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Abstract

Neural network (NN) action policies are an attractive option
for real-time action decisions in dynamic environments, as a
single call to the NN suffices to obtain the next action. Such
an application obviously requires a high degree of trust in
the NN. But how to gain such trust? The ultimate solution
would be to verify the behavior induced by the policy. This is
potentially very hard as it compounds the state space explo-
sion with the difficulty of analyzing even single NN decision
episodes. Here we make a first step towards this challenge.
We show how to compute predicate abstractions of the policy
state space subgraph induced by fixing an NN action policy.
We consider safety i.e. the question whether the policy may
end up in unsafe states when started from a given set of safe
states. We implement the approach leveraging off-the-shelf
tools for answering NN-satisfiability questions. We conduct
a feasibility study in Racetrack. The results indicate that NN
policy verification may be more feasible than it first appears.

Introduction
Neural networks (NN) are an increasingly important repre-
sentation of action policies. In basic AI research, huge suc-
cesses were achieved in game playing (Mnih et al. 2013; Sil-
ver et al. 2016, 2018), and an increasing body of work is ded-
icated to learning action policies in planning (Issakkimuthu,
Fern, and Tadepalli 2018; Groshev et al. 2018; Garg, Bajpai,
and Mausam 2019; Toyer et al. 2020). Within and beyond
basic research, a growing trend is to rely on NN action poli-
cies for real-time decision taking in dynamic environments.
The vision is elegant and simple: a single call to the NN pol-
icy suffices to obtain the next action.

Yet this vision comes with high requirements on trust in
the neural network. How to gain such trust? There are vari-
ous possible avenues, including for example any manner of
explainable AI that may help to elucidate the NN’s action de-
cisions; or shielding, which augments the NN action policy
with a safety guard (e.g. (Könighofer et al. 2017; Alshiekh
et al. 2017; Fulton and Platzer 2018)). Here we address ver-
ification of the behavior induced by the policy. This is po-
tentially very hard as it compounds the state space explo-
sion with the difficulty of analyzing even single NN decision
episodes. Here we make a first step towards this challenge.
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We consider safety in the following form: Given an NN
action policy π and a set of states S0 known to be safe, is
an unsafe state (that satisfies an unsafety condition) reach-
able from S0 under π? Apart from the NN itself, there are
two sources of complexity in this question: (i) the number
of start states |S0| when S0 is specified in a compact repre-
sentation, e.g., a formula over the state variables; and (ii) the
number of states reachable from a single s ∈ S0 when state
transitions, or π itself, are non-deterministic. Recent work
(Gros et al. 2020) addresses (ii) via statistical model check-
ing, which is however unable to address (i) as start states
must be explicitly enumerated. Here we instead concentrate
fully on (i), simplifying matters by assuming deterministic
transitions and policy choices.

We choose predicate abstraction as a well-established
method for abstract verification (Graf and Saı̈di 1997; Ball
et al. 2001; Henzinger et al. 2004). Predicates here are linear
constraints over the state variables (e.g. x = 7 or x ≤ y),
and abstract states are characterized by truth value assign-
ments to a set of predicates P (grouping together all con-
crete states that result in the same assignment). Like in other
abstraction methods common in planning (e.g. (Edelkamp
2001; Helmert et al. 2014; Seipp and Helmert 2018)), tran-
sitions are over-approximated to preserve all possible behav-
iors. Therefore, if π is safe starting from S0 in the abstrac-
tion, then π is safe in the original (concrete) state space.

Observe that the latter statement does not actually neces-
sitate to verify the full state space Θ, but rather only the
policy-restricted state space Θπ , i.e., the subgraph of the
state space that results from fixing the action policy π. Hence
we build predicate abstractions of Θπ . We refer to these as
policy predicate abstractions Θπ|P . We then check whether
unsafe states are reachable from S0 in Θπ|P . If this is not
the case then π is proven to be safe.

The part of Θπ reachable from S0 will often be much
smaller than Θ (provided S0 itself is much smaller than Θ),
especially under deterministic conditions. This gain is how-
ever counterbalanced by the need to analyze π, which arises
when deciding whether there is a transition between two ab-
stract states A and A′ in Θπ|P . This is a NN-satisfiability
problem: Does there exist an input (a state) s to the NN π
such that s ∈ A and π(s) = a and executing a in s re-
sults in a state s′ ∈ A′? Answering such questions over and
over again can clearly become infeasible when the abstrac-



tion and/or the NN are large. On the positive side though,
we can leverage a lot of progress on analyzing NN decision
episodes here, from other research communities.

SMT solvers such as Z3 (de Moura and Bjorner 2008)
can be used for exact NN-satisfiability tests. Much progress
has already been made on devising solvers dedicated to NN
analysis (Katz et al. 2017; Gehr et al. 2018). We design an al-
gorithm computing Θπ|P , leveraging such solvers through a
family of over-approximating easier satisfiability questions.
In our implementation, we employ Z3 for exact tests as well
as partial tests of various forms, and we employ Marabou
(Katz et al. 2019) as an over-approximation that relaxes state
variables to be continuous. We also implemented an iteration
over Marabou calls forcing it to eventually identify an inte-
ger solution or prove that none exists.

We base our work on JANI, an automata-based language
from model checking (Budde et al. 2017). This makes sense
as the problem addressed is intrinsically linked to the for-
mal methods community; also, automata-based languages
are well suited to model exogenous agents (Hoffmann et al.
2020) and thus an important source of environment non-
determinism (complexity source (ii) above, which we don’t
handle here yet but which clearly is important in the future).

We conduct a feasibility study in Racetrack (e.g. (Barto,
Bradtke, and Singh 1995; Bonet and Geffner 2003)), evalu-
ating scalability in the number of abstraction predicates and
the number of start states |S0|. The results give some indi-
cation that NN policy safety verification may be more fea-
sible than it first appears, at least in the setting where (i) is
the only source of complexity. Marabou picks up much of
the size reduction of the policy-restricted state space Θπ , at
a feasible computational cost. That said, more experiments
will be needed to assess the approach with confidence.

We note that our approach can ultimately serve not only
for verification, but also for interactive visualization of NN
action policy behavior, and thus a form of explainable AI.
Policy predicate abstractions are in principle amenable to
this purpose, with users seeing a small summary of policy
behavior (namely Θπ|P ) at any one time, and abstraction
refinement methods providing the means to “zoom in”. Ex-
ploring this possibility remains a topic for future work.

Networks of Automata
In this section, we outline the structure of the automata net-
works we consider. The detailed definition will be made
available in an online technical report.

State Variables We consider automata networks, that are
defined over a set of integer state variables V . Each v ∈ V
is associated with a lower bound lo(v) and an upper bound
up(v) with lo(v) < up(v), such that its domain Dv is the
non-empty, bounded integer interval {lo(v), . . . , up(v)}.

A (partial) variable assignment sV over a set of variables
V assigns to each variable a value from its domain, i.e., a
function with domain dom(sV) ⊆ V where sV(v) ∈ Dv for
all v ∈ dom(sV). If dom(sV) = V , sV is complete.

Given two variable assignments s1, s2, we denote by
s1[s2] the function update of s1 by s2, i.e., dom(s1[s2]) =
dom(s1)∪dom(s2) with s1[s2](v) = s2(v) if v ∈ dom(s2)

and otherwise s1[s2](v) = s1(v). Moreover, we say s1
agrees with s2 iff s1(v) = s2(v) for all v ∈ dom(s1) ∩
dom(s2). If additionally dom(s2) ⊆ dom(s1), we also
write s2 ⊆ s1.

Expressions The automata networks involve linear inte-
ger expressions over V . A linear integer expression can be
written in the form d1·v1+· · ·+dr·vr+c, with integer scalars
d1, . . . , dr, c ∈ Z and integer variables v1, . . . , vr ∈ V . We
denote the set of linear integer expressions by Expint. Given
e1, e2 ∈ Expint, e1 ./ e2 with ./ ∈ {≤,=,≥} is a lin-
ear integer constraint. We denote the set of linear integer
constraints and conjunctions thereof by Expbool. Finally, by
e(sV) we denote the evaluation of e ∈ Expint ∪ Expbool
over a variable assignment sV .

Automata Network Semantics Intuitively, in an automata
network, a single automaton consists of a set of locations
connected by edges. Each edge links a source location to a
destination location. An edge can be taken, i.e., the automa-
ton can transit from source to destination, only if its guard,
a constraint from Expbool, evaluates to true over the current
state variable assignment. While silent edges can be taken
independently, labeled edges can only be taken as part of
a synchronization. We consider synchronization based on
synchronization vectors. A synchronization vector speci-
fies for each automaton an edge label (or none if the au-
tomaton does not participate). Automata may synchronize
taking labeled edges whose combination matches one of the
synchronization vectors. If an edge is taken, the state vari-
ables are updated according to a set of assignment updates
evaluated over the current state variable assignment. An as-
signment update is a tuple (v, ea) ∈ V × Expint, where v is
the assigned variable and ea is an update expression.

Given the intuition above, we formalize the state space of
an automata network as a labeled transition system (LTS)
Θ = 〈S,A, T 〉, where

• the states S = SVloc
×SV are tuples of complete variable

assignments over Vloc and V , with location state variables
Vloc , i.e., for each automaton a variable assigned to the
current location.

• there is an action (gloc , g, uloc , u) ∈ A for each silent
edge and for each combination of automata-edge pairs
that match a synchronization vector, where

– the source location constraint gloc , respectively the
location update uloc , is a partial variable assignment
over Vloc , assigning each participating automaton to the
source location, respectively the destination location, of
the edge it takes,

– the guard g ∈ Expbool is the conjunction of the guards
of the taken edges,

– (variable) update u is the union of assignment up-
dates over all taken edges. We assume that u is well-
defined, i.e., for each variable there is at most one as-
signment update, and denote the set of updated vari-
ables as dom(u).

• for the set of transition T ⊆ S × A × S, it holds
((sVloc

, sV), (gloc , g, uloc , u), (s′Vloc
, s′V)) ∈ T iff gloc ⊆



sVloc
, g(sV) evaluates to true, s′Vloc

= sVloc
[uloc ], and

s′V = sV [u(sV)], where u(sV) denotes the partial vari-
able assignment induced by u evaluated over sV . Here,
we assume that u(sV) respects the variable domains.

NN Action Policies
Given the state space of an automata network, we are only
interested in the behavior possible under a fixed action pol-
icy specifying which action is chosen in which state. More
formally, given state space Θ = 〈S,A, T 〉, an action policy
π for Θ is a total function S → A, and the policy-induced
subgraph Θπ = 〈S,A, T π〉, where T π = {(s, a, s′) ∈ T |
π(s) = a}, is the policy restriction of Θ under π.

Neural Networks We consider action policies imple-
mented by neural networks (NN). Neural networks consist
of neurons, computational units, that output the result of an
activation function applied to a weighted linear combina-
tion of their inputs (Gros et al. 2020; Sarle 1994). How the
weights and the biases are learned is beyond the scope of
this paper, cf., e.g., Q-learning (Mnih et al. 2015).

The activation function is typically non-linear. In our cur-
rent work, we restrict to rectified linear units (ReLU) (Nair
and Hinton 2010), i.e., with activation function max (0, x).
ReLU is piecewise-linear, i.e., its domain can be divided
into finitely many intervals on which it is linear (x < 0,
x ≥ 0). We also restrict to feed-forward networks. A feed-
forward NN consist of an input layer, arbitrarily many hid-
den layers, and an output layer, each composed of a set of
neurons. The inputs to each neuron are the outputs of all
neurons of the previous layer and computational results are
fed forward layer-wise from input to output. In our case, the
input is a state s ∈ S and the output an action a ∈ A.
We say, the neural network implements an NN action pol-
icy π : S → A.

The precise NN policy structure will be in the techni-
cal report. The restriction to feed-forward networks with
piecewise-linear activation functions is important for the de-
sign of the NN-satisfiability queries required for the compu-
tation of the predicate abstraction of Θπ (discussed later).
Our framework is more generally applicable in principle
however, and it remains a question for future work which
more general classes of neural networks can be addressed.

Note that we do not assume that π(s) is applicable in s,
i.e., no s′ ∈ S with (s, π(s), s′) ∈ T may exist. This raises
the issue of deadlock verification as known from concur-
rent systems (e.g. (Holzmann 2004)), which here takes the
form of checking whether the policy may choose an inap-
plicable action on a reachable state and thus get stuck. Ad-
dressing this problem is an interesting topic for future work.

Policy Safety We now formalize our notion of policy
safety, i.e., whether from a set of start states S0 a state from
a set of unsafe states SU is reachable in the policy restricted
state space Θπ . In the context of automata networks, we
compactly represent these sets by a start condition and an
unsafety condition respectively, both composed of a location
variable assignment and a logical constraint over V .

Definition 1 (Policy Safety Property). Let Θ = 〈S,A, T 〉
be the state space of a network of automata and π : S → A
an action policy for Θ. A policy safety property of Θ and
π is a tuple ((sVloc ,0, e0), (sVloc ,U , eU )) with location vari-
able assignments sVloc ,0, sVloc ,U over Vloc and constraints
e0, eU ∈ Expbool. We call (sVloc ,0, e0) the start condition
and (sVloc ,U , eU ) the unsafety condition.

Θπ is unsafe with respect to ((sVloc ,0, e0), (sVloc ,U , eU ))
iff there exist states (sVloc

, sV), (tVloc
, tV) ∈ S with

sVloc ,0 ⊆ sVloc
, sVloc ,U ⊆ tVloc

, and e0(sV) and eU (tV)
evaluate to true, such that (tVloc

, tV) is reachable from
(sVloc

, sV) in Θπ . Otherwise Θπ is safe with respect to
((sVloc ,0, e0), (sVloc ,U , eU )).

In the definition above, the start condition characterizes
S0 = {(sVloc

, sV) ∈ SVloc
× SV | sVloc ,0 ⊆ sVloc

∧ e0(sV)},
while the unsafety condition characterizes
SU = {(sVloc

, sV) ∈ SVloc
×SV | sVloc ,U ⊆ sVloc

∧eU (sV)}.

Policy Predicate Abstraction
We use predicate abstraction (Graf and Saı̈di 1997) as a
method to analyze policy behavior. Concretely, we consider
the predicate abstraction of the policy restricted state space,
which we introduce as policy predicate abstraction. Gener-
ally speaking, predicates are logical formulas that evaluate
to true or false over the states of a system. Given a set of
predicates, a predicate abstraction is then obtained by map-
ping concrete states to abstract states according to the truth
values of the predicates in the concrete state, while preserv-
ing transitions. Thus, each path possible in the concrete state
space has a correspondence in the abstract state space, i.e.,
the predicate abstraction is an over-approximation.

We assume here for simplicity that the set of predicates
is given. Future work will need to investigate the auto-
matic generation of predicate sets e.g. via counter example
guided abstraction refinement (Podelski and Rybalchenko
2007; Smaus and Hoffmann 2008). Note that the adapta-
tion of such methods to our setting is quite non-trivial (the
predicates ideally should distinguish regions of states due to
different neural network behavior).

Predicate Abstraction for Networks of Automata For
simplicity, in our concrete setting of networks of automata,
we treat all locations explicitly and consider predicates from
Expbool. More concretely, to guarantee that the negation of
predicates is in Expbool again, we even restrict predicates
to be linear integer inequations, i.e., constraints of the form
d1 ·v1+· · ·+dr ·vr Q cwith negation d1 ·v1+· · ·+dr ·vr R
c ± 1. Given a set P = {p1, . . . , pm} of predicates from
Expbool, an abstract state is then a tuple (sVloc

, sP), where
sVloc

∈ SVloc
is a complete location variable assignment and

sP : P → B is a truth-value assignment complete over P .
We also refer to sP as predicate state. The abstraction of
a state variable assignment sV ∈ SV is the predicate state
sV |P with sV |P(p) = p(sV) for each p ∈ P . Conversely,
[sP ] = {sV ∈ SV | sV |P = sP} denotes the concretization
of predicate state sP .

Given the specifications above, we define (policy) predi-
cate abstraction for automata networks as follows:



Definition 2 ((Policy) Predicate Abstraction). Given the
state space Θ = 〈S,A, T 〉 of a network of automata and
a predicate set P = {p1, . . . , pm} of inequations from
Expbool, the predicate abstraction of Θ over P is the LTS
Θ|P = 〈S|P ,A, T |P〉, where S|P = SVloc

× (P → B), and
T |P = {((sVloc , sP), a, (s

′
Vloc

, s′P)) ∈ S|P × A × S|P |
∃(sVloc , sV), (s

′
Vloc

, s′V) ∈ S : sV ∈ [sP ], s
′
V ∈ [s′P ] ∧

((sVloc , sV), a, (s
′
Vloc

, s′V)) ∈ T }.
Given an action policy π : S → A for Θ, the policy pred-

icate abstraction of Θ over P and π is the predicate abstrac-
tion of Θπ over P , i.e., Θπ|P = 〈S|P ,A, T π|P〉.

Note that, T π|P ⊆ T |P , since T π ⊆ T . Hence, Θ|P can
be utilized as an over-approximation of Θπ|P , from which
one can improve by soundly removing transitions.

Policy Safety in Θπ|P Given a policy safety property, the
over-approximation property of predicate abstraction allows
us to verify safety of Θπ via reachability analyses in Θπ|P .
Concretely, if Θπ is unsafe, i.e., there is a path from a start
state s to an unsafe state t, then there is a path from s|P to
t|P . This intuition is captured in the following proposition:
Proposition 3 (Policy Safety in Θπ|P ). If Θπ is unsafe with
respect to policy safety property ((sVloc ,0, e0), (sVloc ,U , eU )),
then there exist abstract states (sVloc

, sP), (tVloc
, tP) ∈ S|P

where sVloc ,0 ⊆ sVloc
, sVloc ,U ⊆ tVloc

and there exist states
sV ∈ [sP ], tV ∈ [tP ] such that e0(sV) and eU (tV) hold,
such that (tVloc

, tP) is reachable from (sVloc
, sP) in Θπ|P .

By contraposition, if there exists no path from an ab-
stract start state to an abstract unsafe state, i.e., abstract
states whose concretizations intersect with S0 respectively
SU , then there also does not exists a path from a concrete
start state to an concrete unsafe state. In other words, if Θπ|P
is safe, then so is Θπ . Conversely, an unsafe Θπ|P does not
imply that Θπ is unsafe too, since predicate abstraction may
introduce spurious paths, i.e., paths without correspondence
in the concrete state space.

SMT-Tests to Compute Θπ|P
The question whether there is a transition in Θπ|P in-
volves a satisfiability problem over state variable assign-
ments. Given abstract states (sVloc

, sP), (s′Vloc
, s′P) ∈ S|P

and action a = (gloc , g, uloc , u), with gloc ⊆ sVloc
and

s′Vloc
= sVloc

[uloc ], i.e., the location constraints are fulfilled,
then ((sVloc

, sP), a, (s′Vloc
, s′P)) ∈ T π|P iff there exist sV ∈

[sP ], s′V ∈ [s′P ] such that ((sVloc
, sV), a, (s′Vloc

, s′V)) ∈ T π .
Due to the underlying NN structure we refer to this as NN-

satisfiability problem. Formally, such satisfiability problems
can be encoded as tests in the context of satisfiability modulo
theories (SMT) (Barrett et al. 1994) (in our case standard
theories). We refer to these SMT-tests as NN-SAT tests.

Our algorithm to compute Θπ|P applies various SMT-
tests in general as well as NN-SAT tests in particular. In
this section, we provide an overview of the SMT-tests. De-
tails will be given in the technical report. In the next sec-
tion, we present the actual algorithm. More concretely, while
an SMT-test is the problem of deciding the satisfiability of
a given formula, we focus on the abstract specification of
SMT-tests, i.e., which conditions are checked via which test.

An SMT-encoding is then any formula that is satisfiable iff
the condition is fulfilled.

Transition Tests In the following, we give the specifica-
tion for the NN-SAT-test of the transition condition in T π|P .
Below, we also specify tests for partial conditions and relax-
ations. Since, typically, NN-SAT tests are computationally
expensive, we additionally consider SMT-tests on transition
conditions in T |P , i.e., the transitions of the non-policy-
restricted predicate abstraction, as over-approximations.

Definition 4 (Transition Tests of T |P and T π|P ). An SMT
transition test of T |P , denoted SMT (sP , a, s

′
P), tests the

condition ∃sV ∈ [sP ], s′V ∈ [s′P ] : g(sV) ∧ s′V = sV [u(sV)].
An NN-SAT transition test of T π|P , denoted

NNSat(sP , a, s
′
P), tests the condition ∃sV ∈ [sP ], s′V ∈

[s′P ] : g(sV) ∧ s′V = sV [u(sV)] ∧ π((sVloc
, sV)) = a.

While the encoding of SMT (sP , a, s
′
P) is standard

to predicate abstraction approaches, NNSat(sP , a, s
′
P)

extends this by an encoding of the policy condition
π((sVloc

, sV)) = a, especially the NN structure. In the case
of a feed-forward NN, there is, for each neuron, a linear con-
straint over the inputs and a constraint over the piecewise-
linear cases of the output. Indeed, for the NN analysis meth-
ods, that we query, it is crucial that the encoding is a con-
junction of linear constraints and constraints for piecewise-
linear activation functions.

Applicability Tests Besides the transition tests specified
above, our algorithm also uses SMT-tests on partial tran-
sition conditions, more concretely, the applicability condi-
tion, i.e., whether for the abstract source state (sVloc

, sP)
there exists at least one transition under a. If not, one can
rule out the entire family of transition tests with source
(sVloc

, sP) and action a at once. In the context of automata
networks the applicability condition involves the satisfia-
bility problem whether there exists sV ∈ [sP ] such that
g(sV) is true (for T |P ) respectively whether simultaneously
π((sVloc

, sV)) = a (for T π|P ).

Definition 5 (Applicability Tests of T |P and T π|P ). An
SMT applicability test of T |P , denoted SMT (sP , g), tests
the condition ∃sV ∈ [sP ] : g(sV).

An NN-SAT applicability test of T π|P , denoted
NNSat(sP , g, a), tests the condition ∃sV ∈ [sP ] : g(sV) ∧
π((sVloc

, sV)) = a.

An applicability tests can be encoded as a subformula
of the respective transition test. Also, like for the transition
tests, SMT (sP , g) over-approximates NNSat(sP , g, a).

Relaxed NN-SAT Tests As mentioned above, we use tests
for T |P to over-approximate more expensive NN-SAT tests
for T π|P . Another option to over-approximate is via relaxed
NN-SAT tests, i.e., tests that relax the discrete integer state
variables to the continuous real domain.

Definition 6 (Relaxed NN-SAT tests). The continuously-
relaxed version of an NN-SAT test NNSat(sP , a, s′P) is de-
noted NNSatR(sP , a, s

′
P).

The continuously-relaxed version of an NN-SAT test
NNSat(sP , g, a) is denoted NNSatR(sP , g, a).



Clearly, this relaxation is sound, i.e., if the relaxed
NN-SAT test is not fulfilled, then the exact NN-SAT test
on the discrete domain is not fulfilled too. The motivation
is that, on the continuous domain we can query efficient
off-the-shelf NN analysis methods, in particular NN-SAT
solvers (Katz et al. 2017). Moreover, the precision of the ob-
tained over-approximation may actually suffice the purpose,
i.e., safety verification.

Algorithm 1: Exact NN-SAT via Branch & Bound.
1 Procedure nn sat bb(sP , a, s

′
P):

2 if ¬NNSatR(sP , a, s
′
P) then

3 return false
4 else
5 sV ← NNSatR(sP , a, s

′
P)

6 for each v ∈ V do
7 if ¬is integer(sV(v)) then
8 let lo(v)← ceil(sV(v)) in
9 if nn sat bb (sP , a, s′P ) then

return true;

10 let up(v)← floor(sV(v)) in
11 return nn sat bb (sP , a, s′P )

12 return true

Exact NN-SAT via Branch & Bound Given a solver for
relaxed NN-SAT tests, we can implement a sound and com-
plete decision procedure for exact NN-SAT tests querying
the relaxed solver as an oracle in a branch & bound pro-
cedure (Little et al. 1963). The method is illustrated for
NNSat(sP , a, s

′
P) in Algorithm 1. If NNSatR(sP , a, s

′
P) is

not fulfilled (line 2), then so is NNSat(sP , a, s
′
P), and we

can terminate. Otherwise, we extract the underlying solu-
tion for the source state sV . Note that, the target state s′V is
integer if sV is, and does not need to be considered explic-
itly. We check for each state variable v ∈ V whether sV(v)
is integer (line 7). If so, the exact test is fulfilled and we can
terminate (line 12). If not, we branch on v, once bounding v
to the (integer) subdomain strictly larger than sV(v) (line 8),
and once to the subdomain strictly smaller than sV(v) (line
10). Analogously to other branch & bound frameworks, one
can prove that eventually in at least one of the branches an
integer solution is found iff NNSat(sP , a, s′P) is fulfilled.

Membership Tests Towards safety verification, we also
need to decide membership in the set of abstract start states
S0|P , respectively the set of abstract unsafe states SU |P .
Given a policy safety property ((sVloc ,0, e0), (sVloc ,U , eU ))
and an abstract state (sVloc

, sP) ∈ S|P with sVloc ,0 ⊆
sVloc

, respectively sVloc ,U ⊆ sVloc
, the membership condition

comes down to an SMT-test:

Definition 7 (Membership Tests). An SMT membership test
of S0|P checks the condition ∃sV ∈ [sP ] : e0(sV).

An SMT membership test of SU |P checks the condition
∃sV ∈ [sP ] : eU (sV).

Computing Θπ|P Starting from S0|P
In this section, we outline the the computation of Θπ|P for
a given NN policy π and a set of predicates P . More con-
cretely, since we are interested in safety verification for a
given policy safety property ((sVloc ,0, e0), (sVloc ,U , eU )), we
compute for the set of abstract start states S0|P the reach-
able fragment of Θπ|P , i.e., an over-approximation of the
fragment of Θπ reachable from S0. While our approach ap-
plies the SMT-tests presented above, it is completely modu-
lar in the concrete methods queried to answer these tests.

In what follows, we present an algorithm for state ex-
pansion, i.e., given an abstract state (sVloc

, sP) ∈ S|P
and an action a ∈ A to compute all outgoing transitions
((sVloc

, sP), a, (s′Vloc
, s′P)) ∈ T π|P . Given this algorithm,

we compute the reachable fragment of Θπ|P in a forward
search from S0|P . Θπ is safe, if (s′Vloc

, s′P) /∈ SU |P for each
reached abstract state.

State Expansion Algorithm 2 shows the state expansion
in Θπ|P for abstract source state (sVloc

, sP) ∈ S|P and
action a ∈ A. Up to optimizations the algorithm works as
follows: If the source location constraint is fulfilled (line 1),
we fix s′Vloc

according to the location update uloc (line 5).
Subsequently, we enumerate each potential successor pred-
icate state s′P (line 8) and check via the NN-SAT transition
test whether a transition to (s′Vloc

, s′P) exists (line 13).

Algorithm 2: State Expansion.
Input: (sVloc , sP) ∈ S|P , a ∈ A with

a = (gloc , g, uloc , u)
1 if ¬gloc ⊆ sVloc then return
// optional applicability tests:

2 if ¬SMT (sP , g) then return
3 if ¬NNSatR(sP , g, a) then return
4 if ¬NNSat(sP , g, a) then return

5 s′Vloc
:= sVloc [uloc ]

6 let s′P ∈ P → B with dom(s′P) = ∅ in
7 s′P fixed with respect to sP , g, u // opt
8 enumerate states(s′P)

9 Procedure enumerate states(s′P : predicate state):
10 if dom(s′P) = P then

// optional transition tests:
11 if ¬SMT (sP , a, s

′
P) then return

12 if ¬NNSatR(sP , a, s
′
P) then return

13 if NNSat(sP , a, s
′
P) then

14 add ((sVloc , sP), a, (s
′
Vloc

, s′P)) to T π|P
15 else
16 for some p ∈ P \ dom(s′P)
17 let s′P(p)← true in
18 s′P fixed with respect to p // opt
19 enumerate states(s′P)

20 let s′P(p)← false in
21 s′P fixed with respect to p // opt
22 enumerate states(s′P)



Optimization & Over-Approximation In Algorithm 2,
we show a number of optional tests, that are sound, i.e.,
they are fulfilled for transitions in T π|P . The motivation is
that SMT-tests, especially NN-SAT tests, are computation-
ally expensive. Hence, in practice, reducing the number of
SMT-tests, especially NN-SAT tests, is desirable.

The number of enumerated predicate states (line 8), and
thus the number of transition tests to apply, is exponential
in the number of predicates m. Therefore, we aim at re-
ducing the number of state expansions for which enumerate
via applicability tests (line 2 et sqq.). Furthermore, we re-
duce the number of exact NN-SAT transition tests via over-
approximating transition tests (line 11 et sqq.).

While the specified ordering applies typically less expen-
sive and/or less precise tests first, each test may or may
not be applied independently of others. In fact, dropping
the NN-SAT transition test (line 13), Algorithm 2 can also
compute over-approximations of Θπ|P . That said, our ap-
proach is highly modular and extensible in both, the methods
it queries to answer SMT-tests but also the tests it applies.

Predicate State Enumeration The predicate state enu-
meration exponential in m poses a major difficulty towards
the feasibility of the approach. Hence, besides action appli-
cability tests, we also try to reduce the number of enumer-
ated states themselves.

In Algorithm 2, the procedure enumerate states
(line 9) is called with an empty predicate state s′P (line 8)
and sets predicate values recursively. At each inner node
(line 16) of the recursion tree, one branches over a predi-
cate, for which s′P is not yet defined, resulting in one branch
where the predicate is set true (line 17) and one where it
is set false (line 20). At each leaf node (line 10) all predi-
cates are set yielding a predicate state unique over all leaves.
Given this enumeration base, we apply optimizations to
prune the recursion tree and thereby reduce the number of
enumerated states.

One optimization uses binary predicate relations: A truth
value assignment to one predicate p may entail truth val-
ues of others predicates. We compute this information once
prior to the search via SMT-tests. Then, if p is set, we
fix further truth values in s′P with respect to p (line 18,
21). Another option is to apply an optimization inspired by
Cartesian abstraction (Ball, Podelski, and Rajamani 2003):
Ahead of each state enumeration (line 7), we apply SMT-
tests to check for each predicate individually whether a cer-
tain truth value is entailed given sP , g and u. For both op-
timizations, each fixed predicate reduces the recursion tree
below the fix by a factor of 2.

Experiments
We have implemented our approach on top of a C++ code
base for automata networks modeled in JANI (Budde et al.
2017). All experiments were run on machines with Intel
Xenon E5-2650 processors with a clock rate of 2.2 GHz with
time and memory limits of 12 h and 4 GB respectively.

Our evaluation is exclusively focused on scalability, as a
core question in an approach that ultimately tackles the state
space explosion compounded by NN-satisfiability tests. We

do not consider the actual results of the verification process,
i.e., whether and where π is safe. In particular, we build the
entire part of Θ|P reachable from S0|P , continuing even if
we already reached an abstract unsafe state.

Evaluated Methods We consider three concrete
methods to compute the reachable fragment of Θπ|P
(PA+BB(Marabou), PA+Marabou+Z3) respectively over-
approximations thereof (PA+Marabou). In accordance with
our specifications above, all methods do so in a sequential
forward search from the set of abstract start states and
with a state expansion as per Algorithm 2. The underlying
predicate abstraction base (PA) queries the Z3 solver
(de Moura and Bjorner 2008) for SMT-tests (Alg. 2 line 2,
11). PA+Marabou improves from this over-approximation
base by applying relaxed NN-SAT tests (line 3, 11) imple-
mented by Marabou (Katz et al. 2019). PA+BB(Marabou)
extends this method by querying Marabou in branch &
bound to compute the exact NN-SAT transition tests (line
13). Conversely, PA+Marabou+Z3 extends PA+Marabou
by querying Z3 for the exact NN-SAT transition test. Here,
to improve the feasibility, we also feed neuron value bounds
derived by Marabou into the Z3 queries.

Racetrack In our experiments we use a version of Race-
track (Gros et al. 2020) modeled in JANI. In short, a car must
drive on a discretized 2-dimensional map. It crashes when it
drives into a wall or off the map. The policy task is to con-
trol the car’s acceleration via 9 different actions. The car is
described by two position and two velocity components.

In the original JANI model accelerations may fail with a
set probability. Since we consider a non-probabilistic set-
ting, we set this probability to 0. Furthermore, to focus on
the impact of NN analysis, we simplify the model, more
concretely, the collision detection: For each discrete posi-
tion and velocity update after an acceleration, it is only
checked whether the new position is a wall or off-map, but
not whether the car hit a wall on the corresponding path from
old to new position. In all our experiments, we consider the
map Barto-small (Gros et al. 2020) with dimensions 35×12.

NN Policies We train policies using the infrastructure of
(Gros et al. 2020), i.e., an application of Q-learning (Mnih
et al. 2015). However, to keep the NN input encodings sim-
ple, we restrict the input features to be the four position and
velocity components. The underlying learning objective is to
reach certain goal positions while avoiding to crash. We train
four NNs in total, each with two hidden layers but varying
in the number of neurons per layer, namely 16, 24, 32, 64.

Safety Property In accordance with the policy learning,
the underlying safety property we consider is the one of
not crashing. However, we want to focus on analyzing the
scalability of the tested methods rather than actually verify-
ing policies. In terms of this scalability analysis, the set of
(reachable) unsafe states is of secondary interest to us. In
contrast, since we start the forward search from the set of
abstract start states, the set of start states is certainly not.
Besides a start state with velocity 0 already provided by



Figure 1: Time to compute the abstract state space (left) and the number of reachable abstract states (right) dependent on the
size of the predicate set, for a single start state, different methods to compute Θπ|P (PA+BB(Marabou), PA+Marabou+Z3)
respectively over-approximations (PA+Marabou) thereof, and NN policies with 2 hidden layers of size 16, 24, 32 and 64.

the racetrack model, we generate 1000 random start states
with varying position and velocity components. All those
states are solvable, i.e., the car may reach a goal position
under some policy. In our evaluation we consider start sets
of varying size that are subsets of the generated start states.

Predicate Sets We consider predicates of the form c ≤ v,
where c is an integer constant and v is a position or velocity
variable. We choose the predicate sets manually and use a
fixed procedure determining the predicates added for each
v: The first predicate splits the domain into two halves. The
remaining number of predicates to be added is then evenly
distributed on the resulting subdomains, on which we pro-
ceed recursively. Therewith, for each variable, predicates are
added in a fixed order.

Scalability over |P| In our first analysis, we consider
a single concrete start state and predicate sets of varying
size. This setup is of course not relevant in practice (one
could simply run the deterministic policy from the unique
start state), but it nevertheless makes sense as a scalability
study of abstract state space construction: to evaluate how
our methods scale as a function of abstraction granularity
and NN size, and to investigate the precision of the over-
approximation computed by PA+Marabou. We start with a
single predicate for each of the position and velocity vari-
ables, and then stepwise add one predicate for one variable.

Figure 1 shows the results in terms of the time to com-
pute (left) as well as size of (right) the reachable abstract
state space. Concerning the latter, we only include results
for one exact method, namely PA+BB(Marabou) (but not
PA+Marabou+Z3). We run an experiment for every 5th
predicate set according to the scheme specified above. A
less compact illustration can be found in the appendices.

A somewhat surprising observation is, that PA+Marabou
computes, also for coarse predicate sets, a rather fine over-
approximation – with but only with the precision of the
plot indeed Θπ|P itself. Further manual analysis shows that
there are cases where the relaxed NN-SAT transition test
is fulfilled but the transition is pruned due to the exact
SMT transition test of PA. In other words, the precision
of PA+Marabou may be due to an interplay of the preci-
sion gained by relaxed NN-SAT tests combined with ex-
act SMT tests. That said, experiments on other domains
will be needed to further evaluate the precision gained via
PA+Marabou.

Given the precision of PA+Marabou, a rather expected
result is, that over all instances PA+Marabou domi-
nates PA+BB(Marabou) in terms of runtime. Moreover,
PA+BB(Marabou) dominates PA+Marabou+Z3, since, in
contrast to Z3, Marabou is highly specialized to NN anal-
ysis. For finer P the runtime difference diminishes as the
precision of relaxed tests increases.

Observe that the runtime correlates with the size of the ab-
stract state space only for finer predicate sets. For coarser P
the runtime is dominated by the relaxed NN-SAT test. More
precisely, while the number of relaxed NN-SAT tests is lin-
ear in the number of states, the time needed to solve a query
over an NN is highly dependent on the size of the NN’s input
region which in turn depends on the granularity of P . Thus,
for coarse predicate sets the average time to solve an relaxed
NN-SAT test, and therewith the overall computation time,
is increased. On the other hand, as one would expect, over
different NN the runtime grows with the size of the NN.

Finally, one can observe that as P becomes larger the run-
time and the size of the abstract state space eventually drop.
Initially, the size of reachable Θπ|P grows with the general
abstract state space Θ|P for finer P . However, the finer P ,



Figure 2: Time to compute the abstract state space (left) and the number of reachable abstract states (right) dependent on the
number of concrete start states, for different methods (PA+Marabou, PA+BB(Marabou), PA+Marabou+Z3), NN policies
with 2 hidden layers of size 16 and 64, and for predicate sets of different size (30, 50, 75).

the better the small reachable fragment of Θπ is approxi-
mated. Here, the dropping point(s) depend on an interplay
of P and π.

Scalability over |S0| We now evaluate the realistic setup
where the number of start states |S0| scales. We do so for a
number of settings of the other parameters (number of predi-
cates and NN size); complete results are moved to the appen-
dices. Starting with a single start set, we stepwise add 100
states from the set of random start states. Figure 2 shows
the results. To preserve visibility, for each predicate set, we
include either PA+BB(Marabou) or PA+Marabou+Z3. If
PA+BB(Marabou) is included, then PA+Marabou+Z3 did
not terminate on any instance. If PA+Marabou+Z3 is in-
cluded, then PA+BB(Marabou)’s runtime equals the one of
PA+Marabou with the precision of the plot.

Like in the first analysis, we see that PA+Marabou com-
putes a rather fine over-approximation of Θπ|P . Indeed, with
the precision of the plot, only for NN 16 and |P| = 30
an information loss is visible. We again also see a sig-
nificant but approximately constant runtime gap between
PA+Marabou and the respective exact method, in particu-
lar for PA+Marabou+Z3.

Independent of the concrete method, the results also in-
dicate the potential of predicate abstraction to tackle |S0|
as a source of complexity towards policy safety verification.
Concretely, after the first 100 random start states, the number
of reachable states, and thereby the time to compute the state
space, increases only slightly. However, further experiments,
including actual policy safety verification, remain necessary
to demonstrate the usefulness of this potential in practice.

Conclusion
We have introduced policy predicate abstraction as a tech-
nique to enable NN action policy analysis. We have designed
an algorithm to compute policy predicate abstractions, that

is highly modular and extensible with respect to the partial
and/or relaxed transition conditions it tests and the efficient
off-the-shelf NN analysis approaches it queries. The empir-
ical results indicate that safety verification via policy pred-
icate abstraction may be feasible, at least in a deterministic
setting with the number of start states as the only source of
complexity. Moreover, the results also show that rather fine,
but significantly less expensive, over-approximations can be
obtained via variations of our algorithm. These findings are
preliminary however and more experiments will be needed
to assess the approach with confidence.

Besides Marabou, there remains to consider a broad
range of NN analysis approaches, in particular in the con-
text of NN robustness verification, that can be queried to
over-approximate transition conditions, e.g., DeepSymbol
(Li et al. 2019). Moreover, one may investigate how those
approaches may benefit from each other. For instance, the
bounds on the neuron values derived by one method, e.g.,
DeepSymbol, may be provided to another, e.g., Marabou.

Alternatively, we also plan to build on adversarial attack
methods to under-approximate transition conditions (Good-
fellow, Shlens, and Szegedy 2014), as well as to leverage
robustness guarantees on adversarial attacks (Hein and An-
driushchenko 2017) to check the exact transition condition.

An important future task of course remains to investigate
policy predicate abstraction with non-deterministic transi-
tions and/or policy decisions. Overall, we believe that NN
policy verification is important, and should be addressed not
only in the formal methods community but also in the AI
community itself. We hope that our work will provide one
basic building block for this huge endeavor.
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Appendices
Further Illustrations of the Empirical Results In Fig-
ure 3, we distribute the runtime results from Figure 1 (scal-
ing |P|) over three plots for better visibility (top left, bottom
left & right). We again include the plot on the number of

reachable abstract states (top tight) from Figure 1 to allow
direct comparison.

In Figure 4 we distribute the runtime results from Figure 2
(scaling |S0|) to one plot per predicate set. We now also
include results for |P| = 125 and plot PA+BB(Marabou)
and PA+Marabou+Z3 for each P . Concerning the num-
ber of reachable abstract states, recall that the state space
computed by PA+BB(Marabou) and PA+Marabou+Z3 is
the same. Thus, we only print the number of states for one,
namely the former, since it terminates on all instances. This
especially allows to confirm the precision of PA+Marabou
also for |P| = 75. In Figure 2 we only had partial results
since PA+Marabou+Z3 does not terminate for |S0| > 1.
For comparison, we now also print the number of abstract
start states as a function of the concrete start states.

In Figure 5 we give results on PA+Marabou scaled over
|S0| for the remaining neural networks (NN 24, NN 32).
Here, we take a slightly different perspective and focus
on the scaling results over different predicate sets (namely
|P| = 30, 50, 75, 100, 125, 145) rather than comparison to
the exact methods. Similar to previous observations, we see
that scaled over |S0|, the size of the reachable fragment of
Θπ|P (respectively the computed over-approximation) ini-
tially grows for finer P with the general predicate abstrac-
tion Θ|P , but eventually drops as reachable Θπ is approxi-
mated more faithfully. This in particular applies to NN 24.



Figure 3: Time to compute the abstract state space and the number of reachable abstract states (top right) dependent on the size
of the predicate set, for a single start state, different methods (PA+Marabou, PA+BB(Marabou), PA+Marabou+Z3) and NN
policies with 2 hidden layers of size 16, 24, 32 and 64.



Figure 4: Time to compute the abstract state space (left) and the number of reachable abstract states (right) dependent on the
number of concrete start states, for different methods (PA+Marabou, PA+BB(Marabou), PA+Marabou+Z3), NN policies
with 2 hidden layers of size 16 and 64, and for predicate sets of different size (30, 50, 75, 125). In the plots on the right, we also
include the number of abstract start states.



Figure 5: Time to compute the abstract state space (left) and the number of reachable abstract states (right) dependent on the
number of concrete start states, for PA+Marabou, NN policies with 2 hidden layers of size 24 and 32, and for predicate sets of
different size (30, 50, 75, 100, 125, 145).


