The Merge-and-Shrink Planner:
Bisimulation-based Abstraction for Optimal Planning

Raz Nissim
Ben-Gurion University
Beer-Sheva, Israel
raznis@cs.bgu.ac.il

Abstract

Merge-and-shrink abstraction is a general approach to heuris-
tic design whose key advantage is its capability to make very
fine-grained choices in defining abstractions. The Merge-
and-shrink planner uses two different strategies for making
these choices, both based on the well-known notion of bisim-
ulation. The resulting heuristics are used in two sequential
runs of A* search.

Introduction

Many optimal planning systems are based on state-space
search using A* and admissible heuristics. Merge-and-
shrink abstraction (Driger ef al. 2006; Helmert et al. 2007),
short M&S, uses solution distances in a smaller, abstract
state space to deliver a consistent and admissible heuristic
function.

The abstract state space is built in an incremental fash-
ion, starting with a set of atomic abstractions correspond-
ing to individual variables, then iteratively merging two ab-
stractions — replacing them with their synchronized prod-
uct — and shrinking them — aggregating pairs of states into
one. Thus, despite the exponential size of the state space,
M&S allows to select individual pairs of states to aggregate.
This freedom in abstraction design comes with significant
advantages. M&S dominates most other known frameworks
for computing admissible planning heuristics: for any given
state, it can with polynomial overhead compute a larger
lower bound (Helmert and Domshlak 2009).

The M&S planner employs two different shrinking strate-
gies, which choose the states to aggregate using the notion of
bisimulation. In this paper we briefly describe bisimulation
and label reduction, and conclude with a detailed description
of the M&S planner.

Background

Our approach is based on the notion of bisimulation, a well-
known criterion under which an abstract state space “ex-
hibits the same observable behavior” as the original state
space (Milner 1990). Two states s,t are bisimilar if: (1)
they agree on whether or not the goal is true; and (2) every
transition label, i.e., every planning operator, leads into the
same abstract state from both s and ¢. If we aggregate only
bisimilar states during M&S, then the heuristic is guaranteed

Jorg Hoffmann
INRIA
Nancy, France
joerg.hoffmann @inria.fr

Malte Helmert
University of Freiburg
Freiburg, Germany
helmert@informatik.uni-freiburg.de

to be perfect. However, bisimulations are exponentially big
even in trivial examples. Our key observation is that, for the
purpose of computing a heuristic, we can relax bisimulation
significantly without losing any information. Namely, we
do not need to distinguish the transition labels. Such a fully
label-reduced bisimulation still preserves solution distance,
while often being exponentially smaller.

Unfortunately, while full label reduction does not affect
solution distances per se, its application within the M&S
framework is problematic. The merging step, in order to
synchronize transitions, needs to know which ones share the
same label. We tackle this by using partial label reductions,
ignoring the difference between two labels only if they are
equivalent for “the rest” of the M&S construction. We thus
obtain, again, a strategy that guarantees to deliver a perfect
heuristic.

Even label-reduced bisimulations are sometimes too big,
thus for practicality one needs a strategy to approximate fur-
ther if required. The M&S planner uses two such strategies,
each relaxing the strict rules of bisimulation in a different
way.

For more details on bisimulation, label reduction, and us-
ing their combination to create perfect heuristics in polyno-
mial time in some planning domains, we refer to a confer-
ence paper (forthcoming).

The M&S Strategies

The merging strategy we use is linear (meaning only one
non-atomic abstraction is maintained), and follows Fast-
Downward’s “level heuristic” (Helmert 2006). This orders
variables so that those “closest to the root of the causal
graph” go first (this is beneficial for operator projection be-
cause the most influential variables are projected away ear-
lier on).

Our planner uses two shrinking strategies, each having
different strengths and weaknesses. After experimenting
with many shrinking strategies, we did not find one that
greatly outperformed the others. Our choice of strategies for
our planner was therefore guided by the relatively high vari-
ance of tasks solved by the two. Since these strategies are
the core feature of the planner, we describe them in some
more detail in what follows.



The Greedy Bisimulation Shrinking Strategy

The bisimulation shrinking strategy computes the coarsest
bisimulation, and in the shrinking step, aggregates only
bisimilar (abstract) states. In most benchmark domains,
however, coarsest bisimulations are still large even under op-
erator projection. Greedy bisimulation is a relaxed variant of
bisimulation, which demands the bisimulation property only
for transitions s — s’ where the abstract goal distance from
s is at most as large as the abstract goal distance from s'.
This relaxation forfeits the guarantee of providing a perfect
heuristic.

The greedy bisimulation shrinking strategy therefore
computes the coarsest greedy bisimulation using partial la-
bel reduction, aggregating only greedily bisimilar states.
Since the (greedy) bisimulation strategy is given no limit
on the size of the abstraction, the actual abstraction size de-
pends only on the size of the coarsest greedy bisimulation.
We observed that using greedy bisimulation dramatically re-
duces abstraction size, increasing the number of cases where
the abstraction can be built completely. In fact, when us-
ing the bisimulation strategy, the abstraction was built com-
pletely only in 203 out of 876 IPC tasks we experimented
on. Using greedy bisimulation brings this number up to 795.
This reduction in size also improves speed, making the ab-
straction much faster to compute.

The DFP-gop Shrinking Strategy

Motivated by the size of bisimulations, Driger et al. (2006)
propose a more approximate shrinking strategy that we will
call the DFP shrinking strategy. When building the coars-
est bisimulation, the strategy keeps separating states until
the size limit NV is reached. The latter may happen before
a bisimulation is obtained, in which case we may lose in-
formation. The strategy prefers to separate states close to
the goal, thus attempting to make errors only in more distant
states where the errors will hopefully not be as relevant.

The DFP-gop shrinking strategy (“g” stands for greedy,
“op” for operator projection) enhances the DFP strategy in
two ways. First, partial label reduction is used when com-
puting the coarsest bisimulation. Second, if bisimulation
breaks the abstraction size limit, the greedy coarsest bisim-
ulation is used to select which states to aggregate. For the
abstraction size limit, we chose to set N = 200, 000. Be-
cause DFP-gop aggregates only bisimilar states as long as
N is not reached, its high value allows computation of per-
fect heuristics, in cases where there exist sufficiently small
coarsest bisimulations. In all 20 tasks of the IPC benchmark
domain Gripper, for example, the final abstraction computed
by this strategy is a bisimulation of the original search space,
and therefore provides the perfect heuristic.

The high N value comes at a cost — computing the ab-
straction is slow and requires much memory. Out of the 876
tasks experimented on, only in 490 was the final abstraction
computed without running out of time/memory.

The Planner

The M&S planner is implemented on top of the Fast Down-
ward planning system. For further information on Fast

Downward’s PDDL-to-finite-domain translator, please refer
to the paper by Helmert (2009). For details regarding how
M&S abstractions are used in the search process, refer to the
paper by Helmert et al. (2007). Finally, for general infor-
mation about the planner, we refer the reader to its original
description (Helmert 2006).

The Hybrid Implementation

In order to take advantage of the strengths of both strate-
gies, our planner is designed to divide the given time limit
between two sequential runs, using % of the available time
for the greedy bisimulation shrinking strategy, followed —
if no solution is found — with DFP-gop for the remaining
time. (The value of % was determined experimentally based
on data for IPC 1998-2008 benchmarks.) In each run of the
planner, the M&S abstraction is computed according to the
strategy, and A*search is performed using solution distances
in the abstraction as heuristic values.

We chose the hybrid implementation for two reasons.
First, cutting the time limit had little effect on coverage re-
sults for the two strategies. This allowed us to take advan-
tage of two different M&S strategies. Second, we tried com-
puting both abstractions and using the maximal of the two in
one search run, but this turned out to be too costly both in
time and in memory. In most cases, construction of the two
abstractions either exceeded the 30 minute time limit or the
2GB memory limit.

References

Klaus Dréger, Bernd Finkbeiner, and Andreas Podelski. Directed
model checking with distance-preserving abstractions. In Proc.
SPIN 2006, pages 19-34, 2006.

Malte Helmert and Carmel Domshlak. Landmarks, critical paths
and abstractions: What’s the difference anyway? In Proc. ICAPS
2009, pages 162-169, 2009.

Malte Helmert, Patrik Haslum, and Jorg Hoffmann. Flexible ab-
straction heuristics for optimal sequential planning. In Proc. ICAPS
2007, pages 176-183, 2007.

Malte Helmert. The Fast Downward planning system. JAIR,
26:191-246, 2006.

Malte Helmert. Concise finite-domain representations for PDDL
planning tasks. AlJ, 173:503-535, 2009.

Robin Milner. Operational and algebraic semantics of concurrent
processes. In Handbook of TCS, pages 1201-1242. 1990.



