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Abstract

Neural network (NN) action policies are an attractive option
for real-time action decisions in dynamic environments. Yet
this requires a high degree of trust in the NN. How to gain
such trust? Systematic festing certainly is one possible an-
swer, in analogy to program testing. The input to the program
becomes the start state for the policy; and erroneous program
behaviors — “bugs” — become bad policy behavior, e.g. not
reaching the goal from a solvable state. We introduce a frame-
work spelling out this concept. The framework is generic and
in principle applicable to arbitrary planning models. We dis-
cuss how this form of testing can be operationalized, i.e., how
to confirm a bug has been found, and how potential bugs
might be identified in the first place. This essentially involves
seeing standard planning concepts through the new lense of
policy testing. The implementation and practical exploration
of this framework remains open for future work. We believe
that action policy testing is an important topic for ICAPS, and
we hope that our framework will serve to start its discussion.

1 Introduction

Neural networks (NN) are an increasingly important repre-
sentation of action policies. In basic Al research, huge suc-
cesses were achieved in game playing (Mnih et al. 2013; Sil-
ver et al. 2016, 2018), and an increasing body of work is ded-
icated to learning action policies in planning (Issakkimuthu,
Fern, and Tadepalli 2018; Groshev et al. 2018; Garg, Bajpai,
and Mausam 2019; Toyer et al. 2020). Within and beyond
basic research, a growing trend is to rely on NN action poli-
cies for real-time decision taking in dynamic environments.
The vision is elegant and simple: a single call to the NN pol-
icy suffices to obtain the next action.

Yet this vision comes with high requirements on trust in
the neural network. How to gain such trust? There are vari-
ous possible avenues, including for example any manner of
explainable Al that may help to elucidate the NN’s action
decisions; NN action policy verification, which might lever-
age progress on verifying NN decision episodes (Katz et al.
2017; Gehr et al. 2018), but will ultimately need to tackle the
combined complexity of the state space explosion and NN
analysis; or shielding, which augments the NN action policy
with a safety guard (Konighofer et al. 2017; Alshiekh et al.
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2017; Fulton and Platzer 2018). Here we address systematic
testing, which certainly also is one possible answer, in anal-
ogy to program testing. The program is the NN; input to the
program is the start state for the policy; erroneous program
behavior is bad policy performance; a “bug” is a state where
the tested policy achieves much less than could be achieved
(e.g., fail to reach the goal even though the state is solvable).

Once such bug-states are identified, they can potentially
be used for re-training, thus closing the loop with reinforce-
ment learning. However, we believe that test-case genera-
tion is an important research challenge in itself. First, even
if viewed as a sub-problem of RL, this is highly non-trivial
and must be understood separately. Second, test-case gener-
ation is of interest in its own right as a way to understand
the strengths and weaknesses of the current policy, in terms
of (groups of) start states with specific quality issues. Ulti-
mately, the aim is to certify through extensive testing that
the policy can be trusted. We conjecture that such certifica-
tion will become increasingly important as the use of neural
network policies proliferates.

Test-case generation for NN action policies relates to two
major strands of research: test-case generation for software
(Clarke 1976; King 1976) and adversarial ML/neural net-
work robustness attacks (e.g. (Carlini and Wagner 2017;
Hein and Andriushchenko 2017; Wong and Kolter 2018)).
We expect that a wealth of ideas will be suitable for trans-
fer from these areas. Observe, however, that these will need
to be adapted in non-trivial ways. Test-case generation for
software is obviously different in terms of code vs. a neu-
ral network; furthermore, action choice in sequential deci-
sion making can be viewed as a special case of software, but
comes with manifold important particularities including e.g.
exponential state spaces and uncertain environments. As for
adversarial attacks, these are concerned with single classifier
decision episodes, whereas here we are concerned with se-
quences of classifier decision episodes in a large state space.
While classifier deficiencies become immediately apparent
in the former, a bad decision in the latter may exhibit its ad-
verse consequences only much later on.

In the present paper, we introduce a framework for action-
policy testing. The framework is generic and in principle
applicable to arbitrary planning models, from classical plan-
ning to POMDPs; we illustrate the framework with a range
of example models. The basic idea of our framework, as al-



ready hinted above, is quite simple: A bug is a state on which
the learned NN action policy achieves (much) worse perfor-
mance than an optimal policy. The practical question arising
immediately from this of course is, how can we confirm we
found a bug in practice, where the optimal policy will not be
known (or else there would be no point in learning a policy
in the first place)? What could be practical bug-candidate
generation methods given these observations?

We address these questions in turn, discussing first plan-
ning models and NN action policies, defining what bugs are,
then outlining the basic observations regarding bug confir-
mation, and fuzzing as a method to generate test cases. All
this essentially involves seeing standard planning concepts
through the new lense of policy testing. The implementation
and practical exploration of this framework remains open for
future work. We believe that action policy testing is an im-
portant topic and should be present at ICAPS, and we hope
that our framework will serve to start its discussion.

2 Planning Models

Traditionally, action policies — functions from states to ac-
tions, tackling the entire state space or at least a large frac-
tion thereof — are being considered only in probabilistic
planning models (e.g. (Younes et al. 2005; Sanner 2010;
Coles et al. 2012)), as in other models more compact plan
representations exist. The most striking example is deter-
ministic planning (e.g. (McDermott et al. 1998; Bacchus
2000; Fox and Long 2003; Hoffmann and Edelkamp 2005;
Gerevini et al. 2009)), where a plan is simply an action se-
quence; in contingent planning (e.g. (Peot and Smith 1992;
Hoffmann and Brafman 2005; Muise, Belle, and Mcllraith
2014)), action-tree representations become large in the worst
case but can be small if only few observation (sensing)
actions are required. However, also in those cases action-
policy learning can make sense, for the sake of generaliza-
tion. This is commonly acknowledged in per-domain gen-
eralization, learning policies applicable to all instances of a
domain (e.g. (Fern, Yoon, and Givan 2006; Garg, Bajpai, and
Mausam 2019; Toyer et al. 2020)); generalization over goals
is weaker but also of obvious interest. Recent work (Ferber,
Hoffmann, and Helmert 2020) argues that even generaliza-
tion over only the states in a fixed deterministic state space
(fixed universe, fixed goal, fixed initial state) makes sense, in
applications where one expects to be confronted with arbi-
trary states during online planning (e.g. due to environment
noise).

Regardless whether or not one accepts the latter argument,
it certainly makes sense to not make unnecessary restrictions
on the planning model considered. The framework we de-
fine in what follows is generic and (potentially) applicable
in arbitrary contexts. We merely assume that one can define
a function V* assigning states s to the optimal value any
policy can achieve on s; the algorithmic methods we outline
are based on approximations of V* as well as of the value a
given policy 7 achieves on s. As examples covering a broad
range of planning-model differences, we will consider:

e C(lassical planning. The initial state is unique (complete
knowledge), action outcomes are deterministic. The ob-

jective is to reach a goal condition.

Optionally, a cost function assigns each action a non-
negative cost and the objective is to minimize summed-up
cost where an action sequence not reaching the goal has
cost 00.

e Contingent planning. There is a set of possible ini-
tial states called the initial belief. Actions can have
several possible outcomes, one of which occurs non-
deterministically. Sensing actions for a subset of state
variables allow to observe the current value of such a vari-
able. The objective is to reach a goal condition with cer-
tainty, i.e., guarantee to reach a belief state in which all
states satisfy the goal.

Optionally the objective is to minimize worst-case cost.

The policy in this case maps belief states (not states) to
actions.! Contrary to convention, we will denote belief
states simply with s like other states, to avoid having to
make case distinctions irrelevant to our framework.

e Oversubscription planning. Like classical planning, but
with a bound on plan cost, and with a set of goal condi-
tions each of which is associated with a positive reward.
The objective is to maximize summed-up reward.

e Discounted-reward MDPs. No constraints on the initial
state. State transitions are probabilistic due to uncertain
action outcomes, or environment noise, or both. A reward
function maps states or state-action pairs to reals. The
objective is to maximize (infinite-horizon) expected dis-
counted reward.

e MaxProb MDPs. Infinite-horizon non-discounted MDPs
with the objective to maximize the probability to reach the
goal.

One can furthermore distinguish whether the policy is deter-
ministic (every state is mapped to a unique action) or non-
deterministic (several actions are possible, one of which is
chosen arbitrarily or according to a probability distribution).
In our example models, non-deterministic policies are not
required to obtain optimal solutions, so we will consider
only deterministic policies in what follows.

3 Whatis a “Bug”?

We next introduce and discuss our definition of bugs.

3.1 Definitions

As indicated, our only assumption is that one can define a
value function V' : S x II — R which maps state/policy
pairs (s, 7) to numbers capturing the performance of 7 on s.
We will denote V™ (s) := V(s, ) in line with convention.
In quantitative settings, V' is simply defined by the op-
timization objective, namely (worst-case) summed-up cost,
(expected) summed-up reward, and goal probability in our
example models. In qualitative settings, where the objective

'In practice, the actual input to the policy are observation his-
tories, from which the belief state must first be inferred. This does
not make a difference for our purposes here, and considering the
policy to be a function on belief states is conceptually simpler for
our discussion.



is to reach a goal condition, the following definition of V'
often makes sense:

Definition 1 (Qualitative Value Function).

0.5 some runs of 7 on s reach the goal

0  norun of 7 on s reaches the goal
V7(s):=
1 all runs of 7 on s reach the goal

where the objective is maximization.

These notations accumulate standard concepts under the
notation of a value function. Along the same lines, we denote
the value of the optimal policy by V* : S — R where?

Definition 2 (Optimal Value Function).

V*(s) = min, V™(s) objective is minimization
~ | max, V™(s) objective is maximization

Now a bug is very easy to define in general terms:

Definition 3 (Bug). A state s is a bug in policy 7 if
|[V™(s) — V*(s)| > 0. We also say that s is a A-bug where
A :=|V7™(s) — V*(s)|; and that s is a normalized A-bug

it V*(s) # 0and A = |0 5 g,

For example, in classical or contingent planning minimiz-
ing cost, a normalized 0.5-bug is a state on which 7 incurs
cost 50% higher than optimal. Similarly, in oversubscription
planning or discounted-reward MDPs, a normalized 0.75-
bug is a state on which 7 attains only 25% of the possible
reward. In MaxProb MDPs, a 0.5-bug is a state on which m
reaches the goal with 0.5 less probability than possible. Note
here that normalized A-bugs make more sense in the first
two cases where the range of costs/rewards differs across in-
stances; whereas probabilities are already normalized.

In qualitative settings, Definition 3 takes on a very specific
form according to Definition 1 which merely distinguishes
three possible cases. In classical planning, either every pol-
icy run from s reaches the goal, or none does; so the only
possible bug is a 1-bug which simply means that s is solv-
able but 7 does not reach the goal. This is at the same time
the simplest and intuitively strongest form of a bug in our
framework. We will refer to it as fail-bug. In contingent
planning, all three cases are possible, i.e., the belief states
the policy can reach (given different sensing outcomes) may
only partially ascertain the goal. A 0.5-bug means that the
policy fails to reach the goal in some cases, which we refer
to as somefail-bug; a 1-bug means that the policy fails to
reach the goal in all cases, which we again call a fail-bug.
Of course, in a setting where the policy may reach the goal in
some but not all cases, the fraction of solved cases provides
a more fine-grained quantitative value function.

3.2 Discussion

We say that a policy 7 is bug-free if there are no bugs. This
is obviously the case iff 7 is optimal on all states. In many
settings, in particular when information about the initial state

?In case the state space, and therewith the number of policies,
is infinite, a minimum/maximum may not exist; model-specific no-
tions of optimality apply then. For our purposes here, the only thing
that counts is that an optimal value function can be defined.

is given (a unique initial state or an initial belief), it makes
sense to restrict this notion to states that are reachable from
at least one possible initial state.

Another natural notion of “bug” could be any state s
where 7(s) does not start any optimal policy for s (or is
even inapplicable). This is a special case of our definition:
any such s is a bug, but not vice versa; and a policy free of
only such bugs is not necessarily optimal. This is because it
is not enough to follow some optimal policy in each state.
These choices need to be coordinated across states. As a

. . . . b
simple illustration, consider the state space g; < s =

S2 LN g2 where the objective is to reach the goal condition
g1V ge (qualitative, no cost minimization). Consider any pol-
icy where 7(s1) = 7(s2) = a. Such policies do follow some
optimal policy in each of s; and s, yet never reach the goal.
Such a notion of bug can, therefore, at most be employed
as a sufficient criterion to find bugs in practice. We consider
this and more general methods next.

Some words are finally in order on the expected relation
between the (learned) action policy 7 vs. the planning model
and optimization objective. In the canonical scenario, (a) 7
has been learned on the same planning model it is tested
against, and (b) the learning objective for 7 has been the
same as the optimization objective it is tested against. But
there are reasonable scenarios in which either or both of
these conditions is false. Regarding (a), 7 may be learned
externally to the planning model, in which case that model
plays the traditional role of models in model checking, for-
malizing 7’s environment so as to be able to check 7’s prop-
erties.’ Regarding (b), it is conceivable that the testing pro-
cess may focus on different criteria. For example, while a
policy might be learned to maximize discounted reward,
testing might be used to certify the absence of failures (like
crashes), i.e., using the qualitative value function requiring
to reach the goal wherever possible. Such a scenario makes
sense, for example, if learning a policy for combined criteria
(like maximizing reward subject to a limit on crash proba-
bility) is not feasible; or as part of a broad testing process
certifying the policy against an entire range of criteria.

4 How to Confirm we Found a Bug?

Let’s assume that we identified a state s by some (yet un-
defined) bug-candidate generation method, and now want to
confirm whether or not s is indeed a bug. This is difficult
in practice in case we don’t know V*(s). One might expect
that this will always be the case, because otherwise learning
a policy would be pointless. There are however relevant ex-
ceptions to this rule. We next discuss these, then turn to the
general case.

4.1 Easy Cases
In the following scenarios, it is feasible to compare V7 (s)

against V*(s) at least on some states:

3Even in this scenario though 7 must be interpretable as a policy
for the model, so adapters must be defined between the model and
the policy input (states) and output (actions).



e We may require a learned policy online to take decisions
in real time, while offline (in particular during testing) it is
feasible to compute V*(s). (Scientific experiments eval-
uating bug-candidate generation methods may simply as-
sume that this is the case.)

e A realistic testing scenario are sanity tests, with policy
behavior being tested on simple regions of the state space,
where the user — the engineer testing the action policy —
knows the value of V'*, or the optimal action choices, by
design. For example, the user could supply a formula ¢
in contingent planning, characterizing belief states from
which we know the goal can be reached with certainty,
V*(s) = 1for s = ¢. Another very simple example is
the sanity test checking whether the action returned by the
policy is applicable (which makes sense only if the design
does not enforce this, e.g. by restricting a final softmax
layer to consider only applicable actions).

e We can in some settings design our testing machinery
so as to generate only state s with a given V*(s) value.
This pertains primarily (probably exclusively) to qualita-
tive settings where we know a plan exists. For example,
this is the case if we generate s by backward steps from
the goal.

e In some qualitative settings, we can derive V*(s) from
easy structural analyses. For example, in classical plan-
ning we have qualitative V*(s) = 1 globally if the task is
known to be solvable, and all actions are invertible or at
least undoable (Daum et al. 2016).

e Sometimes, qualitative V*(s) can be determined by a
fixed-depth lookahead search. For example, when nav-
igating traffic, escaping a dangerous situation (break-
ing/changing the lane/stopping at the right-hand side) is
a local activity whose required lookahead depth does not
depend on the length of the planned trajectory.

Note that all but the first scenario pertain to qualitative value,
i.e., plan existence. For numeric value optimization, special
cases with known optimal value are sparse. Hence it is cer-
tainly important to address the general case.

4.2 The General Case: Approximations

A natural approach is to turn to approximations, deriving
lower bounds on the value gap A = |[V™(s) — V*(s)|, i.e.,
lower bounds L < A.If L > 0 then we know that s is a
bug. Such bounds L can indeed be derived; they boil down
though to finding a plan for s that achieves quality better
than 7.

To confirm this observation in general terms, and also for
the discussion of fuzzing-bug confirmation in the next sec-
tion, we need a generic “better than” notation that we can
use across minimization vs. maximization of state values.
For any value function V, we denote V' (s') < V (s) :iff

V(s') < V(s) objective is minimization

V(s') > V(s) objective is maximization
That is, V(s) < V(&) iff V(s) is better than V (s’). We use
=, >, and > accordingly.

Lower bounds L(s) can be derived by a combination of
optimistic and pessimistic approximation. Namely, say that
H, is a pessimistic approximation of the optimal value, i.e.
V*(s) = H.(s); and h, is an optimistic approximation
of 7’s value, i.e. h(s) =< V7(s). Under additional sanity
conditions on these two approximations, we get the desired
lower bound:

Proposition 4 (Bug Confirmation). Say that V*(s)
H,(s) and hr(s) = V7(s). If, in addition, (i) h(s)
V*(s) and (ii) H.(s) =< V7(s), then |h(s) — H.(s)]
[V7(s) =V*(s)].

Proof. Under the stated conditions, we have V*(s) =
H.(s) 2 V™(s) and V*(s) = hz(s) = V7(s), i.e., both
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H,(s) and h(s) lie in between V*(s) and V™ (s). O
V*(s) H.(s) hx(s) V7 (s)
| e - AH. (5) =R (5)]- - |
b Vor(s) -V ()] ---- T - -

Figure 1: Illustration of Proposition 4.

Intuitively, the sanity conditions (i) and (ii) prevent the ap-
proximations from being “too bad”: (i) says that we cannot
approximate the policy value V™ (s) to be better than opti-
mal; (ii) says that we cannot approximate the optimal value
V*(s) to be worse than that provided by the policy itself.
Note that these conditions are indeed required. If h,(s) is
better than V*(s), or H.(s) is worse than V7 (s), then we
can widen the distance between the two arbitrarily far be-
yond [V™(s) — V*(s)|.

Satisfying (i) may sound difficult at first, but is actually
natural as V*(s) = V™(s) and policy values can be easily
approximated statistically (in deterministic cases, a single
run of the policy yields its exact value). As for (ii), we can
theoretically always ensure this by taking the policy value
V7 (s) as the initial pessimistic approximation. That value
itself will however never lead to a bug identification, as we
are then using the same value for both h(s) and H,(s). We
need to find a pessimistic approximation where H.,(s) <
V7™ (s).

Hence, overall, the bug confirmation method arising from
the above simply is to (i) approximate V™ (s) up to a high
degree of precision, and (ii) try to find a better policy for s.
It may seem disappointing that nothing deeper can be done
here. But certainly this method can be quite practical. In
classical planning, (ii) can be instantiated with fast greedy
satisficing planning methods that scale much better than op-
timal planning (e.g. (Hoffmann and Nebel 2001; Gerevini,
Saetti, and Serina 2003; Richter and Westphal 2010; Rin-
tanen 2012; Domshlak, Hoffmann, and Katz 2015)), trying
to find plans that cost less than the plan found by 7, or
that reach the goal in case m does not. A particularly in-
teresting option also are bounded-suboptimal searches, and
searches pruning against an initial upper bound, which in
our context become decision procedures checking whether
or not a plan better than 7 exists. Even more targeted than
this, there is previous work aiming at solving precisely the



sub-problem we are facing here: posthoc plan-quality op-
timization, which is geared at improving the quality of an
existing plan (e.g. (Béackstrom 1998; Do and Kambhampati
2003; Nakhost and Miiller 2010)). These can be plugged in
for the purpose of bug confirmation. Beyond classical plan-
ning, similar methods work in principle, though the arsenals
of prior techniques that can be plugged in are not as large.
Anytime methods starting from 7 and trying to improve it
could make sense in most contexts.

5 Bug-Candidate Generation via Fuzzing

Bug-candidate generation methods are needed to identify
interesting states s, i.e., potential bugs, in the first place.
Fuzzing is a classical approach in test-case generation, start-
ing from some input and applying random perturbations,
ideally with a bias that may favor the generation of bugs. In
what follows, we outline the basic aspects of this idea in our
framework. The natural target of fuzzing here is to widen the
optimality gap: move from a given state s to a fuzzed state
s’ on which the policy behaves worse.

In what follows, we first spell out this idea. We then dis-
cuss how potential bugs s’ found this way can be confirmed.
We clarify how this relates to the bug-confirmation method
from the previous section. We finally discuss practical mat-
ters in the design of fuzzing methods in our context.

5.1 Fuzzing Bugs

Say we are given a state s (which itself might have been gen-
erated randomly in one or the other way, see Section 5.4).
We perform randomized perturbations to obtain another
state s’. In our context, this operation can be considered a
success if it widens the optimality gap:

Definition 5 (Fuzzing Bug). A state s’ is a fuzzing-bug rel-
ative to s if [V7(s") — V*(s")| > [V7(s) — V*(s)|. We
also say that s is a A-fuzzing-bug where A := [V (s") —
VA = VT (s) =V (s)l-

Observation 6 (Fuzzing Bugs are Bugs). If s’ is a fuzzing-
bug relative to some s, then s’ is a bug.

Proof The worst-case optimality gap [V ™ (s") — V*(s’)| of
s’ arises when s is not a bug, |V™(s) — V*(s)| = 0. In this
case |[V™(s') — V*(s')] = A when s’ is a A-fuzzing-bug
relative to s. O

A fuzzing-bug is a state we can show to be a bug through
fuzzing, widening the optimality gap with respect to a start-
ing state. One may wonder whether that concept is actually
restricting, i.e., whether the class of fuzzing-bugs is small
relative to that of bugs. In general, this is not so:

Observation 7 (Bugs are (almost) Fuzzing Bugs). Every
bug s’ with non-minimal optimality gap |V (s) — V*(s)|
is a fuzzing-bug relative to some s.

Proof. Any state s with minimal optimality gap satisfies the
claim. O

Hence, absent algorithmic restrictions on what “we can
show to be a bug through fuzzing”, essentially every bug is a

fuzzing bug. In particular, as soon as there is at least one non-
bug state — whose optimality gap is 0 — all bugs are fuzzing-
bugs. In some planning models, this is even guaranteed by
construction. For instance, goal states are necessarily bug-
free in all policies. The same applies to terminal states, and
states with V*(s) = 0 when there are no negative rewards.

Given all this, one may wonder about the point of having
a concept “fuzzing-bug”. However, in actual fuzzing algo-
rithms there will be restrictions on the relation between s
and s’, such as reachability, or reachability in a limited num-
ber of fuzzing operations; and there may be restrictions on
the states s to start from. In this setting the notion of fuzzing-
bug is more restricting. More prosaically, the fuzzing-bug
concept is useful for the following technical discussion, as it
sets the precise context that discussion pertains to.

5.2 Fuzzing Bug Confirmation

To make effective use of fuzzing-bugs, we need to somehow
test whether the optimality gap from s to s’ has widened
without relying on the precise gap values. Observe that Def-
inition 5 encompasses two possible cases: (a) s is better (or
at least as good as) s in terms of optimal value, but 7 per-
forms worse at s’ or at least does not fully pick up this ad-
vantage; (b) s’ is worse than s in terms of optimal value, but
the disadvantage in 7 is even worse:

Proposition 8 (Ideal Fuzzing Bug Confirmation). s’ is a
fuzzing-bug relative to s iff one of the following two con-
ditions holds:

(@) V*(s') < V*(s), and either V7 (s') »= V™(s) or
V(') = VT (s)| <[V*(s') = V*(s)];

(b) V*(s') = V*(s), V™(s') = V™(s), and |V™(s') —
Vi(s)] > [V*(s) = V*(s)].

Proof. “If” direction: In case (a), optimal value gets better
from s to s’ but policy value does not, or not as much. In
case (b), both values can only get worse but the extent of
that change is larger for V™. “Only if” direction: clearly if
[V™(s')=V*(s")| > |[V™(s) — V*(s)]| then one of these two
cases must be satisfied. O

These are ideal conditions in the sense that they cap-
ture fuzzing-bugs exactly. But they cannot be checked di-
rectly. V™, as discussed above, is relatively easy to measure
by executing the policy (several times in case of nondeter-
ministic/probabilistic behavior). Both cases however also re-
quire information on whether the optimal value got better or
worse, and on the exact extent of that change. In what fol-
lows, we discuss in how far bounds on V* can be leveraged
to obtain sufficient conditions. Specifically, we discuss the
use of pessimistic bounds H, > V* and optimistic bounds
h. = V*, evaluated on both s and s’. Both kinds of bounds
are available or can be designed, in many planning models.
Pessimistic bounds have already been discussed above; op-
timistic bounds are the standard notion of admissible heuris-
tic functions, for which the planning literature offers many
possibilities, in classical planning and beyond (e.g. (Haslum
and Geffner 2000; Edelkamp 2001; Helmert and Domsh-
lak 2009; Helmert et al. 2014; Domshlak and Mirkis 2015;



Trevizan, Thiébaux, and Haslum 2017; Seipp, Keller, and
Helmert 2020; KloBner et al. 2021)).

We next identify two fuzzing-bug confirmation methods
based on such bounds. Our first method applies to a scenario
where we can lower bound the change in optimal value. Con-
sider the two intervals I,.(s) := {v | hi(s) 2 v X H.(s)}
and I.(s") := {v | hs(s') = v < H.(s')} limiting the range
of possible optimal values at s and s’ respectively. Observe
that, if I.(s) and I,(s") are disjoint I.(s) N L.(s') = 0,
then we know the direction of the V* change from s to &/,
and hence which case (a) or (b) of Proposition 8 we have to
check. In particular:

Proposition 9 (Fuzzing Bug Confirmation (a)). Assume that
I.(s) N I.(s") = 0. Then, s is a fuzzing-bug relative to s if
H.(s") < h.(s) and either V™ (s') = V™(s) or [V™(s") —
VA(s)| < |Ho() — hus)].

Proof. This situation is depicted in Figure 2. With H,(s") <
h.(s), we have V*(s') < V*(s). Moreover, with I.(s) N
I.(s") =0 and H.(s'") < hi(s), |[Hi(s") — hs(s)| is exactly
the minimum distance between the two intervals, |H,(s') —
hi(s)| = Li(s,s") where L.(s,s’) := min{|v — | | v €
I.(s),v" € I.(s")}. Hence |H.(s") — h«(s)| < |[V*(s') —
V*(s)|. The claim follows from Proposition 8 (a). O

V(') V*(s)
ho(s') | H.(s) he(s) | H.(s)
| L) fe--praosr---of | 109) |
|

ke (v (s - v ()P
VT(s') V7 (s)

Figure 2: Illustration of the relationship between the bounds
in Proposition 9.

Given the bounds H, and h,, we can easily derive I, (s)
and I, (s"), check whether they intersect, compute L. (s, s’)
if that is so, and test the prerequisites of Proposition 9. So
this gives us a practical method for fuzzing-bug confirma-
tion. That method will be of limited practical value though:
presumably, given the information loss usually incurred in
particular by optimistic bounds, it will be rare that I, (s) and
I..(s") are disjoint.

Our second fuzzing-bug confirmation method relies on an
upper bound on the V* change instead. Its key advantage is
that, while Proposition 9 is limited to the case where V* got
better from s to s, the new method applies regardless of the
direction of the change.

Proposition 10 (Fuzzing Bug Confirmation (b)). Let
U.(s,s") > |V*(s') — V*(s)| be an upper bound on the
change in optimal value between s and s’. Then, s’ is a
fuzzing-bug relative to s if V™ (s") > V™(s) and |[V7(s') —
V™(s)| > Ui(s, s).

Proof. TIf V*(s') »= V*(s), the prerequisites clearly imply
Proposition 8 (b). If V*(s") < V*(s), then V™ (s') = V™ (s)
implies Proposition 8 (a). O

This is a worst-case analysis in the sense that the stated
condition still works under the pessimistic assumption that
V* got worse, (b), as in this case V™ must have deteriorated
by an even larger amount. In addition, we can also obtain the
required upper bound U, (s, s) regardless of the direction of
the V'* change:

Proposition 11 (V* Change Upper Bound). Let §; :=
|H.(s") — hi(8)], 02 := |hs(s") — Hi(s)], and U, (s, 8") :=
max(d1,d2). Then |[V*(s') — V*(s)| < Ui(s, s).

Proof. If V*(s') =< V*(s) then [V*(s') — V*(s)| < do;
otherwise |[V*(s") — V*(s)| < 4. O
V*(s)
[V (s)
ho(s') |
hy(s) H.(s) H.(s)
| ) | L) |
|70 U,(s, s/ - == - N |
—————— V(s VT () - - == -
V7(s) VT(s')

Figure 3: Illustration of Proposition 10 and Proposition 11.

Figure 3 shows how this result integrates into Proposi-
tion 10. As illustrated, even if the measured intervals 7,(s)
and I,(s") overlap, and hence we have no information on
whether V*(s) or V*(s') is better, s’ can nevertheless be
identified as a fuzzing-bug.

We arrive at the following fuzzing-bug confirmation
method: measure V™ (s') and V™ (s); run optimistic and pes-
simistic approximations of V*(s’) and V*(s), and compute
Ui(s,s'); if VT(s') = V7(s) and |[V™(s') — V7(s)| >
U. (s, s'), then s’ is a fuzzing-bug relative to s.

5.3 Comparison of Bug Confirmation Methods

We now have three practical bug confirmation methods in
hand: (1) Proposition 4 which confirms bugs s’ by finding
a better policy at s’ (pessimistically approximating V*); (2)
the method based on Proposition 9, which exploits disjoint
intervals I, (s) and I, (s’); and (3) the method just sketched,
based on Proposition 10. How do these methods relate to
each other?

Methods (2) and (3) differ in covering the different cases
of Proposition 8. They are complementary in that (3) but
not (2) applies when I,.(s) and I.(s’) overlap; while (2) but
not (3) may cover cases where the policy value got better
V(') < V7™ (s).

But what is the relation of (2) and (3) to (1)? In particu-
lar, can the more complicated fuzzing-bug conditions iden-
tify bugs that cannot be identified by (1)? Unfortunately, and
somewhat surprisingly, the answer to that question is “no”:

Theorem 12. Let s and s’ be arbitrary states. Consider the
same bounds h, =< V* and H, > V™ in all methods. If
Proposition 9 or Proposition 10 confirm s’ to be a bug, then
so does Proposition 4.



Proof. We show that Proposition 9 and Proposition 10 each
imply H,(s") < V™(s’). Therefore, if they are satisfied, then
s’ also satisfies Proposition 4 for the considered pessimistic
bound. Assume for contradiction that H,(s") = V7 (s').

If Proposition 9 is satisfied, its prerequisite connects
V7™ (s) and V™ (s’) through the following chain of relations:
V7(s) = hs(s) because h, is optimistic; h.(s) = H.(s")
per prerequisite of Proposition 9; H,(s') = V™(s’) per our
assumption. Overall, we get V™ (s) = h.(s) = H.(s') =
V7(s') and hence [V7(s') — V™(s)| > |Hx(s") — hs(s)].
Now, as argued in the proof of Proposition 9, the min-
imum distance L.(s,s’) between the intervals I.(s) and
I.(s') is exactly |H,(s") — h.(s)|. Put together, we get
|[V™(s') — V™(s)| > L.(s,s’), which is a contradiction to
the prerequisite of Proposition 9.

Next consider Proposition 10. By assumption, H,(s’)
V™ (s); the first condition of Proposition 10 gives V™ (")
V7 (s); since U,(s,s’) is non-negative by definition, the
second condition entails that |[V™(s") — V7(s)| > 0, so
the inequality in our previous observation is actually strict
(V™ (s") = V™(s)); and finally V7 (s) = h.(s) since h, op-
timistically bounds V*. We arrive at the following chain of
relations: H,(s") = V7(s") »= V™(s) = h.(s). Therefore,
V() -V (8)] < [Ha(s')—ha(5)]. Since [H, (s')—h (s)]
is exactly &7 from Proposition 11 and 6; < U,(s,s’), we
conclude that |[V7™(s") — V™ (s)| < U.(s, s’). This contra-
dicts the condition of Proposition 10. O

=
=

To understand this result intuitively, consider the fol-
lowing. Proposition 9 requires the intervals I.(s) and
I.(s') to be disjoint, with I,(s’) being strictly better. As
shown in Figure 2, if the objective is minimization, this
means that 1,(s") = [h.(s"), H.(s")] lies below I.(s) =
[h«(s), Hi(s)]. At the same time, V7 (s) lies above h.(s)
and V7(s’) needs to be close to V™(s). Hence H.(s')
naturally lies below V™ (s"). For Proposition 10 the sit-
uation is symmetric. Consider Figure 3. The intervals
[h«(s"), He(s")] and [hs(s), H.(s)] must remain close to-
gether, while V™(s’) must become worse than V7(s).
With V7™ (s) being close to [h.(s), H.(s)] and thus to
[h«(s"), He(s")], again H,.(s") naturally lies below V™ (s).
Theorem 12 shows that these intuitions are actually neces-
sities, with H,(s) necessarily below V™ (s’), enabling bug
confirmation via Proposition 4.

While this is a negative result, note that fuzzing-bug con-
firmation may still make sense in practice. All the theorem
says is that one can also confirm the bug via method (1).
This may be more difficult in practice however. For exam-
ple, method (3) can sometimes be used without relying on
any (optimistic/pessimistic) bounds, namely when an up-
per bound on |V*(s") — V*(s)| can be derived by simpler
means. For example, in classical planning with cost mini-
mization, say that all actions are invertible. If we obtain s’
from s by applying actions whose summed-up cost is B,
then |[V*(s') — V*(s)| < B. In this situation, according to
Theorem 12 one could confirm s’ to be a bug through satis-
ficing planning finding a plan through s. But obviously this
is more expensive (and may not happen, depending on the
satisficing planning process).

5.4 Fuzzing Methods

With these theoretical considerations in mind, let us now fi-
nally discuss actual fuzzing methods. The canonical view
of these is as suitable forms of local search iteratively per-
turbing a start state — including simple methods like hill-
climbing, but potentially also more involved methods such
as evolutionary algorithms. In any such setup, key design
decisions are:

e Fuzzing bias: The biases in our randomized perturbations
of s.

e Fuzzing operators: The state-modification operators ap-
plied in these perturbations.

e Fuzzing start states: The set of states s from which we
start these operations.

e Fuzzing termination: When do we stop?

Fuzzing bias. Natural fuzzing biases arise directly from
the bug confirmation methods (2) and (3) above. A fuzzing
algorithm relying on (2) needs to make V* better (finding
an easier state s’ starting from s) while limiting the change
in policy value. One way to achieve this could be heuris-
tic search to obtain a bias towards better V*, while restrict-
ing fuzzing operators to discard state changes that improve
V™. A fuzzing algorithm relying on (3) needs to achieve
V™(s") = V™(s) with large [V (s") = V™ (s)|, and needs the
bound U, (s, s") from Proposition 11 to be small. The former
entails a bias towards states ¢ where 7 performs badly, and
the latter entails a bias to states ¢ where the approximations
H.(t) and h.(s), as well as h.(t) and H,(s), are close to
each other. In other words we should try to deteriorate the
policy while keeping the optimal value fixed so far as our
approximations allow us to.

An important special case in this context are qualitative
value functions, where the planning objective is to reach a
goal, and the fuzzing objective is to find a state from which
the policy does not (or not always, in non-deterministic cases
like contingent planning) reach the goal. Note that (2) does
not make sense in this case as we will naturally start from
s where the policy does reach the goal, so we will need to
deteriorate the policy behavior along the lines of (3). The is-
sue is that the value function is characterized by jumps in its
surface, not providing a suitable gradient for fuzzing biases.
In non-deterministic settings like contingent planning, one
can use the fraction of solved cases as a more quantitative
value function providing the desired gradient. In determin-
istic cases however, we are confronted with a value function
that remains 1 until we found a bug where it jumps to 0. We
hence need measures of “solving difficulty” for the behavior
of 7 on any intermediate state ¢ during fuzzing. Plan/policy-
run length (while keeping optimal plan length fixed as per
(3)) is one option, based on the assumption that overlong
plans indicate a difficulty to reach the goal. A more specific
measure may be plan redundancy, i.e., execution traces from
which action subsequences can be removed while still reach-
ing the goal. To identify other possible measures, an em-
pirical investigation seems needed into the neighborhoods
of states that policies (maybe particular classes of policies,



such as ones based on a particular neural network architec-
ture) fail to solve.

A completely different approach is to ignore bug confir-
mation during fuzzing, and go for coverage instead. This is
attractive in particular (but not only) in scenarios where we
cannot easily get useful fuzzing biases from approximations
as outlined above.

We maintain a pool of test cases P = {s1,..., Sk}, and
the target of fuzzing is to modify or extend that pool to in-
crease its coverage, defined based on some measure of how
“different” the s; are. In program testing, such measures are
defined based on activating different parts of the program.
In action policy testing, there are two things we may want to
cover: (a) policy structure, corresponding to the “program”;
and (b) states, corresponding to different environment sit-
uations the policy may have to deal with. If the policy 7
has a symbolic representation (e.g.: a program) then (a) is
very close to software coverage. If 7 is a neural network,
which is our primary interest here, then (a) can consider neu-
ron activations; to make this meaningful, presumably one
needs to identify and distinguish relevant activation patterns
or paths. Option (b) is, by comparison, quite straightfor-
ward. A baseline for measuring how different states are is
simply Hamming distance or variants thereof, comparing
state-variable value vectors. A more targeted concept may
be novelty (Lipovetzky and Geffner 2012, 2017), the size of
the smallest state-attribute combination not seen so far (here:
not contained in the pool yet).

Fuzzing operators. Opposing options are to follow the
actual planning semantics, applying actions; vs. directly per-
turbing state-variable values. Actually four different options
can be distinguished: (a) apply actions forward, (b) apply
actions backward, (c) modify state-variable values, (d) do so
but take mutex information into account. An advantage of
(a) and (b) is that they can be applied even in situations were
no explicit planning model is given and we instead only have
access to a state-transition generator (a simulator). Further-
more, with (a), in planning models where information about
the initial state is available, starting from reachable s (see
(3) below) only reachable fuzzing-bugs are generated. On
the other hand, (c) traverses the state space more quickly
and may be able to find bugs more effectively; (d) may go
some way towards alleviating the reachability concern.
Interesting variants of (c) include e.g. hill-climbing search
environments picking some variable and changing its value;
but also evolutionary algorithms performing cross-overs be-
tween different states in a current candidate set. The latter
may be especially suited to coverage-based fuzzing, modi-
fying the pool P by crossing over between the test cases s;.

Fuzzing start states. Note first that, in program testing,
the state/input s started from is not a bug, i.e., program be-
havior on s is correct and we’re trying to move towards a
state/input where program behavior is incorrect. In our con-
text, we will not in general directly know whether s itself
already is a bug. But one can start fuzzing from s in any
case (Proposition 6 holds regardless of whether or not s is

a bug). So in principle any starting state s is fine. Like for
fuzzing operators, the primary parameter here seems to be
whether the states s are generated through action applica-
tions, or directly through randomized value assignments to
the state variables. This space of options corresponds ex-
actly to different methods for generating random states in
planning, resulting in a very similar categorization into four
cases: (a) random walks forward from the initial state, or (b)
backwards from the goal; (c) random value choice for state
variables, optionally (d) taking mutexes into account. With
(a) we will generate only reachable fuzzing-bugs; (c) is more
flexible and may cover the state space more broadly, with (d)
somewhat alleviating the reachability concern.

Option (b) will, combined with the same option for
fuzzing operations, limit the fuzzing-bugs found to ones
from which the goal can be reached. This is of interest, for
example, in deterministic planning models, where, as previ-
ously discussed, it implies that the value of the qualitative
value function is V*(s) = 1 and thus bug confirmation with
respect to that value function is easy.

Fuzzing termination. For fuzzing biases orientated to-
wards bug confirmation, the obvious idea is to stop once we
were able to confirm we found a bug. Randomized restarts
probably make sense in case of failure, where “failure” could
easily be defined based on simple progress criteria regarding
the observed changes (or lack thereof) in policy value and/or
bounds on the optimal value.

For fuzzing biases based on coverage, it presumably
makes sense to define a threshold for when an individual
new test case Siy1 1S “new enough”, and/or for when the
overall pool P = {s1, ..., sx} has “high enough coverage”.

It might make sense to iterate fuzzing processes, rather
than restarting them: use the previous end state s’ as the
starting state for the next fuzzing process, with changed
fuzzing bias and/or operators.

6 Conclusion

With the proliferation of neural networks, in particular as
action policies in dynamic environments, we believe that the
Al planning community should be interested not only in how
to learn such policies, but also in how to gain trust in them.
Apart from explainability, certification is a key issue here.
We believe that testing can be one key instrument for this
purpose, in analogy to software testing. We have introduced
a framework systematizing this approach, and discussed its
basic implications and possibilities.

We view this work as a basis for discussing what
could become a subarea in its own right. Interesting is-
sues to explore include the implementation and explo-
ration of our framework and simple fuzzing ideas in stan-
dard PDDL/PPDDL/RDDL settings and benchmarks; the in-
depth exploration of bug-candidate generation and bug con-
firmation methods; the design of methods that treat a neural
network policy as a white-box, biasing bug-candidate gener-
ation based on insights into the network’s internal behavior.
Finally, the link back to reinforcement learning should be
made, leveraging identified bugs for targeted re-training.
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