
Decoupled Search for Proving Unsolvability

Daniel Gnad and Álvaro Torralba and Jörg Hoffmann Martin Wehrle
Saarland University University of Basel

Saarbrücken, Germany Basel, Switzerland
{gnad, torralba, hoffmann}@cs.uni-saarland.de martin.wehrle@unibas.ch

Introduction

Decoupled State Space Search is a recently introduced
method to handle the well-known state space explosion
problem (Gnad and Hoffmann 2015; Gnad, Hoffmann, and
Domshlak 2015). By exploiting the structure of the prob-
lem within the search – as opposed to doing that within a
heuristic function guiding the search – the size of the decou-
pled state space can be exponentially smaller than that of
the standard state space. Decoupled search achieves that by
partitioning the task into several components, called factors,
trying to identify a star topology, with a single center factor
that interacts with multiple leaf factors. By enforcing such a
star structure, and thereby simplifying the dependencies be-
tween the components, decoupled search has proved to be
very efficient and able to compete with other state-of-the-art
planners in both satisficing and optimal search. We have also
seen good performance of decoupled search in the limited
unsolvable benchmarks, available prior to this competition.
Whether these results translate to the competition is mainly
dependent on the structure of the used domains. Since the
currently implemented method to identify factorings is only
capable of detecting so-called X-shape profiles, we cannot
perform decoupled search in absence of such structure. In
such a case, we simply run standard search, instead. As a
side remark, this limitation is merely due to the preliminary
methods to identify suitable factorings. In general, every
task has a star topology and can be tackled by decoupled
search.

Depending on the particular factoring profile that has been
identified, we also enable extensions of decoupled search
that have recently been developed, namely partial-order re-
duction (POR) (Gnad, Wehrle, and Hoffmann 2016) and
dominance pruning (Torralba et al. 2016). POR via strong
stubborn sets is a technique that is well-known in standard
search and originates from the model checking community
(Valmari 1989; Alkhazraji et al. 2012; Wehrle and Helmert
2012; 2014). Dominance pruning identifies states that can be
safely discarded, without affecting completeness (and opti-
mality). Both of these techniques can only be used if the
identified factoring has the form of a fork. We also enable
POR, whenever our factoring method does not find a suit-
able profile.

Preliminaries
We use a finite-domain state variable formalization of plan-
ning (e. g. (Bäckström and Nebel 1995; Helmert 2006)). A
finite-domain representation planning task, short FDR task,
is a quadruple Π = 〈V,A, I,G〉. V is a set of state vari-
ables, where each v ∈ V is associated with a finite domain
D(v). We identify (partial) variable assignments with sets of
variable/value pairs. A complete assignment to V is a state.
I is the initial state, and the goal G is a partial assignment
to V . A is a finite set of actions. Each action a ∈ A is a tu-
ple 〈pre(a), eff(a)〉 where the precondition pre(a) and effect
eff(a) are partial assignments to V .

For a partial assignment p, V(p) ⊆ V denotes the sub-
set of state variables instantiated by p. For any V ′ ⊆ V(p),
by p[V ′] we denote the assignment to V ′ made by p. An
action a is applicable in a state s if pre(a) ⊆ s, i. e., if
s[v] = pre(a)[v] for all v ∈ V(pre(a)). Applying a in s
changes the value of each v ∈ V(eff(a)) to eff(a)[v], and
leaves s unchanged elsewhere; the outcome state is denoted
sJaK. We also use this notation for partial states p: by pJaK
we denote the assignment over-writing p with eff(a) where
both p and eff(a) are defined. The outcome state of applying
a sequence of (respectively applicable) actions is denoted
sJ〈a1, . . . , an〉K. A plan for Π is an action sequence s.t.
G ⊆ IJ〈a1, . . . , an〉K. For the task of proving a task un-
solvable, we are only interested in the existence of a plan
that transforms the initial state I to a goal state sG, with
sG[v] = G[v] for all v ∈ V(G). We consequently ignore
action costs in the following.

To identify the required structure for factoring the vari-
ables, we need the notion of the causal graph (e. g.
(Knoblock 1994; Jonsson and Bäckström 1995; Brafman
and Domshlak 2003; Helmert 2006)). The causal graph of
a planning task captures state variable dependencies. We
use the commonly employed definition in the FDR context,
where the causal graph CG is a directed graph over vertices
V , with an arc from v to v′, which we denote (v → v′),
if v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a))∪V(pre(a))]×V(eff(a)). In words, the
causal graph captures precondition-effect as well as effect-
effect dependencies, as result from the action descriptions.
A simple intuition is that, whenever (v → v′) is an arc in
CG, changing the value of v′ may involve changing that of
v as well. We assume for simplicity that CG is weakly con-

nected (this is wlog: else, the task can be equivalently split
into several independent tasks).

Decoupled Search

We run decoupled search like introduced by Gnad, Hoff-
mann, and Domshlak (2015), with the same factoring
strategy and search settings, i. e., optimized for satisficing
search. Since there is no difference in the main algorithm,
we only give a brief summary, here.

Prior to search, the factoring of the input task Π is per-
formed, by analyzing its causal graph. Denote by FSCC the
factoring whose factors are the strongly connected compo-
nents (SCC) of CG. The interaction graph IG(F) of a fac-
toring F is the directed graph whose vertices are the factors,
with an arc (F → F ′) if F 6= F ′ and there exist v ∈ F
and v′ ∈ F ′ such that (v → v′) is an arc in CG. The actual
factoring works as follows: In a first step, each leaf in FSCC

will be assigned to a single leaf factor FL. If the causal
graph is not strongly connected, i. e., at least one such leaf
exists, this results in a fork factoring, where – denoting by
FC′

the remaining components – all transitions in IG(FSCC)

are of the form (FC′ → FL). In a second step, each root
from the sub-graph of IG(FSCC) that only contains the com-
ponents in FC′

is also assigned to a new leaf factor. By
FC we denote the remaining components that have not been
assigned to a leaf. Finally, all leaves FL2 detected in the sec-
ond step that introduce transitions in IG(FSCC) of the form
(FL2 → FL1) will be put back into FC , to prevent depen-
dencies across leaf factors. If leaves have been detected in
both steps and at least one of those from step 2 has not been
removed, this results in X-shape factoring with “inverted-
fork” leaves that provide preconditions for the center, and
“fork” leaves, that only have preconditions on the center
and themselves. If only in the second step leaves have been
added, this results in a pure inverted-fork factoring.

Given a factoring F with center factor FC and leaves
FL ∈ FL, decoupled search is performed as follows:

The search will only branch over center actions, i. e., those
actions affecting a variable in FC . Along such a path of cen-
ter actions πC , for each leaf factor FL, the search maintains
a set of leaf paths, i. e., actions only affecting variables of
FL, that comply with πC . Intuitively, for a leaf path πL to
comply with a center path, it must be possible to embed πL

into πC such that the FL-preconditions of all center actions
are provided by πL at the respective points in πC , and the
FC preconditions of all leaf actions are provided by πC .

A decoupled state corresponds to an end state of such a
center action sequence. The main advantage over standard
search originates from a decoupled state being able to rep-
resent exponentially many explicit states, thereby getting rid
of having to enumerate all of them. A decoupled state can
“contain” many explicit states, because by instantiating the
center with a center action sequence, the leaf factors are mu-
tually independent. Thus, the more leaves in the factoring,
the more explicit states can potentially be represented by a
single decoupled state.

Decoupled strong stubborn sets
In addition to the plain decoupled search variant outlined
above, we enable decoupled strong stubborn sets (DSSS),
when the factoring method results in a fork topology. The
usage of this technique is identical to what has been intro-
duced in Gnad, Wehrle, and Hoffmann (2016), so we don’t
give the formal details, here. DSSS are a straightforward ex-
tension of POR to the decoupled search setting, where some
care must be taken due to the specific structure of the decou-
pled state space, especially the distinction between center
and leaf actions. Like in the standard state space, it removes
transitions that will lead to different permutations of action
sequences leading to the same outcome state. The only mi-
nor difference to the original implementation is a “safety
belt”, that disables DSSS if after the first 1000 expansions,
not a single transition has been removed.

Decoupled dominance pruning
Another decoupled search extension that has only recently
been introduced is dominance pruning (Torralba et al. 2016),
where decoupled states that are dominated by other – already
visited – states can be safely discarded. We only deploy
a very lightweight pruning method, namely frontier prun-
ing. The plain decoupled search variant performs a dupli-
cate checking that can already detect certain forms of dom-
inance, in particular if two decoupled states have the same
center state and all leaf states reachable in one state are (at
most as costly) also reachable in the other. Frontier prun-
ing improves this by only comparing a subset of the reached
leaf states, those that can possibly make so far unreached
leaf states available. It has originally been developed for op-
timal planning, but can be easily adapted to become more
efficient, when optimal solutions do not matter, by replacing
the real cost of reaching a leaf state by 0, if a state has been
reached at any cost.

Additionally, we also employ a leaf simulation, originally
proposed by Torralba and Kissmann (2015), to remove su-
perfluous leaf states and leaf actions, discovering transitions
that can be replaced by other transitions, then running a
reachability check on the leaf state space. In some domains,
this can tremendously reduce the size of the leaf state spaces.

Implementation
Decoupled Search has been implemented as an extension of
the Fast Downward (FD) planning system (Helmert 2006).
By changing the low-level state representation, many of
FD’s built-in algorithms and functionality can be used with
only minor adaptations. Of particular interest for the task of
proving unsolvability are the A∗ algorithm, the hmax heuris-
tic (Bonet and Geffner 2001) for dead-end pruning, and
partial-order reduction via strong stubborn sets. On top of
the standard FD preprocessor, we perform a relevance anal-
ysis based on h2, in order to eliminate actions and simplify
the planning task prior to the search (Alcázar and Torralba
2015). In some domains, this relevance analysis is even
powerful enough to detect a task unsolvable without actu-
ally having to start the search.

All our search variants run A∗ using hmax. The actual
search configuration depends on the identified factoring F
as follows:

(i) |F| ≤ 2 (at most 1 leaf factor): Run standard search
using strong stubborn sets.

(ii) |F| > 2 (at least 2 leaf factor) and F is a fork fac-
toring: Run decoupled search using decoupled strong
stubborn sets, frontier dominance pruning, and leaf
simulation.

(iii) |F| > 2 (at least 2 leaf factor) and F is not a fork
factoring: Run decoupled search without extensions.

The combination of decoupled strong stubborn sets and
dominance pruning has not been formally described, before.
We are not going into this, either, but rather give the intu-
ition of why this still results in a complete search algorithm.
Given a set of actions applicable in a state, decoupled strong
stubborn sets prune the subset of these actions, that start dif-
ferent permutations of actions leading to the same outcome
state. By guaranteeing that one of these permutations appli-
cable in the current state will not be pruned, search using
strong stubborn sets remains complete (and optimal).

In contrast to that, dominance pruning removes a state s
that is dominated by another decoupled state t. By analyz-
ing the structure of the leaf factors and comparing only the
relevant leaf states of s to those of t, it can detect that all
states that are reachable from s are also (at most as costly)
reachable from t.

Putting things together, decoupled strong stubborn sets
and dominance pruning are orthogonal methods to reduce
the size of the state space – one removes transitions that cor-
respond to redundant permutations of action sequences, the
other removes states that cannot reach anything that could
not be reached before. Consequently, it is safe to com-
bine both, resulting in a state space that can be significantly
smaller than when only using one of the techniques.

The case distinction outlined above allows a flexible adap-
tation to the given input problem, and since computing the
factoring in most tasks finishes within split seconds, there
is (almost) no computational overhead to determine which
search variant to use.

Acknowledgments. This work was partially supported by
the German Research Foundation (DFG), under grant HO
2169/6-1, “Star-Topology Decoupled State Space Search”.

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the im-
portance of computing and exploiting invariants in planning.
In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein,
S., eds., Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15). AAAI
Press.
Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert,
M. 2012. A stubborn set algorithm for optimal planning. In
Raedt, L. D., ed., Proceedings of the 20th European Confer-
ence on Artificial Intelligence (ECAI’12), 891–892. Mont-
pellier, France: IOS Press.

Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Brafman, R., and Domshlak, C. 2003. Structure and com-
plexity in planning with unary operators. Journal of Artifi-
cial Intelligence Research 18:315–349.
Gnad, D., and Hoffmann, J. 2015. Beating LM-cut with
hmax (sometimes): Fork-decoupled state space search. In
Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein,
S., eds., Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15). AAAI
Press.
Gnad, D.; Hoffmann, J.; and Domshlak, C. 2015. From fork
decoupling to star-topology decoupling. In Lelis, L., and
Stern, R., eds., Proceedings of the 8th Annual Symposium
on Combinatorial Search (SOCS’15). AAAI Press.
Gnad, D.; Wehrle, M.; and Hoffmann, J. 2016. Decoupled
strong stubborn sets. In Kambhampati, S., ed., Proceedings
of the 25th International Joint Conference on Artificial In-
telligence (IJCAI’16). AAAI Press/IJCAI.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Jonsson, P., and Bäckström, C. 1995. Incremental planning.
In European Workshop on Planning.
Knoblock, C. 1994. Automatically generating abstractions
for planning. Artificial Intelligence 68(2):243–302.
Torralba, Á., and Kissmann, P. 2015. Focusing on what
really matters: Irrelevance pruning in merge-and-shrink. In
Lelis, L., and Stern, R., eds., Proceedings of the 8th Annual
Symposium on Combinatorial Search (SOCS’15), 122–130.
AAAI Press.
Torralba, Á.; Gnad, D.; Dubbert, P.; and Hoffmann, J. 2016.
On state-dominance criteria in fork-decoupled search. In
Kambhampati, S., ed., Proceedings of the 25th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’16).
AAAI Press/IJCAI.
Valmari, A. 1989. Stubborn sets for reduced state space gen-
eration. In Proceedings of the 10th International Conference
on Applications and Theory of Petri Nets, 491–515.
Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B.,
eds., Proceedings of the 22nd International Conference on
Automated Planning and Scheduling (ICAPS’12). AAAI
Press.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Chien,
S.; Do, M.; Fern, A.; and Ruml, W., eds., Proceedings of the
24th International Conference on Automated Planning and
Scheduling (ICAPS’14). AAAI Press.

