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Abstract. With the proliferation of neural networks (NN), the need to an-
alyze, and ideally verify, their behavior becomes more and more pressing.
Significant progress has been made in the analysis of individual NN decision
episodes, but the verification of NNs as part of larger systems remains a grand
challenge. Deep statistical model checking (DSMC) is a recent approach ad-
dressing that challenge in the context of Markov decision processes (MDP)
where a NN represents a policy taking action decisions. The NN determinizes
the MDP, resulting in a Markov chain which is analyzed by statistical model
checking. Initial results in a Racetrack case study (a simple abstract encod-
ing of driving control) suggest that such a DSMC analysis can be useful for
quality assurance in system approval or certification.
Here we explore the use of visualization to support DSMC users (human
analysts, domain engineers). We implement an interactive visualization tool,
TraceVis, for the Racetrack case study. The tool allows to explore crash
probabilities into particular wall segments as a function of start position
and velocity. It furthermore supports the in-depth examination of the policy
traces generated by DSMC, in aggregate form as well as individually. This
demonstrates how visualization can foster the effective analysis of DSMC re-
sults, and it forms a first step in combining model checking and visualization
in the analysis of NN behavior.
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1 Introduction

Neural networks (NN), in particular deep neural networks, have led to astounding
advances in many areas of computer science [25,20,35]. NNs are more and more at
the core of intelligent systems, taking decisions traditionally taken by humans.

For such systems, the need to analyze, and ideally verify, NN behavior becomes
more and more pressing. This constitutes a grand challenge as it combines (1) the
complexity of analyzing NN function representations with (2) the state space explo-
sion problem (analyzing large system behavior state spaces). Remarkable progress is
being made on (1), through SAT modulo theories [24,22,8], abstract interpretation
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[12,28], and quantitative analysis [41,6]. This pertains to the verification of individual
NN decision episodes, i.e., the behavior of a single input/output function call. Yet
the verification of decision-taking NNs in intelligent systems requires the analysis of
all possible situations that may result from sequences of NN decisions.

Many intelligent systems using NN, e.g., the control of various forms of cyber-
physical systems, can be cast as discrete decision making in the presence of random
phenomena. Hence a natural framework within which to start addressing the prob-
lem are Markov decision processes [34] (MDP), and specifically the model families
considered in probabilistic model checking [27]. Assume a decision-making problem
for which a NN has been trained, and assume that the problem can be formally
cast as a MDP. Then we may use this MDP as a context to study properties of
the NN. The NN is perceived as an action policy in the MDP, determinizing the
non-deterministic choices. This yields a Markov chain which can be analyzed by
probabilistic model checking techniques.

Recent work [14], henceforth referred to as DSMC20, proposed so-called deep sta-
tistical model checking (DSMC) as a scalable approach of this kind. The idea is to
apply statistical model checking [42,19] to the Markov chain resulting from the use
of a NN policy in an MDP. DSMC20 realize this idea in the context of MDPs repre-
sented in Jani [5], a language interfacing with leading probabilistic model checking
tools. They implement a generic connection between NNs and the state-of-the-art
statistical model checker modes [2,4], part of The Modest Toolset [18].

DSMC20 perform practical experiments in a Racetrack case study (adopted from
benchmarks in AI autonomous decision making [1,33]), where a vehicle needs to
choose accelerate/decelerate actions on a discrete map so as to reach a goal line
without bumping into a wall. We adopt this case study here. While the problem is
simple, it is suited as a starting point in the grand challenge of intelligent system
verification. It can be readily extended to include traffic, sensing, fuel consumption,
etc, ultimately up to models reflecting important challenges in autonomous driving.

DSMC20 propose DSMC as a tool for quality assurance by human analysts or
domain engineers in system approval or certification. Clearly, given the complexity
of problem parameter spaces and the need to understand what is going wrong and
how, visualization methods are potentially very useful for that purpose. DSMC20
illustrate this with simple heat maps localizing safety issues. In the present paper,
we begin to address the full scope of this visualization problem.

We design a new highly immersive visual exploration tool, that we baptize Trace-
Vis, for the data space in DSMC on Racetrack. TraceVis exploits 3D visualization
for mapping probabilities to height, stacking of trajectories and mapping of time. We
develop a hierarchical navigation concept to avoid multiple views, such that all vi-
sualizations are integrated into a single 3D scene (which will ease a future extension
to a virtual reality setup). Besides TraceVis itself, our contributions are:

– An interactive overview and context visualization of the goal and crash proba-
bilities computed by DSMC, where we can inspect for all start positions p of the
track either a single start velocity v or all start velocities at the same time.

– An aggregate view of all trajectories for a given start configuration (p, v) that
visualizes the velocity distribution over the whole track in a concise and compre-
hensible way. Optionally, we allow disaggregation of time providing more details
into the data space.
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– An efficient hierarchical navigation approach, from an overview over the whole
track to a trajectory ensemble for a selected start configuration, and over two
levels of trajectory clusters down to individual trajectories.

– A replay mode that animates policy traces, which can be used in the stacked as
well as in the aggregate trajectory visualization mode.

– A case study illustrating the analysis power of the new visual exploration tool
in Racetrack.

Our endeavor differs from previous work on visualization techniques for NNs (e.g.
[21,43,39]) in its focus on DSMC and Racetrack. We draw on established techniques
in visualization, in particular in ensemble visualization (e.g. [37,30,9]).

Overall, we initiate a connection between DSMC and visualization research, lay-
ing the groundwork for long-term synergy between model checking and visualization
in this context. In particular, we believe that some of the key ideas in TraceVis
will carry over to more faithful representations of autonomous driving, and to other
domains involving cyber-physical systems where position and velocity in physical
space are key dimensions.

The paper is organized as follows. Section 2 discusses related work. Section 3
briefly summarizes DSMC20 as relevant to understand our work and contribution.
Section 4 outlines our data space and visualization concept, followed by Sections 5
and 6 which describe our visualization techniques for crash probabilities and policy
traces respectively. Section 7 exemplifies the use of TraceVis for DSMC result anal-
ysis in Racetrack. Section 8 closes the paper with an outlook on future challenges.

A video demonstrating TraceVis as well as its source code is available at DOI
10.5281/zenodo.3961196 [13]. 3

2 Related Work

In the context of explainable AI research, a lot of recent research has been devoted to
interactive visualization of NN [21]. Goals for such techniques include interpretabil-
ity, explainability, NN debugging, as well as model comparison and selection. Most of
the work has been dedicated to NNs for image analysis tasks. Only few recent works
address the debugging and interpretation of deep networks used in reinforcement
learning [43,39]. These are dedicated to Deep Q-Learning of agents playing Atari
Retro Games, where high state-space dimensionality is the core problem addressed.
In [43] the authors embed the state space based on the last layer of the NN with
t-SNE into two dimensions and colorize the 2D points with handcrafted features.
Their main contribution is an analysis of the MDP through spacetime clustering of
the state space. The resulting hierarchical decomposition into skills allows for a bet-
ter interpretation of the strategy of the learned agents. Wang et al. [39] developed a
visual analysis tool with multiple coordinated views supporting a hierarchical naviga-
tion from an overview of the learning process down to individual traces of gameplays.
Their main contribution is a scalable visualization of these traces that visualizes the
position of the paddle together with the actions taken.

3 For convenience, the video can also be played directly here https://cloudstore.zih.
tu-dresden.de/index.php/s/Y7JmrZLfYEpkXPD.

https://doi.org/10.5281/zenodo.3961196
https://cloudstore.zih.tu-dresden.de/index.php/s/Y7JmrZLfYEpkXPD
https://cloudstore.zih.tu-dresden.de/index.php/s/Y7JmrZLfYEpkXPD
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One of our contributions pertains to the visual analysis of large collections of
traces. So our work relates to ensemble visualization, which is an active research area.
Wang et al. [40] survey sixty recent ensemble visualization papers and found that
all visualization techniques are based on aggregation over ensemble members before
the visualization, and on composition of ensemble members after the visualization.
For the case of trace or trajectory ensembles, prominent aggregation techniques
generalize 1D boxplots [38]. Mirzargar et al. [30] use the concept of data depth to
define a band which encloses a given percentile of the curves in a curve ensemble. Due
to the high computational complexity of curve boxplots, Etienne et al. [9] propose
trajectory box plots, which are based on per frame oriented boxes that are fast
to compute but introduce more visual clutter. With respect to composition of 2D
trajectory ensembles, the stacking of the trajectories in 3D has shown to be a versatile
solution [37]. Here, we develop a new aggregation technique specifically designed for
Racetrack, and also support the stacking of trajectory ensembles.

3 Background: DSMC20 and Racetrack

This paper is a direct follow-up on DSMC20 [14], so we give the background in terms
of a summary of that work, as relevant to understand our study and contribution.

Deep Statistical Model Checking (DSMC). The models considered in DSMC20, and
here, are discrete-state MDPs. For any nonempty set S let D(S) denote the set of
probability distributions over S.

Definition 1 (Markov Decision Process). A Markov Decision Process (MDP)
is a tuple M = 〈S,A, T , s0〉 consisting of a finite set of states S, a finite set of
actions A, a partial transition probability function T : S × A 9 D(S), and an
initial state s0 ∈ S. We say that action a ∈ A is applicable in state s ∈ S if T (s, a)
is defined. We denote by A(s) ⊆ A the set of actions applicable in s. We assume
that A(s) is nonempty for each s (which is no restriction).

An action policy resolves the non-deterministic choices in a state, determining
which applicable action to apply as a function of the state history so far. We represent
histories as finite sequences of states, hence elements of S+. We use last(w) to denote
the last state in w ∈ S+.

Definition 2 (Action Policy). A (deterministic, history-dependent) action policy
is a function σ : S+ → A such that ∀w ∈ S+ : σ(w) ∈ A(last(w)).

An MDP together with an action policy defines a Markov chain:

Definition 3 (Markov Chain). A Markov Chain is a tuple C = 〈S, T , s0〉 con-
sisting of a set of states S, a transition probability function T : S → D(S) and an
initial state s0 ∈ S.

Given an MDPM = 〈S,A, T , s0〉, an action policy σ : S+ → A induces a countable-
state Markov chain 〈S+, T ′, s0〉 over state histories in the obvious way: For any
w ∈ S+ with T (last(w), σ(w)) = µ, set T ′(w) = ρ where ρ(ws) = µ(s) for all s ∈ S.
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The idea in DSMC is to analyze this Markov chain for an action policy repre-
sented as a neural network (NN). The NN is assumed to be trained externally prior
to the DSMC analysis, but is assumed to operate on the same state space as a given
MDPM (i.e., the NN’s inputs are states and its outputs are actions). The NN policy
σ together with M then induces a Markov chain C as described. Statistical model
checking is a promising approach to analyze C, as it merely requires to evaluate the
NN on input states, otherwise treating it like a blackbox. DSMC20 implemented this
approach for modes [4] in The Modest Toolset [18].

Observe that, for DSMC to work in this form, the MDP and the NN need to
operate on the same level of system abstraction. This is a simplification (relative to,
e.g., NNs whose input are camera images) that renders the model checking problem
crisp. Another subtlety is that the NN may return inapplicable actions (giving guar-
antees on NN outputs is notoriously hard), and in that sense may not actually fit
the definition of an action policy. DSMC20 handle this through a more permissive
definition of action oracle, transitioning to a new stalled state in the induced Markov
chain C if the NN oracle’s chosen action is inapplicable.

Racetrack Benchmark and Jani Model. Racetrack is originally a pen and paper
game [10]. It was adopted as a benchmark for MDP algorithms in the AI community
[1,3,29,32,33]. The track is a two-dimensional grid, where each cell of the grid can
be a starting position, a goal position, a free position, or a wall. The vehicle starts
with velocity 0 at any of the starting positions, and the objective is to reach the
goal as fast as possible without crashing into a wall. The actions modify the velocity
vector by one unit in the eight discrete directions; one can also choose to keep the
current velocity. We consider noise emulating slippery road conditions: actions may
fail with a given probability, in which case the velocity remains unchanged. Here we
use two Racetrack benchmarks, i.e., track shapes, originally introduced by Barto et
al. [1]. They are illustrated in Figure 1.

Fig. 1. The maps of our Racetrack benchmarks: Barto-small (left) and Barto-big (right).
Starting positions green, goal positions red.

DSMC20 encode these Racetrack benchmarks in Jani [5,23]. Many tools offer di-
rect support for Jani, including ePMC, Storm and TheModest Toolset [17,18,7];
an automatic translation from Jani to Prism [26] is available too.

DSMC20’s Jani model represents the grid as a two-dimensional array. Vehicle
movements and collision checks are represented by separate automata that synchro-
nize using shared actions. This is straightforward except for the collision checks, i.e.,
checking whether the vehicle’s move – represented through horizontal and vertical
speed (dx, dy) – hits a wall. This is done by generating a (discrete approximation
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of) a straight line from the vehicle position (x, y) to (x+ dx, y + dy), and checking
whether any position on that line contains a wall segment.

Neural Networks. NNs consist of neurons that apply a non-linear function to a
weighted sum of their inputs. DSMC20 use feed-forward NNs, where neurons are
arranged in a sequence from an input layer via several hidden layers to an output
layer. So-called “deep” neural networks consist of many layers. Feed-forward NNs
are comparatively simple, yet are wide-spread [11] (and anyway our visualization
techniques are independent of the NN architecture).

To learn NN action policies in Racetrack, DSMC20 employ deep Q-learning [31],
where the NN is trained by iterative execution and refinement steps. Each step
executes the current policy until a terminal state is reached (goal or crash), and
updates the NN weights using gradient descent. NNs are learnt for a specific map
(cf. Figure 1). The NNs have two hidden layers each of size 64.

Case Study and Heat Maps. DSMC20 use Racetrack as a case study to highlight
the use of DSMC for quality assurance. They use simple heat maps for a limited
visualization of the DSMC outcome. Here we advance way beyond this, to interactive
visualization of a much richer data space. To give the comparison to DSMC20, in
what follows we briefly show a representative result from their case study.

< 0.002

< 0.01

< 0.03

< 0.1

< 0.25

< 0.5

< 0.75

≥ 0.75

1

Fig. 2. DSMC20 heat maps, showing aggregated crash probability as a function of start
position when fixing start velocity to 0.

Figure 2 shows aggregated crash probability – the probability of crashing into
any wall – as a function of start position when fixing start velocity to 0. The heat
maps use a simple color scheme as indicated in the figure. From this simple visu-
alization, quality assurance analysts can conclude that the NN policies are fairly
safe, to different degrees depending on the map region. What the heat maps don’t
show is, for example, how the shown probabilities depend on initial velocity, where
unsuccessful policy runs tend to crash into the wall, and to what degree such crashes
are due to noise or bad policy decisions. We show in what follows how to make all
these details accessible through interactive visualization methods.

4 Visualization Concept

Before we go into the details of our visualization techniques, let us outline our concept
in terms of the data space we visualize, and the principles behind our visualization
approach.
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Data Collection. We collect extensive information about the to-be-analyzed action
policy from modes, allowing to analyze policy behavior as a function of start position
p and start velocity v, and showing not only whether the policy succeeded or crashed
but also where. To this end, we run separate model checks with modes for every pair
(v, p), with properties representing every possible terminal (goal/crash) position. The
number of runs is thus quadratic in map size, with a constant factor of 25 for the
start velocities (in {−2,−1, 0, 1, 2}2). We ignore start velocities that directly lead to
a crash in the first step.

We furthermore collect all policy traces generated by modes during DSMC,
with detailed per-step information: position, velocity, action taken by policy, and
a Boolean indicating whether the action succeeded or failed (i.e., whether noise
occurred). In Barto-big, to keep computation times reasonable, we generated this
data only for 7 of the 25 possible start velocities.

We want to highlight that the information about the policies we extracted from
modes are not specific to DSMC. We only used state and action information of the
MDP under investigation. These trace information can be obtained with every sta-
tistical model checker independent of the mechanism used to resolve nondeterminism
which in our case was DSMC.

Computation and export of this data for Barto-small/Barto-big took 17/20 hours
on 25 virtual machines having an AMD EPYC Processor at approximately 2.5 GHz
using Ubuntu 18.04 with 8vCPUs and 16GB RAM. The data comprises 5473/3826
start configurations consuming 1.25MB/1.18MB for probabilities and 15.3GB/13.4GB
for traces/reduced traces on disk, in a concise text file format organized in two fold-
ers for probabilities and traces with one file per start configuration. The largest trace
file has 13MB on disk and contains 18270 traces of average/max length 44/65. The
data is publicly available at DOI 10.5281/zenodo.3961196 [13].

Visualization principles and rationales. Neither the probabilities nor the traces can
be visualized in their entirety in a single visualization. We therefore opted for the
development of a highly interactive visual analysis tool, TraceVis. As Racetrack is
2-dimensional, we chose a 3-dimensional visualization space to be able to exploit the
3rd dimension to map additional features. We implemented TraceVis as a plugin to
the CGV-Framework [15], which allows rapid prototyping of interactive 3D tools in
C++ with OpenGL. The CGV-Framework supports efficient high-quality rendering
of large amounts of primitive shapes like boxes, spheres and rounded cones based on
the concept of GPU based raycasting [16,36]. All primitives allow color mapping.

Figure 3 illustrates the design of TraceVis. For each track position we render a
box whose type is color coded: start/goal locations in green/blue, walls in red, other
track locations in light gray or color-mapped, and an additional row of dark grey
boundary cells added around the track.

To keep the tool as clear as possible, we completely abstained from multiple views,
incorporating all visualizations and interactions within a single 3D scene built on
top of the Racetrack map. The view onto the 3D scene can be adjusted with the
mouse based on an adjustable focus point with the typical navigation commands for
translate, zoom and orbiting around the focus. Mode switches are used to navigate
through different visualizations, and mouse pointer and wheel are used for direct
selection and ergonomic configuration. All selections and configurations can also
be adjusted through a classical user interface, which shows the current status of

https://doi.org/10.5281/zenodo.3961196
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Fig. 3. Screenshot to illustrate the design of TraceVis. Highly interactive 3D view, accom-
panied by classical UI showing current tool state and providing tooltip based help.

TraceVis and serves as manual by providing help on mouse interaction and hotkeys
through tooltips. For fast navigation and to foster comprehension, an important
design goal was the support for high frame rates even when visualizing a large
number of traces at the same time.

In accordance to Schneiderman’s mantra – “Overview first, zoom and filter, then
details-on-demand” – we designed a hierarchical navigation scheme. A heat-map
visualization similar to the one in DSMC20 serves as overview over all start con-
figurations. The user can select individual start configurations to view crash and
goal probabilities (as described in Section 5). The user can dive into more detail by
switching to trace visualization mode where the corresponding trace file is read on
the fly; the traces can further be navigated from main clusters down to single traces
(as described in Section 6). To navigate to a different start configuration, the user
first needs to navigate back up the hierarchy to the probability visualization mode.
This allows for the reuse of the same hotkeys on different hierarchy levels, reducing
the number of hotkeys to be learned for fast interaction.

5 Visualizing Probabilities

We next describe our techniques for visualizing crash/goal probabilities as a function
of start position p and start velocity v.

Start Configuration Selector. DSMC20 provides for each start configuration (p, v)
and each wall, boundary and goal location q the probability that traces from (p, v)
end in q. Visualizing the entire probability mapping P (p, v, q) in a single image or
3D-scene seems futile. Our approach is to instead leverage interactive visualization,
based on selection and aggregation of arguments to P (p, v, q). TraceVis supports
selection of a single p and/or a single v at a time. We indicate these user-fixed
parameters notationally as p̂ and v̂.

The user can interactively select p̂ by hovering with the mouse over the track
while pressing Shift. v̂ can be selected by additionally holding the Ctrl modifier key
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Fig. 4. Start configuration selection and different probability visualization approaches. Left:
selected start configuration (p̂, v̂) shown as yellow box and pink arrow. Summed crash prob-
abilities

∑
q̃ P (p, v̂, q̃) mapped to color of valid track locations p. Pink bar charts show crash

and goal probabilities for start configuration (p̂, v̂). Middle: Same as left, with additional
mapping of summed crash probabilities to height of track boxes. Right: All velocity mode
shows summed probabilities aggregated over all start velocities – here the maximum of the
summed crash probabilities. Colored charts show crash and goal probabilities for all start
configurations (p̂, v).

and hovering to neighboring locations of p̂. p̂ is visualized by a yellow box and v̂ by
a bent arrow with a direction dependent color scale as shown in Figure 4 (left). The
user can either focus on v̂, or on all possible velocities v for which probabilities have
been precomputed. The latter all velocity mode is auto-selected by hovering over the
track with the Ctrl modifier pressed as illustrated in Figure 4 (right).

Heat Map Overview. We extend the DSMC20 heat map overview by the option to
adjust the height of the track boxes, as shown in Figure 4 (middle). The user can
select the probability type with hotkeys. In all velocity mode the summed proba-
bilities are aggregated per start location over all start velocities with one of the
user-selectable aggregation operators min, max or range = min −max. In this way
we can visualize

∑
q̃ P (p, v̂, q̃) and aggṽ

∑
q̃ P (p, ṽ, q̃), where agg denotes the selected

aggregation operator. These visualizations can be used as a guidance to finding start
configurations of interest and continuing further investigation from there.

Bar Chart Details. While the heat maps allow to efficiently determine start posi-
tions with a high rate of crashing, they do not show the crash positions q. TraceVis
supports the latter through track boxes in the form of bar charts, visible e.g. in Fig-
ure 4 (left) in the back on the left-hand side (pink bar). The bar heights indicate the
probability of crashing/reaching the goal, thus visualizing P (p̂, v̂, q). In all velocity
mode, an individual bar is included for each possible start velocity, i.e. we visualize
P (p̂, v, q). To this end, we use the visual metaphor of spatial and color coding: the
thin bars have the same color and positional offset as the start velocity vectors, as
can be seen in Figure 4 (right).

6 Visualizing Policy Traces

Once a start configuration (p̂, v̂) of interest is found, a natural means to investigate
further is to inspect the actual policy traces generated by DSMC starting from (p̂, v̂).
TraceVis supports this in depth, through the techniques we describe next.

Trace Visualization Modes. To initiate trace inspection, the user presses the Enter
key. TraceVis reads the trace file, and by default filters out duplicates of the traces
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Fig. 5. Comparison of different trace rendering modes for a start configuration with 17530
traces of which 2856 remain after duplicate filtering. Left: stacked rendering of 2856 traces,
sorted and color coded by end location. Top right: spatial aggregation showing segments
as arcs with appearance counts mapped to height and luminance. Bottom right: spacetime
mode disaggregates segments over time, mapping time to height.

while keeping track of the number of duplicates per trace. Figure 5 illustrates our
three distinct modes to visualize traces: Stacked, spatial and spacetime.

Traces are visualized as colored 3D tubes or, in the case of an aggregated view,
bent arrows. While the direction of traces is towards the goal positions in general,
there are exceptions (e.g. when the agent needs to turn around first given a particular
start velocity). Using tubes alone is not sufficient to show the direction of movement,
hence we map an arrow texture onto the tubes.

Stacked Trace Visualization. In stacked mode, all traces that were calculated for a
specific start configuration are shown stacked vertically above the track. Traces are
sorted by their end location, and are arranged into two main clusters: one for traces
that end at a goal position and one for those that crash. A sub-cluster is formed for
each end position. As shown in Figure 5 (left), the goal (crash) clusters are colored
with a blue to cyan (red to orange) color scale. Stacking in the order of the sub
clusters and with cluster based coloring reduces visual cluttering significantly. The
stacking offset in z direction can be adjusted with the mouse wheel.

Spatial Aggregation. Given the number of traces, simply visualizing the set of all
traces is often not helpful. We design a more comprehensible visualization in terms
of the velocity distribution over the track. To this end, we leverage the discrete nature
of the underlying MDP, aggregating over discrete time and space. Specifically, we
consider the possible move segments that action applications result in on the map.
Each segment is defined by a start position ps and end position pe. Multiple segments
of different traces share the same ps and pe. We can therefore compute a segment
histogram by counting, for each segment (ps, pe), the number of appearances in the
DSMC traces.
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In the spatial mode shown in Figure 5 (top right) this histogram is visualized
by mapping the appearance counts to bent arcs with height proportional to the
appearance count. Additionally, the appearance count is mapped to the luminance
of the bent arc with a gamma correction that can be adjusted with the mouse wheel.
The absolute values of the appearance counts can be read from the legend. The
mapping to bent arcs has the additional advantage that overlapping segments get
visually separated (compare Figure 6). To maximize visual separation, we optionally
allow mapping the arc height to half the segment length, resulting in circular arcs.

Fig. 6. Variants of segment rendering. From left to right: straight tube segments; added
arrow texture; arcs with height equal to half step size; tilted arcs; arcs with height propor-
tional to appearance counts.

For starting configurations where the agent needs to reverse its direction, over-
lapping inverse movements can be observed, see Figure 6 (middle). This prevents the
visual separation of oppositely pointing arrows. We overcome this issue by slightly
tilting the arcs sideways to visually separate them again as shown in Figure 6 (2nd
from right).

Spacetime Visualization. The aggregation of segments characterized by start and
end position (ps, pe) can be extended to also incorporate time information. Due to
the noise influencing the successful application of a policy action, it is possible that
no agent movement occurs in a given time step. Since we do not consider time in
the other visualization modes, this is hard to notice. Furthermore, different traces
might run along segments with equal start and end position but at different times.
For exploration scenarios where this is important, we therefore implemented the
spacetime mode as shown in Figure 5 (bottom right). Given the discrete-time nature
of the MDP, the time t of a segment is simply defined by its position in the trace.

To calculate the aggregated segments for the spacetime mode we calculate the
appearance count histogram over the triples (ps, pe, t). While rendering the segments,
appearance counts are again mapped to luminance and optionally to arc height. We
map time to an increasing height offset. This allows to efficiently identify faster and
slower runs, as well as showing track points where the agent temporarily stops. A
thin yellow stick is rendered to visually link trace vertices to their corresponding
track locations.

To support the analysis of local behavior at a given position, we added another
mouse hovering mode (activated by the Alt modifier), that restricts the view to the
outgoing arcs at the current mouse pointer position. The height scale for arcs and
the time offset can be adapted with the mouse wheel with different modifier keys.

Cluster Navigation. To reduce visual clutter in the aggregated trace visualization
modes further, the user can navigate hierarchically through clusters and individual
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Fig. 7. Illustration of four cluster hierarchy levels in spatial mode: top level (top left), main
cluster level (top right), sub-cluster level (bottom left), individual trace (bottom right).

traces as illustrated in Figure 7. The Enter key goes down the hierarchy from all
traces to main clusters, then to sub-clusters and finally to individual traces. Sub-
clusters can also be selected by hovering over a trace end position. At each level, the
Up and Down arrow keys allow to navigate through the respective clusters/traces.
Backspace is used to back up one hierarchy level. Pressing Backspace on the all-trace
level terminates the trace mode, and brings the user back to probability mode.

Noise Visualization. All visualization modes make use of spheres placed at the track
points where two segments are connected. The color coding of these spheres correlates
to the amount of noise which influenced the agent during the DSMC runs. Red color
indicates the appearance of noise, while green color states the successful movement
according to the action chosen by the NN. This is especially useful for the in-depth
examination of individual traces, visualizing the policy reacting to action failures
at difficult track locations and configurations. For aggregated views, the color is
interpolated between red and green according to the noise frequency.

Animation. To illustrate synchronicity in time across traces, we added an animation
of spherical probe particles moving along the traces synchronously with adjustable
speed. The animation is supported in all trace visualization modes. Space allows to
toggle the animation, and with the Left and Right arrow keys one can step back and
forth over individual time steps.

7 Case Study

To illustrate the use of TraceVis for policy behavior analysis, we now consider Trace-
Vis from a user’s (rather than a visualization researcher’s) perspective. We highlight
some interesting observations supported by TraceVis in analyzing the NN policies
trained by DSMC20 in Racetrack.

Figure 8 shows our first observation, for a position just before the goal curve in
Barto-small. We can see in Figure 8 (left) that, overall, the policy has a high chance
of reaching the goal line as one would expect. However there are two start velocities
not directed into the wall for which that is not so. Such problematic cases can very
conveniently be located simply by dragging this overview presentation over the map.
Selecting the most problematic start velocity in Figure 8 (right), it becomes evident



TraceVis: Towards Visualization for Deep Statistical Model Checking 13

Fig. 8. Unsafe behavior near goal line. Overview of crash/goal probabilities across start
velocities (left), and individual view for particularly problematic start velocity (right).

that policy behavior is highly, and unnecessarily, unsafe here. One can reach the
goal with high probability simply by keeping the velocity and turning once the wall
is cleared. Yet the policy tends to “cut the corner” and crash.

Fig. 9. Unsafe turning between walls: Successful (left) vs. crashed (right) trace.

Figure 9 shows another instance of curious policy behavior, also needlessly unsafe
but less obviously so. Here the start position is in a tight spot between walls on the
left and right, with a start velocity away from the goal and to the left. The safest
decision would be to “turn around on the spot”, i.e., decelerate, get left-right velocity
down to 0, accelerate to the goal. Instead, as we see in the successful policy trace in
Figure 9 (left), the policy over-accelerates to the right, going for a curve that only
just avoids the right-hand side wall. Yet that curve relies on action success (green
balls at move arcs in the visualization), and is brittle to action failure (red balls) as
we see in the crashing trace in Figure 9 (right).

Fig. 10. Counterintuitive turning near goal: Overview of crash/goal probabilities across
start velocities (left), and policy-trace overview for one particular start velocity (right).
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Consider finally Figure 10. Here the agent is placed in front of the goal near
the corner, and the overview (left) shows that the start velocities going towards
the corner have a tendency to crash. This is not surprising given the actual risk of
crashing here when actions fail, plus our previous observations in Figure 8. A more
surprising insight is obtained when choosing a harmless start velocity, away from the
goal at speed 1. Here we again get a counterintuitive turning behavior. Like above,
a human player would “turn around on the spot”, simply accelerating towards the
goal and reaching it on a straight path with probability almost 1 (the only possibility
to crash being 7 action failures in a row). Yet the trained neural network policy does
not do that. Instead, it travels along a potentially large de-tour towards the start
line, curving back to reach the goal on a trajectory scraping along the wall. This
does work out with a high probability here, but nevertheless points to a weakness
in policy behavior. Together with the odd behavior observed in Figure 9, it seems
the policy generally has issues in situations requiring a full turn-around – giving a
strong hint for possible re-training.

Note that TraceVis is key to all these observations. We miss them if we aggregate
over start velocities (or fix these to 0 as DSMC20 does), if we aggregate over crash
positions, if we have no in-depth visualization of policy traces.

Interestingly, TraceVis enabled us to find bugs in our own technology stack.
Apart from initial data discrepancies due to bugs in cross-tool communication, this
pertained also to a bug in our Jani model introduced when modifying it for this
paper. Examining crash probabilities as a function of start velocity as illustrated
above, we observed unintuitive results where start velocities heading directly into
a wall did not lead to a crash. This behavior prompted us to re-examine the Jani
model, identifying a bug in the vehicle automaton (where an initialization value was
set incorrectly). Such a faulty behavior would not have been visible in DSMC20’s
heat maps as these ignore start velocities. The bug would be exceedingly hard (if not
impossible) to identify based solely on modes, given the overwhelming amount of
log data. Hence TraceVis can be useful also for debugging the model itself, arguably
a crucial part of model checking.

8 Conclusion

Deep statistical model checking (DSMC) is a natural approach to quality assurance
of MDP action policies represented by neural networks. We have designed and imple-
mented a new tool, TraceVis, for visualizing and navigating DSMC results, as well
as for deeply understanding the underlying causes by examining the actual policy
traces. Our case study and own debugging experience with TraceVis suggests that
interactive visualization can be useful for the practical application of DSMC, and
potentially more general statistical model checking contexts as well.

We believe that the combination of formal methods with visualization is a key
instrument to address the problem of NN action policy analysis (by DSMC or other
methods). First, in contrast to traditional software artefacts, NN defy direct human
inspection. Second, in many cases, full verification will be prohibitively complex or
bound to fail (an autonomous car will hardly guarantee to avoid all possible acci-
dents). Therefore, third, to gain trust in an action policy, human quality assurance
analysts will have to understand its behavior and inspect its reactions against a
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large space of possible environment behaviors. The combination of formal analysis
tools with human-accessible data and results presentation seems predestined for that
purpose. We view our work as one initial piece of this big puzzle.

Our contribution at this point is, of course, limited to the simple Racetrack
benchmark, and it remains to be seen which ideas will carry over to other and more
complex domains. That said, we believe that the Racetrack case study was useful,
and remains useful, to focus on key aspects of many cyber-physical systems: position
and velocity in physical space. This is different from the focus on visualizing complex
strategy patterns, naturally entailed by the study of policies for computer games as
done by the aforementioned previous works [43,39].

Our envisioned research trajectory thus is to stick to Racetrack-like case studies,
incrementally extending these to reflect more aspects of, and ultimately approach,
autonomous driving. Fuel consumption for example seems easy to integrate, Lidar
sensing can be integrated by additional views, similarly for simple camera images
showing a grey-scale view of what’s ahead. In 3-dimensional extensions like drone
control, most of TraceVis’s current features will be applicable.

In the longer term, a major challenge will be multi-dimensional state spaces, in
particular multi-agent behavior like traffic in autonomous driving/drones, or collab-
orative agents in cyber-physical production. We envision to extend TraceVis by di-
mension reduction techniques, providing an abstract visualization of the state space,
where we can morph back to 3D space in order to focus on the behavior of individual
agents or the 3D relationship between the agents at certain instances of time. It may
also be possible to leverage prior insights from computer games, not as much to elicit
strategy patterns, but to elicit environment patterns, like typical traffic scenarios of
special cases of particular interest. We expect to still stick to physical space as the
main organization paradigm for the visualization.
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