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Abstract. In the single-agent case general game playing and action planning
are two related topics, so that one might hope to use the established planners
to improve the handling of general single-player games. However, both come
with their own description language, GDL and PDDL, respectively. In this paper
we propose a way to translate single-player games described in GDL to PDDL
planning tasks and provide an evaluation on a wide range of single-player games,
comparing the efficiency of grounding and solving the games in the translated
and in the original format.

1 Introduction

The current form of general game playing (GGP) was developed around 2005, when
the first international GGP competition was held [3]. It aims at developing game play-
ing agents that can handle and efficiently play any game that is describable using the
game description language GDL [9]. In its basic form a wide range of games can be
modeled, though there are severe restrictions, namely to deterministic games of full
information, which immediately rule out most dice and card games. In recent years
the most successful GGP agents such as CadiaPlayer [1] or Ary [11] made use of the
UCT algorithm [8], which often delivers good results in multi-player games but lacks
in single-player settings.

That is where action planning comes in. Similar to GGP, action planning aims at
developing agents that can handle any planning task that is describable by the input
language, which, since 1998, is the planning domain definition language PDDL [10].
There is a close connection between general single-player games and planning. In both
cases the agent will be confronted with problems for which it has to find a solution
(i.e., a sequence of moves or actions) leading from a specified initial state to a state
satisfying a goal condition. While in planning the solution length is often relevant, in
GGP each goal state is assigned some reward and the aim is to maximize the achieved
reward. Finding an optimal solution reduces to finding a solution that results in a state
satisfying a goal achieving the highest possible reward. As the programmer does not
know in advance the problems that the agent will be confronted with, in both settings
domain-independent approaches are required.

Even though the setting is similar, there are severe differences in the input lan-
guages. If we want to make use of the existing efficient planners (e.g., Fast-Forward [6],
FastDownward [5], or LAMA [13]) to improve the handling of single-player games we
need to provide a translation from GDL to PDDL, which is the topic of this paper.



The remainder of this paper is structured as follows. We begin with a description
of the two input languages PDDL and GDL (Section 2), then turn to the translation
from GDL to PDDL (Section 3) and show some empirical results illustrating that the
translation works well and that planners can handle the generated input, sometimes
even outperforming the GGP agent we took as reference (Section 4). Finally, we discuss
related work and draw some conclusions (Section 5).

2 Background

2.1 Action Planning

A planning task is a tuple Π = 〈V,A, I,G〉, where V are the state variables (we do not
handle finite domains here, so we assume all variables to be binary), A is a finite set
of actions a each of which is a pair 〈prea, effa〉 of partial assignments to V with prea
being the precondition and effa the effect of action a, the initial state I is a complete
assignment to V , and the goal is a partial assignment to V .

In our translation we also make use of conditional effects, which are nested effects
with their own precondition cpre and effect ceff. The effect of a conditional effect is
only evaluated if its precondition holds in the current state. Note that nesting conditional
effects is not possible.

Derived predicates as introduced in [2] are another important feature that we will
use. The idea is to infer their truth from the truth of the state variables. So derived
predicates are computed from scratch in every state. A derived predicate is of the form
(:derived (h ?v1 ... ?vn) b1 ... bm) and can be inferred if and only
if its body b1 ... bm is true in the current state. In contrast to state variables derived
predicates can only be used in preconditions and effect conditions as well as in goal
descriptions. Hence they cannot be set in effects of actions [16].

We can define the semantics of a planning task in the following way by assuming
that effect literals are not conflicting.

Definition 1 (PDDL Semantics). The semantics of a planning task Π = 〈V,A, I,G〉
is given by the following state transition system (S0, L, u, g), with S ⊆ V being a state:

– S0 = {p | p ∈ I} (the initial state)
– L = {(a, S) | a ∈ A ∧ prea ⊆ S} (a set of pairs (a, S) where action a can be

performed in state S)
– u(a, S) = S \ {p | (not p) ∈ effa} ∪ {p | p ∈ effa}

\ {p | (when (cpre)(ceff)) ∈ effa ∧ cpre ⊆ S ∧ (not p) ∈ ceff}
∪ {p | (when (cpre)(ceff)) ∈ effa ∧ cpre ⊆ S ∧ p ∈ ceff}

(update function giving the successor state for a chosen action a in state S)
– g = {S | G ⊆ S} (the set of goal states).

Example Figure 1 shows a PDDL example of blocksworld. It contains two actions.
The stack action (lines 5–12) takes some block ?x, which is currently on the table and
clear (i.e., no other block is stacked on top of it), and places it on top of another block



?y, which must be clear as well. The unstack action (lines 13–17) removes a block from
another block if they are currently stacked and the upper one is clear. In addition there
are two derived predicates. The first one denotes that a block is clear if no block is
placed on top of it (lines 18–19), the second one denotes that a block is on the table if it
is not currently stacked on some block (lines 20–21).

1 ( d e f i n e ( domain b l o c k s w o r l d )
2 ( : p r e d i c a t e s ( c l e a r ? x )
3 ( t a b l e ? x )
4 ( on ? x ? y ) )
5 ( : a c t i o n s t a c k
6 : p a r a m e t e r s ( ? x ? y )
7 : p r e c o n d i t i o n ( and
8 ( c l e a r ? x )
9 ( c l e a r ? y )

10 ( t a b l e ? x )
11 ( n o t (= ? x ? y ) ) )
12 : e f f e c t ( on ? x ? y ) )
13 ( : a c t i o n u n s t a c k
14 : p a r a m e t e r s ( ? x ? y )
15 : p r e c o n d i t i o n ( and ( c l e a r ? x )
16 ( on ? x ? y ) )
17 : e f f e c t ( n o t ( on ? x ? y ) ) )

18 ( : d e r i v e d ( c l e a r ? x )
19 ( f o r a l l ( ? y ) ( n o t ( on ? y ? x ) ) ) )
20 ( : d e r i v e d ( t a b l e ? x )
21 ( f o r a l l ( ? y ) ( n o t ( on ? x ? y ) ) ) ) )
22
23 ( d e f i n e ( problem b l o c k s w o r l d 3 )
24 ( : domain b l o c k s w o r l d )
25 ( : o b j e c t s A B C)
26 ( : i n i t
27 ( on C A) )
28 ( : g o a l
29 ( and
30 ( on A B)
31 ( on B C) ) ) )

Fig. 1. PDDL example for Blocksworld.

In this instance we have three blocks, A, B, and C (line 25), where initially block
C is on top of block A (lines 26–27). Following the derived predicates, blocks A and B
thus reside on the table and blocks B and C are clear. The goal is to reach a state where
block A is on top of block B and block B is on top of block C (lines 28–31).

2.2 General Game Playing

General games are modeled by use of the game description language GDL. This lan-
guage is similar to logic programs, so that a game is modeled by a set of rules. In order
to derive any meaning, some fixed keywords are used:

role(p) p is a player of the game.
init(f) f holds in the initial state.
true(f) f holds in the current state.
next(f) f holds in the successor state.
legal(p,m) Player p may perform move m.
does(p,m) Player p chooses to perform move m.
terminal Whenever terminal becomes true the game ends.
goal(p,rw) Player p achieves reward rw (an integer value in [0,100]).
distinct(x,y) x and y are semantically different.

All rules are of the form (<= h b1 . . . bn) with the meaning that head h will hold
if all literals b1, . . . , bn of the body hold. Note that in GDL all operands are given in



prefix form, and that the conjunction of the bodies’ literals is implicit. Rules with a
head different from the keywords are called axioms, which in principle are very similar
to derived predicates in PDDL: Their truth value must be derived based on the current
state and with help of the other axioms.

The semantics of a general game modeled in GDL can be found in [4]. We give only
the basic definition:

Definition 2 (GDL Semantics [4]). The semantics of a valid GDL specification G of a
general game is given by the following state transition system 〈R,S0, T, L, u, g〉:

– R = {r | G ` role(r)} (the players in the game)
– S0 = {p | G ` init(p)} (the initial state)
– T = {S | G ∪ Strue ` terminal} (the set of terminal states)
– L = {(role, a, S) | G ∪ Strue ` legal(role, a)} (relation specifying legal moves)
– u(A,S) = {p | G ∪Adoes ∪ Strue ` next(p)} (state update function)
– g = {(role, rw , S) | G ∪ Strue ` goal(role, rw)} (relation specifying rewards)

where Adoes describes the moves that the players have chosen and Strue describes the
state variables that are currently true in state S.

An important observation is that negation-as-failure is assumed, i.e., anything that
cannot be derived is assumed to be false. That means especially that the successor state
is fully specified by evaluating the next rules: Everything that can be derived by rules
with head nextwill be true in the successor state, everything else will be false. In other
words, in GDL the frame is modeled explicitly, while in PDDL only the state changes
are modeled and the rest is assumed to remain unchanged.

Example Figure 2 shows a GDL example for the same blocksworld instance as the
PDDL example. The initial state (lines 3–8) is extended by a step counter, which is
needed as in GGP games are supposed to terminate after a finite number of steps [9]. In
order to achieve the highest possible reward of 100, the robot must find a way to reach
a state where block a is on top of block b and block b is on top of block c (lines 56–
58). The moves for stacking (lines 10–14) and unstacking (lines 16–18) have the same
preconditions as in the PDDL example. To determine the successor state the next rules
must be evaluated. While those in lines 20–28 are responsible for the actual state update,
those in lines 30–50 model the frame. The constant axioms (lines 52–54) are needed to
model the step counter. The terminal rules (lines 64–68) indicate that the game ends
after three steps or if block a is on top of block b and block b is on top of block c.

3 Translation

The basic idea of our translation is to use derived predicates to handle most of the GDL
rules, and to perform the state update in three steps in order to translate GDL’s explicit
modeling of the frame to PDDL. First, we set the player’s action. Then we evaluate
the next rules in order to get a full description of the successor state. In this step we
remove the current state variables and store the successor state in temporary variables.
Finally we set the successor state to the temporarily stored one.



1 ( r o l e r o b o t )
2
3 ( i n i t ( c l e a r b ) )
4 ( i n i t ( c l e a r c ) )
5 ( i n i t ( on c a ) )
6 ( i n i t ( t a b l e a ) )
7 ( i n i t ( t a b l e b ) )
8 ( i n i t ( s t e p 0 ) )
9

10 (<= ( l e g a l r o b o t ( s t a c k ? x ? y ) )
11 ( t r u e ( c l e a r ? x ) )
12 ( t r u e ( t a b l e ? x ) )
13 ( t r u e ( c l e a r ? y ) )
14 ( d i s t i n c t ? x ? y ) )
15
16 (<= ( l e g a l r o b o t ( u n s t a c k ? x ? y ) )
17 ( t r u e ( c l e a r ? x ) )
18 ( t r u e ( on ? x ? y ) ) )
19
20 (<= ( n e x t ( on ? x ? y ) )
21 ( does r o b o t ( s t a c k ? x ? y ) ) )
22 (<= ( n e x t ( t a b l e ? x ) )
23 ( does r o b o t ( u n s t a c k ? x ? y ) ) )
24 (<= ( n e x t ( c l e a r ? y ) )
25 ( does r o b o t ( u n s t a c k ? x ? y ) ) )
26 (<= ( n e x t ( s t e p ? y ) )
27 ( t r u e ( s t e p ? x ) )
28 ( succ ? x ? y ) )
29
30 (<= ( n e x t ( c l e a r ? x ) )
31 ( does r o b o t ( u n s t a c k ? u ? v ) )
32 ( t r u e ( c l e a r ? x ) ) )
33 (<= ( n e x t ( on ? x ? y ) )
34 ( does r o b o t ( s t a c k ? u ? v ) )
35 ( t r u e ( on ? x ? y ) ) )

36 (<= ( n e x t ( c l e a r ? y ) )
37 ( does r o b o t ( s t a c k ? u ? v ) )
38 ( t r u e ( c l e a r ? y ) )
39 ( d i s t i n c t ? v ? y ) )
40 (<= ( n e x t ( on ? x ? y ) )
41 ( does r o b o t ( u n s t a c k ? u ? v ) )
42 ( t r u e ( on ? x ? y ) )
43 ( d i s t i n c t ? u ? x ) )
44 (<= ( n e x t ( t a b l e ? x ) )
45 ( does r o b o t ( s t a c k ? u ? v ) )
46 ( t r u e ( t a b l e ? x ) )
47 ( d i s t i n c t ? u ? x ) )
48 (<= ( n e x t ( t a b l e ? x ) )
49 ( does r o b o t ( u n s t a c k ? u ? v ) )
50 ( t r u e ( t a b l e ? x ) ) )
51
52 ( succ 0 1)
53 ( succ 1 2)
54 ( succ 2 3)
55
56 (<= ( g o a l r o b o t 100)
57 ( t r u e ( on a b ) )
58 ( t r u e ( on b c ) ) )
59 (<= ( g o a l r o b o t 0 )
60 ( n o t ( t r u e ( on a b ) ) ) )
61 (<= ( g o a l r o b o t 0 )
62 ( n o t ( t r u e ( on b c ) ) ) )
63
64 (<= t e r m i n a l
65 ( t r u e ( s t e p 3 ) ) )
66 (<= t e r m i n a l
67 ( t r u e ( on a b ) )
68 ( t r u e ( on b c ) ) )

Fig. 2. GDL example for blocksworld.

3.1 Basic Translation

Apart from init and goal (see Section 3.3) all GDL rules are translated as derived
predicates. Each rule of the form (<= (h ?v1 ... ?vn) b1 ... bm) is trans-
lated into a derived predicate of the form

(:derived (h ?v1 ... ?vn)
(exists (?f1 ... ?fk)

(and b1 ... bm ) ) )

where ?f1 ... ?fk are the free variables appearing in the body.
Currently, we cannot handle functions in general. However, in order to store the cur-

rent/next state as well as the legal/chosen moves, we translate a predicate of the form
(next (p ?v1 ... ?vn)) as (next-p ?v1 ... ?vn), (true (p ?v1
... ?vn)) as (current-p ?v1 ... ?vn), (legal ?p (move ?v1 ...
?vn)) as (legal-move ?p ?v1 ... ?vn), and (does ?p (move ?v1 ...
?vn)) as (does-move ?p ?v1 ... ?vn). Furthermore, (distinct ?v1 ?v2)
is translated as (not (= ?v1 ?v2)). Any constants are translated with prefix obj-,
as GDL allows constants starting with numbers while PDDL does not.



In case some variable ?v appears more than once in the head we must replace
all but one instance of it by new variables ?vi and add (= ?vi ?v) to the body’s
conjunction for all of the replaced variables. If there is any constant c in the head we
must replace it by a new variable ?cvar and add (= ?cvar c) to the conjunction.

Constant axioms, i.e., axiom rules with empty body, can either be placed unchanged
into the initial state description or translated into derived predicates as the other rules. If
for some axiom constant and non-constant rules are present we must opt for the latter.

3.2 State Update

For any move the player may perform we create an action as depicted in Figure 3. This
takes the same n parameters as the original GDL move. The precondition states that the
game is not yet ended, the play predicate is true, which expresses that the player can
choose a move in the current state, and that the player is allowed to actually perform
the move in the current state, i.e., that the corresponding derived legal predicate can
be evaluated to true. When applying the action we set the corresponding move and the
eval predicate to true, which brings us to perform the first of the two additional actions
that simulate the state update.

(:action move
:parameters (?v1 ... ?vn)
:precondition (and
(not (terminal))
(play)
(legal-move player ?v1 ... ?vn) )

:effect (and
(does-move player ?v1 ... ?vn)
(not (play))
(eval) ) )

Fig. 3. Move action in the translation from GDL to PDDL.

The basic idea of the eval action (cf. Figure 4, top; we need only one that takes
care of all predicates and moves) is to determine the successor state based on the current
state and the chosen move and to store it in temporary variables. It evaluates all derived
next predicates and sets the temporary variables corresponding to the satisfied ones.
In addition it removes all current state variables as well as the chosen move and
changes from eval to switch, which brings us to the second additional action.

The resume-play action is depicted in the bottom of Figure 4. It sets the new
state’s current state variables and removes the temporary ones. Then it changes back
to the play predicate so that the player’s next move can be chosen. Similar to the eval
action, we use only one resume-play action that handles all predicates.

A state update with only a single additional action would be possible as well by
creating two sets of conditional effects: One as before, setting a state variable to true



(:action eval
:precondition (eval)
:effect (and
(forall (?vp1 ... ?vpn)
(when (next-p ?vp1 ... ?vpn) (temp-p ?vp1 ... ?vpn) )

(forall (?vp1 ... ?vpn)
(not (current-p ?vp1 ... ?vpn)) )

(forall (?vm1 ... ?vmn)
(not (does-move player ?vm1 ... ?vmn)) )

(not (eval))
(switch) ) )

(:action resume-play
:precondition (switch)
:effect (and
(forall (?vp1 ... ?vpn)
(when
(temp-p ?vp1 ... ?vpn)
(and
(current-p ?vp1 ... ?vpn)
(not (temp-p ?vp1 ... ?vpn)) ) ) )

(not (switch))
(play) ) )

Fig. 4. The eval and resume-play actions.

if at least one of the corresponding next predicates can be evaluated to true, the other
setting it to false if all corresponding next predicates are evaluated as false. However,
this often results in formulas in CNF, which most planners cannot handle efficiently.

3.3 Initial State, Rewards, and Termination

The initial state of the PDDL translation captures all state variables that are initially
true. Thus, each rule (init (f v1 ... vn)) in the GDL description is translated
as (current-f v1 ... vn) and added to the initial state. In addition, we must
add the predicate play.

In our current setting we are only interested in finding an optimal solution, i.e., one
that leads us to a goal state that achieves a reward of 100. Due to the GDL specification
of a well-formed game [9] the possibility to reach a goal state with reward 100 must
exist. Presuming that we have a set of goal rules:

(<= (goal ?p 100)
b11 ... b1n)

...
(<= (goal ?p 100)

bm1 ... bmn)



we build up the following goal description in PDDL:

(:goal
(and

(terminal)
(or

(exists (?v1_1 ... ?v1_n) (and b11 ... b1n))
...
(exists (?vm_1 ... ?vm_n) (and bm1 ... bmn)) ) ) )

where ?vi_1 ... ?vi_n are the free variables in the body of the i-th goal rule.
The terminal predicate is necessary because we want to reach a terminal state with
reward 100; the reward of the non-terminal states is irrelevant for our purposes.

3.4 Restrictions of the Translation

As pointed out earlier, currently we can only translate functions in a very limited form,
namely the functions representing the state variables, as well as those representing
moves. Any other form of functions is not yet supported. Replacement of any of the
functions by a variable is unsupported as well. It remains future work to find efficient
ways to handle these cases.

The current form of our translation cannot handle GDL descriptions that use the
goal predicate in the body of other rules. A straight-forward fix is to translate all
goal rules into derived predicates as well.

Concerning the rewards, we are currently only translating the maximum reward
100. By making use of plan cost minimization it is possible to also handle different
rewards. We can define a new action reach-goal that has terminal and (goal
role rw) in the precondition (where rw corresponds to a natural number) and sets a
unique variable goal-reached to true. This new action has a cost of 100−rw, while
all other actions have a cost of 0. Then the goal description reduces to the variable
goal-reached being true. Overall, this means that if we reach a terminal state that
has reward 100 in GDL we can use the action reach-goal with cost 0 to reach the
goal in PDDL. As planners try to minimize the total cost they will thus try to reach a
terminal state that has the highest possible reward.

3.5 Correctness of the Translation

In order to prove the correctness of our translation we must define the semantical equiv-
alence of a PDDL and GDL state w.r.t. our translation.

Definition 3 (Semantical equivalence of a PDDL state and a GDL state). A PDDL
state SPDDL of a state transition system (SPDDL

0 , LPDDL, uPDDL, gPDDL) and a GDL
state SGDL of a state transition system (R,SGDL

0 , T, LGDL, uGDL, gGDL) are seman-
tically equivalent if all of the following holds:

1. ∀x : x ∈ Strue,GDL ⇔ (current-x) ∈ SPDDL

2. ∀x : x ∈ R⇔ (role obj -x) ∈ SPDDL



3. ∀a : (role, a, SGDL) ∈ LGDL ⇔ ∃ a ∈ A : (a, SPDDL) ∈ LPDDL

4. SGDL ∈ T ⇔ ∃ terminal ∈ derived predicates : SPDDL ` terminal
5. the axiom rule ax can be fired in SGDL ⇔ the derived predicate of ax can be

derived in SPDDL

where A is the set of actions and derived predicates is the set of derived predicates
that occur in the PDDL task.

We are allowed to use Definition 1 (PDDL Semantics) in the definition of semantical
equivalence above because the assumption of Definition 1 is fulfilled: The translation
from GDL to PDDL does not create conflicting literals in effects per definition.

Due to space restrictions we can only outline the proof ideas; a longer version can
be found in [12].

The basic idea is to prove the correctness by means of induction. First we can show
that the initial states in both settings are semantically equivalent, which is apparent due
to the translation of the initial state and the other rules in form of derived predicates.

Next we can prove that, for semantically equivalent states, the application of a move
in GDL and the three steps for the state update in PDDL result in semantically equiv-
alent states again. This follows immediately from the actions in our PDDL translation:
The move action sets the player’s chosen move, the eval action evaluates the next
predicates based on the chosen move and the current state and stores only the positive
next predicates in temporary variables while removing all instances of the current
state variables. Finally, the resume-play action sets the current state variables
according to the temporary ones.

The last thing to prove is that PDDL’s goal states secure the highest possible re-
ward of 100, which again follows immediately from the construction – we translate the
conditions of the goal rules that award 100 points as the goal condition.

4 Empirical Evaluation

In the following we present empirical results of the proposed translation and a com-
parison in terms of coverage and runtime between two planners (Fast-Forward (FF) [6]
and FastDownward (FD) [5]) and a GGP agent (the symbolic solver and explicit UCT
player in Gamer [7]) taking the original input. All tests were performed on a machine
with an Intel Core i7-2600k CPU with 3.4 GHz and 8 GB RAM. We tried to translate
55 single-player games from the ggpserver1 with our implementation of the translation.
Nine games cannot be translated by our approach due to the restrictions we posted ear-
lier in Section 3.4. For the remaining 46 games the second column of Table 1 shows
the required time of the translation. These times range between 0.15s and 0.35s, mainly
dependent on the size of the game description.

The first numbers of the third and fourth column show the preprocessing (esp.
grounding) and solving time of FF, the first numbers of columns 5 and 6 indicate the
necessary time of the translate and search process of FD (among other things the trans-
late process is responsible for grounding the input), and the last three columns detail

1 http://ggpserver.general-game-playing.de



Table 1. Empirical results of 46 GDL games. Games where we could remove the step-counter
are denoted with an asterisk (*). For FF and FD the numbers in parantheses are the times for the
games with removed step-counter. All times in seconds.

Game Trans FF pre FF FD trans FD search G. inst G. solv G. play
8puzzle(*) 0.17 – (–) 9.06 (2.33) 535.54 (0.38) 0.63 22.67 err
asteroids(*) 0.2 0.7 (0.06) 5.82 (1.76) 0.51 (0.38) 0.34 (0.53) 0.16 1.69 2.85

asteroidsparallel(*) 0.21 10.47 (1.23) – (–) 4.36 (1) 16.2 (27.85) 0.03 – err
asteroidsserial(*) 0.23 2.41 (0.31) – (–) 10.11 (5.8) – (472.92) 0.41 – –

blocks(*) 0.16 0.01 (0.01) 0.01 (0.01) 0.07 (0.08) 0 (0.02) 0.06 0.33 0.05
blocksworldparallel 0.18 – 17.57 0.24 0.31 0.77 0.06
blocksworldserial 0.18 0.04 – 0.24 0 0.1 0.57 0.06

brain teaser extended(*) 0.19 5.56 (0.1) – (–) NAI (NAI) 0.17 1.56 8.22
buttons(*) 0.17 0 (0) 0 (0.01) 0.05 (0.06) 0 (0.02) 0.05 0.3 0.05

circlesolitaire 0.16 0.02 – NAI 0.06 0.5 0.06
cube 2x2x2(*) 0.2 – (–) 798.83 (78.24) 0.1 (0.09) 0.16 – 0.8

duplicatestatesmall 0.19 0.01 – 0.96 0.2 0.06 0.46 0.05
duplicatestatemedium 0.26 0.17 – – 0.18 1.17 0.23

duplicatestatelarge 0.35 1.55 – – 0.64 6.16 1.54
firefighter 0.18 – 0.34 0 0.21 – err

frogs and toads(*) 0.24 – (–) – (–) 32.94 – –
god(*) 0.19 – (–) 67.73 (38.16) 0.38 (0.23) – 9.67
hanoi 0.16 0.73 88.26 0.46 0.24 0.14 0.67 2.83

hanoi 6 disks(*) 0.17 232.22 (0.09) – (–) NAI (NAI) 0.67 1.93 13.74
hitori 0.21 – – – 0.38

incredible(*) 0.18 – (0.64) – (–) 1.28 (1.25) 0.08 (0.11) 0.33 4.55 57.73
kitten escapes from fire 0.18 234.36 – NAI 0.5 0.8 0.09

knightmove 0.19 – NAI 1.4 – 250.93
knightstour 0.18 – – 0.24 316.2 3.07
lightsout(*) 0.18 – (–) NAI (NAI) 0.1 183.8 err
lightsout2(*) 0.16 – (0.14) – (–) NAI (NAI) 0.1 185.12 err
max knights 0.2 – NAI 69.46 – err

maze(*) 0.15 0.01 (0) – (0) 0.07 (0.07) 0 (0.02) 0.05 0.35 0.06
mimikry(*) 0.2 – (–) NAI (NAI) 11.3 4.23 12.44

oisters farm(*) 0.18 0.06 (0.01) 0.06 (0.01) 0.32 (0.15) 0 (0.03) 0.08 0.63 0.61
pancakes 0.16 – – 1.0 1.26 12.19

pancakes6 0.16 – – 0.99 1.23 32.87
pancakes88 0.17 – – – err

peg bugfixed 0.18 – – 1.63 – err
queens 0.19 – NAI – –

ruledepthlinear 0.27 – 9.05 0 0.25 0.61 0.08
ruledepthquadratic 0.34 – – – –

statespacesmall 0.15 0.02 – 0.04 0 0.06 0.48 0.08
statespacemedium 0.22 0.03 0.03 0.09 0 0.15 1.46 err

statespacelarge 0.32 0.07 0.17 0.19 0.02 0.39 0.29 err
tpeg 0.18 – – 1.77 – err

troublemaker01 0.15 0.03 – 0.02 0 0.05 0.29 0.04
troublemaker02 0.15 0.01 – 0.02 0 0.05 0.29 0.05
twisty-passages 0.18 – 46.95 0.84 50.31 3.84 13.9
walkingman(*) 0.2 – (–) 28.58 (30.23) 0.18 (0.13) 878.13 3.91 0.06
wargame01(*) 0.23 – (–) NAI (–) – 0.26

Coverage 46 21/46 (11/19) 7/46 (5/19) 24/46 (12/19) 23/46 (12/19) 40/46 31/46 31/46

(from left to right) the results of Gamer’s instantiator, solver, and Prolog-based UCT
player. The value “–” indicates that the process did not terminate within the time limit
of 900 seconds. In case of FD note that it cannot handle nested negated axioms (i.e.,
negated axioms dependent on other negated axioms) and throws an error, here denoted
by “NAI” (Negated Axioms Impossible). The settings we used for the FD search pro-
cess are: --heuristic “hff=ff()” --search “lazy greedy(hff, preferred=hff)”.



For FF we can see that it can ground 21 out of the 46 translatable games and solve
only 7 of those within 900 seconds. With FD we can solve 23 games within this time
limit. In most cases FD’s translate process takes either too long (11 cases) or has trouble
with nested negated axioms (11 cases). In a single case (asteroidsserial) FD’s translate
process finishes but no solution can be found in time. Gamer is able to solve 31 games
within 900 seconds. The comparison of the runtimes between FD and Gamer delivers a
mixed result. FD is faster than Gamer in 19 games whereas Gamer is faster in 17 games,
but these include 7 games where FD throws the NAI exception. The UCT player can
also find solutions for 31 of the games. Unfortunately, it crashes with some Prolog-
related errors in ten cases. In the cases it runs fine it is able to solve four games that the
solver can not. In the other games often the player is much slower than the solver and
only in few cases clearly faster.

At first it seems surprising that, on the one hand, there are games like asteroidspar-
allel that can be solved very fast by FD while Gamer cannot find a solution within 900
seconds. On the other hand there are games like 8puzzle where the pure solving time
is clearly in favor of Gamer. One explanation for this behavior becomes apparent when
considering step-counters, which 19 of the games contain to ensure termination after
a finite number of steps. While Gamer requires games to be finite, the planners do not
mind if some paths exist where the game does not terminate. For these games we manu-
ally removed the step-counters and ran the planners again (the number in parantheses in
the table). In this case we can see that in several games the time and memory-overhead
for both grounding and solving decreases. FF can ground two additional games and
FD can solve one additional game. The biggest decrease in solving time comes with the
8puzzle, where FD’s time reduces from 536s to 0.4s, clearly below that of Gamer. How-
ever, if the step-counter is removed and we want to use the found plan in the original
game we have to somehow make sure that the plan does not exceed the allowed length.

When only looking at the grounding times we can see that Gamer nearly never is
slower than FF and FD if we consider only games where grounding takes more than
1s. The only domain that causes big problems for Gamer in contrast to FD is walking-
man. However, the instantiator of Gamer handles the GDL input directly while FD and
FF have to cope with the translated files, which bring some overhead. Thus, it is not
surprising that Gamer is much faster in grounding the games.

5 Discussion and Conclusion

So far we are not aware of any refereed publications of a translation from GDL to
PDDL. The only works we found are two students’ theses providing translations as
well. One [14] tries to find add- and delete effects, so that the state update is much
easier, as the frame effects can be removed. Also, it is able to find types for different
constants, which should speed up the grounding and reduce the memory consumption.
However, this comes at quite an overhead as the axioms containing does terms must
be rolled out so that in several cases the translator ran out of memory. Furthermore, the
generated output seems to be quite troublesome for FD; of the tested games not a single
one could be handled by that planner. The other thesis [15] tries to perform the state
update in a single step using conditional effects. Here, several things remain unclear



in the description (e.g., the handling of axioms in general and especially that of does
terms appearing in the bodies of axioms) and no experimental results are presented.

We have proposed a new way to translate single-player games. From the results we
have seen that the translation works fine, with some restrictions in the use of functions.
The resulting PDDL files can be handled by state-of-the-art planners, though especially
the grounding in those planners seems to be a bottleneck, especially in games containing
a step-counter. There are several cases where a planner is faster than both, the GGP
solver and player we compared against, so that it might indeed make sense to run this
kind of translation and solve the games by means of a planner. Nevertheless, classical
GGP agents should be run in parallel as well, as we cannot predict whether the planner
or the GGP player will be more efficient. This way we can get the best of both worlds.
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8. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Proceedings of the 17th

European conference on Machine Learning (ECML’06). pp. 282–293 (2006)
9. Love, N.C., Hinrichs, T.L., Genesereth, M.R.: General game playing: Game description lan-

guage specification. Tech. Rep. LG-2006-01, Stanford Logic Group (2008)
10. McDermott, D., et al.: The PDDL Planning Domain Definition Language. The AIPS-98 Plan-

ning Competition Comitee (1998)
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14. Rüdiger, C.: Use of existing planners to solve single-player games. Großer Beleg, Fakultät
Informatik, Technische Universität Dresden (2009)

15. Sievers, S.: Erweiterung eines Planungssystems zum Lösen von Ein-Personen-Spielen.
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