
OLCFF: Online-Learning hCFF

Maximilian Fickert and Jörg Hoffmann
Saarland Informatics Campus

Saarland University
Saarbrücken, Germany

{fickert,hoffmann}@cs.uni-saarland.de

Abstract

OLCFF is a sequential satisficing planner based on partial
delete relaxation with explicit conjunctions using the hCFF

heuristic. The heuristic can interpolate between fully delete
relaxed semantics and real semantics by choosing the set of
conjunctions C accordingly. Our planner is built around refi-
ning the heuristic online, which has proven to be the most
effective way to use the hCFF heuristic. The main search
algorithm used by the planner is a variant of enforced hill-
climbing with online refinement and novelty pruning, follo-
wed by a LAMA-like anytime phase with GBFS and weigh-
ted A∗ where hCFF is used in a dual queue with a landmarks-
count heuristic.

Introduction
In satisficing planning, heuristics based on the delete relax-
ation were part of most state-of-the-art planners for almost
two decades (e.g. (Hoffmann and Nebel 2001; Richter and
Westphal 2010; Katz and Hoffmann 2014)). However, the
delete relaxation often ignores critical features of the plan-
ning task. These pitfalls can be diminished by “un-relaxing”
part of the problem.

One approach to partial delete relaxation is red-black
planning, where not all variables are relaxed, but only some
of them (Domshlak, Hoffmann, and Katz 2015). The Mer-
cury planner (Katz and Hoffmann 2014) is based on red-
black planning, and was very successful at the last IPC.

We employ a different partial delete relaxation technique,
where certain combinations of facts must be respected by
the relaxed plans. For example in a transportation domain
with fuel consumption, it can be useful to consider being in
a specific location while still holding a certain amount oiif
fuel. The hCFF heuristic implements this by treating a set
of conjunctions C as atomic (Fickert, Hoffmann, and Stein-
metz 2016). Choosing C correctly is critical for the perfor-
mance of the heuristic, since, while the accuracy increases
with larger C, so does the computational complexity.

Fickert and Hoffmann (2017a) have recently shown that
the hCFF heuristic is most effective when the conjunctions
are generated online. They employ a variant of enforced hill-
climbing (Hoffmann and Nebel 2001), called Refinement-
HC, to detect when the search is stuck in a local minimum.
Whenever this happens, the heuristic is refined by adding

conjunctions to C until the local minimum is removed from
the search space surface.

The OLCFF planner is based on online refinement with
the hCFF heuristic. It uses an extension of Refinement-HC
with novelty pruning (Lipovetzky and Geffner 2012) as its
core search algorithm. The Refinement-HC phase is follo-
wed by a LAMA-like anytime search to find plans with bet-
ter quality. This second phase runs hCFF in a dual queue with
a landmarks-count heuristic (Richter, Helmert, and Westphal
2008).

hCFF and Refinement-HC
Delete relaxation heuristics can be made more accurate by
taking some delete information into account. The hCFF heu-
ristic generates partially relaxed plans that respect a given set
of conjunctions C (Fickert, Hoffmann, and Steinmetz 2016).
Achieving a conjunction c ∈ C means achieving the indi-
vidual facts represented by c simultaneously. Whenever a
conjunction is a subset of the preconditions of an action, the
conjunction of these facts must be achieved instead of the
facts individually. Thus, e.g. if an action has two precon-
ditions for which a conjunction exists, the partially relaxed
plan must achieve both preconditions at the same time. A
fully relaxed plan may achieve the first precondition, delete
it again while achieving the second one, and can still apply
the action.

Consider the task illustrated below. The car has to move
from A to C. The car can only hold one unit of fuel, which
each drive action consumes, but can be refueled at any loca-
tion. Formally, there are STRIPS facts at(x) for the position
of the car and fuel to indicate if the car has fuel. Initially the
car is at location A and holds fuel.

A B C

A fully delete relaxed plan can ignore the fuel consump-
tion and just apply the drive actions from A to B and B to
C immediately after each other. The critical conjunction of
facts that is ignored here is that the car must be at B while
holding fuel before the second drive action can be execu-
ted. This conjunction can not be achieved by any of the
drive actions as they consume the fuel fact. A partially re-



laxed plan generated by the hCFF heuristic respecting this
conjunction would have to add the refuel action before dri-
ving from B to C, making the relaxed plan a real plan. In
fact, with a sufficiently large set of conjunctions C, all plans
generated by hCFF are real plans.

The hCFF heuristic works best when the conjunctions are
generated online, in particular in Refinement-HC (Fickert
and Hoffmann 2017a), which is an extension of enforced
hill-climbing (EHC) (Hoffmann and Nebel 2001). Like stan-
dard EHC, the algorithm progresses through iterations of
breadth-first search (BrFS) until a state s with lower heu-
ristic value is found, then search continues from there. In
Refinement-HC, these explorations are bounded by a fixed
depth. If a state s with lower heuristic value can not be
found within that bound, the heuristic is refined and the BrFS
phase is restarted. Thus, Refinement-HC escapes local mi-
nima through heuristic refinement instead of brute-force se-
arch. A second extension to standard EHC are restarts from
the initial state (without resetting the heuristic) whenever the
search is stuck in a dead end. Due to the convergence of
the partially relaxed plans generated by hCFF to real plans,
Refinement-HC is complete.

Planner Components
The planner consists of two main search components. First,
we run an extension of Refinement-HC with novelty pru-
ning. The second search component runs GBFS with a dual-
queue of the hCFF heuristic and a heuristic based on land-
marks. This is followed by an anytime search with weighted
A∗ using incrementally decreasing weights to obtain better
plans (similar to LAMA).

Refinement-HC with Novelty Pruning
The core of our planner is an extension of Refinement-HC
with novelty pruning (Fickert 2018). Instead of using BrFS
with bounded depth in the local exploration phase, we per-
form exhaustive BrFS with incomplete novelty pruning, si-
milar to a single iteration IW(k) of iterated width search (Li-
povetzky and Geffner 2012). In our setting, a state passes
the novelty test if it contains at least one novel conjunction
c ∈ C, otherwise it is pruned. This corresponds to IW(1),
but uses the conjunctions of hCFF instead of the individual
facts. We denote this extension with conjunctions by IW(C).
The novelty pruning is only applied in the BrFS phase, and
thus only considers the states in the current BrFS exploration
for pruning, not across the overall search. The simplified
pseudo-code is shown in Algorithm 1.

This extension improves Refinement-HC as it takes the
structure of the search space into account in the local ex-
plorations. Using novelty pruning here allows “interesting”
branches (with novel states) to be explored in more depth.
Sharing the set of conjunctions with hCFF also has a sy-
nergistic side-effect in Refinement-HC. The hCFF heuristic
becomes more expensive to evaluate with each added con-
junction, so refinement should be used carefully. On the
other hand, IW(C) is less restrictive with each added con-
junction. Thus, as Refinement-HC progresses, refinement
will be triggered less frequently with larger C (since the no-

Algorithm 1: Refinement-HC with Novelty Pruning
sbest := I
while h(sbest) 6= 0 do

Run IW(C) from sbest until a state s with
h(s) < h(sbest) is found.

if no such state exists then
Refine h in sbest.
continue

sbest := s

return SOLVED

velty pruning is less aggressive), which reduces further over-
head for hCFF.

GBFS and Weighted A∗

Refinement-HC can not always overcome the limitations of
local search. For example in Sokoban, the presence of deep
dead ends has proven difficult, and global search algorithms
like GBFS are much more suitable here.

Given these drawbacks, we place a time limit on
Refinement-HC, as well as a growth bound on the num-
ber of conjunctions for the hCFF heuristic and run GBFS
after Refinement-HC terminates. The growth bound on
hCFF is motivated by the observation that in domains where
Refinement-HC works well, the set of conjunctions typically
does not grow excessively large.

The GBFS phase uses a dual-queue of hCFF and a
landmarks-count heuristic (Porteous, Sebastia, and Hoff-
mann 2001; Richter, Helmert, and Westphal 2008). This
makes it is very similar to LAMA (Richter and Westphal
2010), which uses a dual queue of hFF and landmarks-count,
but using hCFF in place of hFF. The set of conjunctions
for the hCFF heuristic is reset to a fixed size bound before
starting the GBFS phase. During search, the heuristic then
periodically replaces old conjunctions by newly generated
ones, which allows it to adapt itself to the part of the search
space that is currently being explored (Fickert and Hoffmann
2017b). Again similar to LAMA, when GBFS finds a solu-
tion, search continues with an anytime phase of weighted A∗

with incrementally lower weights. We cache heuristic values
across the GBFS and weighted A∗ iterations to reduce over-
head.

Implementation
The planner is implemented on top of Fast Downward (Hel-
mert 2006). It performs a relevance analysis based on h2 in
the preprocessing phase (Alcázar and Torralba 2015), which
simplifies the planning task by removing superfluous acti-
ons and facts. Additionally, it finds mutex relations between
facts which are used by the hCFF heuristic to reduce its com-
putational overhead.

In the competition, we build our planner with profile-
guided optimization1. We generated profiling data by run-

1https://clang.llvm.org/docs/UsersManual.
html#profile-guided-optimization



ning the planner on instances from previous IPCs. This data
is then used to optimize the executable, e.g. by prioritizing
the layout for frequently taken branches and making better
inlining decisions.

Configurations
This section describes configuration details of our planner
for the individual tracks.

Satisficing Track
The planner first runs Refinement-HC with unit action costs
with a timeout of 1200 seconds, and bounds the complexity
growth of the hCFF heuristic to a factor of 8 compared to
the heuristic without added conjunctions. If Refinement-HC
finds a solution, it is restarted with original action costs. Ot-
herwise, GBFS is run with unit action costs. Afterwards, we
run GBFS and then weighted A∗ with weights 5, 3, 2, and
1, each with original action costs. In GBFS and weighted
A∗, hCFF is used in a dual-queue with landmarks-count, but
only uses the preferred operators of the hCFF heuristic which
improved results in preliminary experiments.

Agile and Cost-Bounded Tracks
In the agile and cost-bounded tracks, the planner also starts
with Refinement-HC before running GBFS, but leaves out
the anytime phase with weighted A∗ since we can stop after
finding the first solution. In the agile track, the time limit for
Refinement-HC is set to 180 seconds.

Acknowledgments. This work was partially supported by
the German Research Foundation (DFG), under grant HO
2169/5-1, “Critically Constrained Planning via Partial De-
lete Relaxation”.

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the im-
portance of computing and exploiting invariants in planning.
In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein,
S., eds., Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15), 2–6.
AAAI Press.
Clang compiler users manual, profile-guided optimization.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-
black planning: A new systematic approach to partial delete
relaxation. Artificial Intelligence 221:73–114.
Fickert, M., and Hoffmann, J. 2017a. Complete local search:
Boosting hill-climbing through online heuristic-function re-
finement. In Proceedings of the 27th International Confe-
rence on Automated Planning and Scheduling (ICAPS’17).
AAAI Press.
Fickert, M., and Hoffmann, J. 2017b. Ranking conjunctions
for partial delete relaxation heuristics in planning. In Fuku-
naga, A., and Kishimoto, A., eds., Proceedings of the 10th
Annual Symposium on Combinatorial Search (SOCS’17).
AAAI Press.
Fickert, M.; Hoffmann, J.; and Steinmetz, M. 2016. Com-
bining the delete relaxation with critical-path heuristics: A

direct characterization. Journal of Artificial Intelligence Re-
search 56(1):269–327.
Fickert, M. 2018. Making hill-climbing great again through
online relaxation refinement and novelty pruning. In Bu-
litko, V., and Storandt, S., eds., Proceedings of the 11th
Annual Symposium on Combinatorial Search (SOCS’18).
AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Katz, M., and Hoffmann, J. 2014. Mercury planner: Pushing
the limits of partial delete relaxation. In IPC 2014 planner
abstracts, 43–47.
Lipovetzky, N., and Geffner, H. 2012. Width and seriali-
zation of classical planning problems. In Raedt, L. D., ed.,
Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI’12), 540–545. Montpellier, France: IOS
Press.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning. In
Cesta, A., and Borrajo, D., eds., Proceedings of the 6th Eu-
ropean Conference on Planning (ECP’01), 37–48. Springer-
Verlag.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Fox, D., and Gomes, C., eds., Pro-
ceedings of the 23rd National Conference of the American
Association for Artificial Intelligence (AAAI’08), 975–982.
Chicago, Illinois, USA: AAAI Press.


