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Abstract
In this paper, we introduce a planner that, similar to CDCL
(conflict-driven clause learning) SAT solvers, learns from
making wrong decisions in a way guaranteeing to preclude
these mistakes in the future. The planner we describe, named
CLone, conducts a depth-first forward search in the state
space of the problem. To identify dead ends early on, and
thus to reduce search effort, we make use of the critical path
heuristic hC . hC is defined relative to a given set C of fact
conjunctions. During search, we identify unrecognized dead
ends, i. e., dead ends s with hC(s) < ∞, and we use them
to update C in order to recognize s, and possibly also dead
ends similar to s. As the evaluation of hC is getting compu-
tationally more expensive the more conjunctions are added
to C, we further maintain and continuously update a set of
clauses ∆ with the property that if s 6|= φ for some φ ∈ ∆
then hC(s) = ∞. Although these clauses are subsumed by
hC by definition, they have a tremendous impact in practice.
For a more detailed explanation of this approach, we refer the
reader to (Steinmetz and Hoffmann 2016).

Introduction
CLone determines the (un-)solvability of a problem by run-
ning a depth-first like search in the state space. When only
running search in the state space (i. e. without using ad-
ditional state reduction techniques), one has to construct
the entire state space to show the unsolvability of a prob-
lem. To reduce the number of states that actually have to
be touched by the search, and thus to avoid building the
whole state space, we rely on heuristic functions h, i. e.,
estimations of the distance from a given state to the goal.
Contrary to finding solutions to solvable problems, however,
we are not interested in the actual goal distance estimations
given by the heuristics: if a problem is unsolvable, then the
search has to explore all states s with h(s) < ∞ – where
h(s) = ∞ means that s is even unsolvable in the relax-
ation underlying h. This led to the definition of unsolvabil-
ity heuristics, heuristics that either return ∞ (“dead-end”)
or 0 (“don’t know”) (Bäckström et al. 2013; Hoffmann et al.
2014). Concrete unsolvability heuristics have been designed
based on state-space abstractions, specifically projections
(pattern databases (Edelkamp 2001)) and merge-and-shrink
abstractions (Helmert et al. 2014). The empirical results are
impressive, especially for merge-and-shrink which convinc-
ingly beats state-of-the-art BDD-based planning techniques

(Torralba and Alcázar 2013) on a suite of unsolvable bench-
mark tasks.

Critical-path heuristics lower-bound goal distance
through the relaxing assumption that, to achieve a conjunc-
tive subgoal G, it suffices to achieve the most costly atomic
conjunction contained in G. In the original critical-path
heuristics hm (Haslum and Geffner 2000), the atomic
conjunctions are all conjunctions of size ≤ m, where m
is a parameter. As part of recent works (Haslum 2009;
2012; Keyder et al. 2014), this was extended to arbitrary
sets C of atomic conjunctions. Following Hoffmann and
Fickert (2015), we denote the generalized heuristic with
hC . A well-known and simple result is that, for sufficiently
large m, hm delivers perfect goal distance estimates. As a
corollary, for appropriately chosen C, hC recognizes all
dead-ends. Our idea thus is to refine C during search, based
on the dead-ends encountered.

We start with a simple initialization of C, to the set of
singleton conjunctions. During search, components Ŝ of un-
recognized dead-ends, where hC(s) < ∞ for all s ∈ Ŝ, are
identified (become known) when all their descendants have
been explored. We refine hC on such components Ŝ, adding
new conjunctions intoC in a manner guaranteeing that, after
the refinement, hC(s) = ∞ for all s ∈ Ŝ. The refined hC
has the power to generalize to other dead-ends search may
encounter in the future, i. e., refining hC on Ŝ may lead to
recognizing also other dead-end states s′ 6∈ Ŝ. It is known
that computing critical-path heuristics over large sets C is
(polynomial-time yet) computationally expensive. Comput-
ing hC on all search states often results in prohibitive run-
time overhead. We tackle this with a form of clause learning.
For a dead-end state s where hC evaluates to∞, we extract
a clause φ that guarantees for all states s′ with s′ 6|= φ that
hC(s′) =∞. When testing whether a new state s′ is a dead-
end, we first evaluate the clauses φ, and invoke the compu-
tation of hC(s′) only in case s′ satisfies all clauses φ ∈ ∆.

The resulting algorithm approaches the elegance of clause
learning in SAT (e. g. (Marques-Silva and Sakallah 1999;
Moskewicz et al. 2001; Eén and Sörensson 2003)): When
a subtree is fully explored, the hC-refinement and clause
learning (1) learns to refute that subtree, (2) enables back-
jumping to the shallowest non-refuted ancestor, and (3) gen-
eralizes to other similar search branches in the future.



For full details on the techniques used in this planner, we
refer the reader to (Steinmetz and Hoffmann 2016).

Background
We consider planning tasks Π = 〈F ,A, I,G〉 in STRIPS
encoding. F gives a set of facts; A a set of actions; I ⊆ F
is the initial state; and G ⊆ F the goal. Each a ∈ A has
a precondition pre(a) ⊆ F , an add list add(a) ⊆ F , and
a delete list del(a) ⊆ F . Action costs are irrelevant with
respect to the solvability of planning tasks, so we assume
unit cost throughout. In action preconditions and the goal,
the fact set is interpreted as a conjunction; we will use the
same convention for the conjunctions in the set C, i. e., the
c ∈ C are fact sets c ⊆ F . A state s, in particular the initial
state I , is a set of facts, namely those true in s (the other facts
are assumed to be false). There is a transition from state s to
s[[a]] via action a if a is applicable to s, i. e., pre(a) ⊆ s,
and s[[a]] := (s\del(a))∪add(a). Goal states are all states
s where G ⊆ s. A dead-end is a state for which no path to a
goal state exists. Viewing the state space of Π, denoted ΘΠ,
as a directed graph over states, given a subset S ′ of states,
by ΘΠ|S′ we denote the subgraph induced by S ′. If there is
a path in ΘΠ|S′ from s to t, then we say that t is reachable
from s in ΘΠ|S′ .

A heuristic is a function hmapping states to natural num-
bers or∞. The family of critical-path heuristics, which un-
derly Graphplan (Blum and Furst 1997) and were formally
introduced by Haslum and Geffner (2000), estimate goal dis-
tance through the relaxation assuming that, from any goal
set of facts, it suffices to achieve the most costly subgoal
(sub-conjunction). The family is parameterized by the set of
atomic subgoals considered. Formally, for a fact set G and
action a, define the regression of G over a as R(G, a) :=
(G \ add(a)) ∪ pre(a) in case that add(a) ∩ G 6= ∅ and
del(a) ∩ G = ∅; otherwise, the regression is undefined and
we write R(G, a) = ⊥. By A[G] we denote the set of ac-
tions where R(G, a) 6= ⊥. Let C be any set of conjunc-
tions. The generalized critical-path heuristic (Hoffmann and
Fickert 2015) hC(s) is defined through hC(s) := hC(s,G)
where

hC(s,G) =

{0 G ⊆ s
1 + mina∈A[G] h

C(s,R(G, a))G ∈ C
maxG′⊆G,G′∈C h

C(s,G′) else
(1)

A well known property of critical path heuristics is that
they are admissible, i. e., that they always underestimate the
real goal distance. In other words, if hC(s) = ∞, then, as
desired, s is indeed a dead end, and s can be disregarded in
search without loosing completeness. Note that hC(s) =∞
occurs (only) due to empty minimization in the middle case
of Equation 1, i. e., if every possibility to achieve the global
goal G incurs at least one atomic subgoal not supported by
any action.

Similarly as for hm, hC can be computed in time poly-
nomial in |C| and the size of Π. It is known that, in prac-
tice, hm is reasonably fast to compute for m = 1, consumes
substantial runtime for m = 2, and is mostly infeasible for
m = 3. The behavior is similar when using arbitrary con-
junction sets C, in the sense that large C causes similar is-

Algorithm 1: CLone
1 Procedure DFS(Π)
2 Open := empty stack; push I to Open;
3 Closed := ∅;
4 while Open is not empty do
5 s← Open.top();
6 Open.pop();
7 if s ∈ Closed then
8 continue;

9 if hC(s) =∞ then
10 Backtrack(s);
11 continue;

12 if G ⊆ s then
13 return solvable;

14 Closed := Closed ∪ {s};
15 for all a ∈ A applicable to s do
16 push s[[a]] to Open;

17 CheckAndLearn(s);

18 return unsolvable;

19 Procedure CheckAndLearn(s)
20 R[s] := {t | t reachable from s in ΘΠ|Open∪Closed};
21 ifR[s] ⊆ Closed then
22 refine C s.t. hC(t) =∞ for every t ∈ R[s];
23 Backtrack(s);

24 Procedure Backtrack(s)
25 label s;
26 for every unlabeled parent t of s do
27 CheckAndLearn(t);

sues as hm for m > 1. As hinted, we will use a clause-
learning technique to alleviate this.

Search, Fail, Refine & Repeat
CLone runs search in the state space of the problem using hC
as a dead end identifier. During search, CLone keeps track
of expanded states to identify yet unrecognized dead ends.
Whenever an unrecognized dead end s is found, the set C
is extended by new atomic conjunction, guaranteeing that
hC(s) = ∞ after the refinement. In order to avoid as many
of the rather expensive computations of hC as possible,
CLone learns clauses as sufficient conditions to hC(s) =∞
each time a state is found where hC(s) has been evaluated
to∞. The clauses are used to filter states before hC is eval-
uated.

Identifying Failures in Search
Consider Algorithm 1. At the heart of CLone, it performs a
depth-first forward search in the state space of the problem,
while maintaining a closed list for duplicate checking. hC is
used as an efficient method to identify dead ends, eliminating
necessity of exploring any of the state’s successors.

To identify also dead ends not (yet) recognized by hC ,
CLone analyzes the search space after each state expansion.
The corresponding code, function CheckAndLearn in Al-
gorithm 1, performs a full lookahead search in the current
search space (ΘΠ|Open∪Closed ), looking for states that have



not been expanded so far. Intuitively, a state s is a known
dead-end if the search has already proved that s is a dead
end, meaning that all states t reachable from s have al-
ready been explored and no such state t is a goal state, i. e.,
R[s] ⊆ Closed . It is easy to see that the concept of “known
dead-end” does capture exactly our intentions:
Proposition 1. Let s be a known dead-end during the exe-
cution of Algorithm 1. Then s is a dead-end.

Vice versa, if R[s] 6⊆ Closed , then some descendants of
s have not yet been explored, so the search does not know
whether or not s is a dead-end.

Once a known dead-end s is found, C is refined in a way
guaranteeing that hC(s) = ∞ afterwards. As we know al-
ready that s is a dead end, forcing that hC(s) =∞ seems to
be redundant. However, the reason of the refinement of C is
not actually to have hC recognize s as dead end, but rather
the hope that dead ends similar to s will be recognized as
well due to this very refinement.

To guarantee that all known dead-ends are found, and
thus to learn as much as possible, R[t] ⊆ Closed has to
be checked for each state t ∈ Closed after every state ex-
pansion. Naively checking this property for each state t ∈
Closed after every expansions is clearly infeasible. Instead,
CLone uses the observation that the propertyR[t] ⊆ Closed
can only change for ancestors t of the state s that was ex-
panded last. To find all these states, CLone checks this con-
dition on the parents of s, and recursively continues on those
parents satisfying the condition.

Although CLone could in principle also run any other
Closed -list based search algorithm, the key advantage of
DFS in our setting is that it focuses on completely explor-
ing subtrees, and hence it is able to identify unrecognized
dead-ends quickly.

Failure Analysis & hC Refinement
Once identified a known though unrecognized dead end s,
we have to find conjunctionsX that, when added toC, guar-
antee that hC∪X(s) = ∞. To find X , CLone makes use
of the specific context in which C is going to be refined.
Observe that whenever CheckAndLearn(s) calls the refine-
ment of C, it holds: (*) For every transition t → t′ where
t ∈ R[s], either t′ ∈ R[s] or uC(t′) = ∞. We will refer to
this by the recognized neighbors property. This is because
R[s] contains only closed states, so it contains all states t
reachable from s except for those where hC(t) =∞.

Algorithm 2 shows the overall refinement process. We
use Ŝ := R[s] to denote the component on which C is re-
fined, and T̂ := {t′ | t a−→ t′, t ∈ Ŝ, t′ 6∈ Ŝ} to denote
recognized neighbors. As shown at the top of Algorithm 2,
CLone computes X by recursively adding an unreachable
subgoal x ⊆ R(G, a) for each a ∈ A[G] to X , correspond-
ing to the middle case of Equation 1, and then continuing on
G = x until either hC(s,G) is already∞ for every s ∈ Ŝ, or
a[G] = ∅. Note that determining whether some x ⊆ R(G, a)
is unreachable from a state s is PSPACE-complete in gen-
eral. To still find such an x efficiently, CLone uses the rec-
ognized neighbors property:

Algorithm 2: Refining C for Ŝ with recognized neigh-
bors T̂ . C and X are global variables.

1 Procedure Refine(G)
2 x := ExtractX(G);
3 X := X ∪ {x};
4 for a ∈ A[x] where ex. s ∈ Ŝ s.t. hC(s,R(x, a)) <∞

do
5 if there is no x′ ∈ X s.t. x′ ⊆ R(x, a) then
6 Refine(R(x, a));

7 Procedure ExtractX(G)
8 x := ∅;

/* Lemma 2 (ii) */

9 while ∃t ∈ T̂ so that hC(t, x) <∞ do
10 c0 := ∅; n0 := 0;
11 for each c ∈ C where c ⊆ G do
12 n := |{t ∈ T̂ | hC(t, x) <∞, hC(t, c) =∞}|;
13 if n ≥ n0 or (n = n0 and |c \ x| < |c0 \ x|)

then
14 c0 := c; n0 := n;

15 x := x ∪ c0;

/* Lemma 2 (i) */

16 for every s ∈ Ŝ do
17 if x ⊆ s then
18 select p ∈ G \ s; x := x ∪ {p};

19 return x;

Lemma 2 (Steinmetz and Hoffmann 2016). If x ⊆ G satis-
fies

(i) for every s ∈ Ŝ, x 6⊆ s; and
(ii) for every t ∈ T̂ , there exists c ∈ C such that c ⊆ x and

hC(t, c) =∞;
then x is unreachable from every s ∈ Ŝ.

To ensure (ii) of Lemma 2 in the computation of x,
CLone’s procedure ExtractX(G) tries to greedily construct
a minimal conjunction that covers all recognized neighbors.
It does so by merging an atomic conjunction c0 ∈ C, c0 ⊆ G
into x that covers as many recognized neighbors as possible,
while being minimal in size, as long as the condition (ii) is
not satisfied. If the resulting x is not contained in any s ∈ Ŝ
then we are done, otherwise for each affected s we add a
fact p ∈ G \ s into x, to ensure Lemma 2 (i). Putting things
together, we get the desired result:
Theorem 2 (Steinmetz and Hoffmann 2016). Algorithm 2
is correct:

(i) The execution is well defined, i. e., it is always possible
to extract a conflict x as specified.

(ii) The algorithm terminates.
(iii) Upon termination, hC∪X(s) =∞ for every s ∈ Ŝ.

Clause Learning
As pointed out, the clauses we learn do not have the same
pruning power as hC . Yet they have a dramatic runtime ad-
vantage, which is key to applying learning and pruning liber-
ally. We always evaluate the clauses prior to evaluating hC ,



and we learn a new clause every time hC is evaluated and
returns∞.

Different from the clause learning approach presented
in our prior work (Steinmetz and Hoffmann 2016), CLone
computes the clauses directly from the structure underlying
hC . Say hC has been evaluated on s to∞. CLone constructs
a clause φ so that s′ 6|= φ implies hC(s′) = ∞ following
Equation 1. In detail, φ is set to a disjunction of atomic con-
junctions so that (1) for each atomic conjunction c taking
part in φ: hC(s, c) = ∞; (2) for each c ∈ φ and for each
a ∈ A[c], there must be some c′ ∈ φ with c′ ⊆ R(c, a) (cf.
middle case of Equation 1); and (3) there must be an atomic
conjunction c ∈ φ so that c ⊆ G (cf. last case of Equation
1). In this way, CLone ensures that φ is self contained, i. e.,
that for each atomic conjunction c ∈ φ, φ covers all possi-
ble ways of achieving c. In other words, if a state s′ does
not satisfy φ, i. e., c 6⊆ s′ for every c ∈ φ, then we obtain
hC(s′) =∞ as a direct consequence.

Implementation
CLone is implemented on top of Fast Downward (Helmert
2006), extended by the h2 preprocessor (Alcázar and Tor-
ralba 2015). For hC , following Hoffmann and Fickert
(2015), we use counters over pairs (c, a) where c ∈ C,
a ∈ A[c], and R(c, a) does not contain a fact mutex. The
depth-first search of CLone breaks ties (order of children)
randomly .

Given a problem in form of a PDDL domain and a PDDL
problem file, Fast Downward first compiles these files into
an FDR planning task. All methods (and in particular the
search), except of the computation and refinement of hC , op-
erate directly on this FDR encoding. Only the computation
and refinement of hC pretend to have a STRIPS encoding of
the problem by considering variable value pairs as facts, and
threating the actions accordingly.

CLone initializesC to the set of all unit conjunctions, i. e.,
C = {{p} | p ∈ F}. Additionally, if the causal graph of the
FDR task contains more than one maximal SCC, CLone adds
the conjunctions of facts to C corresponding to the variable
value assignments of all pairs of variables that are part of the
root SCC. The intuition behind this is that the root compo-
nent of a problem’s causal graph is usually a central part of
the problem structure, and having the pairs of the values of
the corresponding variables often helps the refinement algo-
rithm to find smaller sets X .
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