second, the feasibility com-
pilations for individual edges e0 during the same realization process are identical except
for their initial states. So, during a realization process, we create a compiled task just
once and adapt it minimally for each test.

Finally, (a) the action set inΠ+Ω [k, e0] respectivelyΠ−Ω [k, e0] is fully determined
by γ+Ω respectively γ−Ω along with the set of semantic items SIΩ ; while (b) for
the maintenance of semantic coverage and c[0] markers, instead of the compilation via
conditional effects as specified, one can implement a simple special-case handling in the
standard relaxed planning graph solvability test. Taking these two observations together,
we can generate the action set completely offline. Online, prior to a realization process,
we merely need to read in the actions and setup the marker-maintenance data structures.

5 Experiments

As our main test base for experimentation, we used the SPaRKy Restaurant Corpus
(we also ran preliminary experiments with some other test bases, which we get back
to below). SPaRKy is one of the only published resources for NLG which provides in-
termediate representations in addition to system inputs and outputs, and quality ratings
for those outputs. Originally introduced by Walker et al. [21], Nakatsu and White [16]
developed a CCG grammar for this dataset which spans both the sentence and the dis-
course levels. The domain of the corpus is restaurant descriptions, including prices, kind
of food, decor, service, etc. In this work we use the a set of 431 test instances devel-
oped for the contrast-enhanced version of the grammar presented in Howcroft, Nakatsu,
& White [10]. The lexicon in this testbed includes 193 words and the grammar is ca-
pable of producing a wide variety of texts of varying lengths. Of the 431 OpenCCG
realization tasks, 61 recommendation tasks require generating a text recommending a
single restaurant, while 370 comparison tasks require generating a text comparing two
or more restaurants with each other. As these instances correspond to the generation
of entire text paragraphs, they are complex enough to be interesting use cases for our
techniques. This pertains in particular to the comparison tasks, where the required text
is longer.

In preliminary tests with the optimistic approximation variant, the pruning was too
weak to pay off, i. e., too few edges were pruned to get a benefit. We therefore concen-
trate here on pruning with the pessimistic approximation variant, where small values
of k may prune too aggressively, while large values of k yield more reliable pruning
yet incur a larger runtime overhead. All experiments were run on a cluster of machines
with Intel Xeon E5-2660 processors running at 2.2 GHz. The runtime/memory limit
was set to 30 minutes/4 GB for each sentence generation task, i. e., for each benchmark
instance.

As a simple measure of performance, we focus on the runtime spent by the OpenCCG
chart realization process until the first solution – the first edge of category S covering all
semantic items – is generated. Figure 1 shows coverage, i. e., the number of benchmark
instances where a solution was found, as a function of runtime. We distinguish between
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Fig. 1. Coverage, i. e., the number of sentence generation tasks to which a solution was found,
as a function of runtime on SPaRKy (a) recommendation tasks and (b) comparison tasks. A data
point (x, y) means that y tasks are solved within a time limit of x milliseconds. “No pruning”
is the baseline OpenCCG search without pruning; “k = n” considers our pessimistic pruning
with parameter k, i. e., the Π−Ω [k, e0] compilation, on every edge e0 during search, pruning e0
if Π−Ω [k, e0] is unsolvable.
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(a) recommendation vs. (b) comparison tasks as these are different in nature and yield
very different performance profiles.

Regarding (a), we see that these tasks are essentially too easy for our pruning
method to pay off: the runtime overhead of repeatedly checking the solvability of
Π−Ω [k, e0] outweighs the gain from pruning, so that fewer tasks are solved within
the same runtime limits. The restaurant comparison tasks (b), however, are more chal-
lenging (notice the different x-axis scales in (a) and (b)), and the picture is different: in
the much larger search spaces, the pruning impact is stronger. For runtime limits > 56
seconds, the coverage of k = 4 pruning exceeds that without pruning. For runtime lim-
its > 206 seconds, all settings of k exceed the baseline. Note here that the value of k
controls the trade-off between accuracy (better with large k) and runtime overhead (bet-
ter with small k). In SPaRKy restaurant comparison tasks, k = 4 is the sweet spot of
that trade off. At our maximum time limit of x = 30 minutes, k = 4 pruning increases
coverage from 179 instances without pruning, to 273 with pruning, an increase of 52%.

As the pessimistic compilation does not guarantee that pruned edges are actually
infeasible, the pruning may adversely affect the quality of the sentences generated. As
k gets larger, this danger decreases as the pruning becomes more accurate. In SPaRKy, it
turns out that k = 4 is not only best in terms of runtime performance, but is also enough
to avoid any deterioration in sentence quality. Of the 215 instances solved by both the
baseline and k = 4 (across recommendation and comparison tasks), in 137 cases the
two realizations are identical. In the remainining 78 cases, the realizations differ only in
using the word “just” vs. the word “only”, so that the version with pruning does exactly
as well as the baseline.

Going beyond solutions, there also are cases where OpenCCG produces a partial
solution, an edge of category S that covers only a subset of the semantic items. This can
still be useful if, e. g., four instead of five restaurants are being compared. Our k = 4
pruning has clear advantages in terms of the ability to find such partial solutions. Of the
97 cases where neither k = 4 nor the baseline find a complete solution, k = 4 provides
a partial solution in 81 cases, the baseline in 52 cases. In all 21 cases where only the
baseline finds a complete solution, k = 4 finds a partial solution. In contrast, of the 98
cases where only k = 4 finds a complete solution, in 59 cases the baseline does not
manage to find a partial solution.

We also ran experiments on some other test bases [20, 18, 15], yet as the text para-
graphs to be generated were comparatively small, similarly to SPaRKy recommenda-
tion tasks our pruning methods generally did not pay off. Conversely, in the CCGBank
[7], our category space approximations consumed excessive amounts of memory. For
practical viability in such large bases, either additional implementation tricks, or more
intelligent abstractions (not just enumerating all categories up to a fixed degree), would
be required.

6 Conclusion

Sentence generation as search relates deeply to AI Planning in that, at least as far as
grammatical and semantical correctness is concerned, it is essentially a reachability
problem in a large discrete transition system. This connection has been made before,
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and we herein propose a new variant and application, detecting infeasible edges in
OpenCCG. Our empirical results show promise, though much remains to be done.

In our view, the most pressing and interesting question is how much information
we can efficiently capture and exploit in this kind of compilation. Our present approach
is (a) inflexible in precomputing a category space approximation, and (b) conservative
in targeting delete-free planning which is easy to handle. Both design choices sacrifice
information, and both may be lifted through more intelligent compilations/abstractions,
paired with more advanced dead-end detection on the AI Planning side, as exhibited
e. g. in the inaugural unsolvability-detection planning competition http://unsolve-ipc.
eng.unimelb.edu.au/.

From a broader point of view, we believe that AI Planning, and AI search techniques
more generally, can be a crucial piece in the puzzle for achieving practical sentence
generation with complex optimization objectives [4].
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