
March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

International Journal of Semantic Computing
c© World Scientific Publishing Company

A CACHING TECHNIQUE FOR OPTIMIZING

AUTOMATED SERVICE DISCOVERY

MICHAEL STOLLBERG

SAP Resesearch Center Dresden,

Chemnitzer Str. 48, 01187 Dresden, Germany

michael.stollberg@sap.com

JÖRG HOFFMANN

Equipe MAIA, INRIA Nancy,

615 rue du Jardin Botanique, 54600 Villers-les-Nancy, France

joerg.hoffmann@loria.fr

DIETER FENSEL

Semantic Technology Institute, University of Innsbruck,

Technikerstrae 21a, 6020 Innsbruck, Austria

dieter.fensel@sti2.at

Received (07 January 2011)
Revised (25 March 2011)

Accepted (Day Month Year)

The development of sophisticated technologies for service-oriented architectures

(SOA) is a grand challenge. A promising approach is the employment of semantic tech-
nologies to better support the service usage cycle. Most existing solutions show sig-
nificant deficits in the computational performance, which hampers the applicability in
large-scale SOA systems. We present an optimization technique for automated service

discovery – one of the central operations in semantically enabled SOA environments –
that can ensure a sophisticated performance while maintaining a high retrieval accuracy.
The approach is based on goals that formally describe client objectives, and it employs
a caching mechanism for enhancing the computational performance of a two-phased dis-

covery framework. At design time, the suitable services for generic and reusable goal
descriptions are determined by semantic matchmaking. The result is captured in a con-
tinuously updated graph structure that organizes goals and services with respect to the

requested and provided functionalities. This is exploited at runtime in order to detect
the suitable services for concrete client requests with minimal effort. We formalize the
approach within a first-order logic framework, and define the graph structure along with
the associated storage and retrieval algorithms. An empirical evaluation shows that sig-

nificant performance improvements can be achieved.

Keywords: Service Discovery; Semantic Matchmaking; Goals; Optimization; Scalability.

1

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

2 Stollberg, Hoffmann, Fensel

1. Introduction

Service-oriented architectures (SOA) are the latest design paradigm for IT systems,

proclaiming the use of services as the basic building blocks. While the basic technol-

ogy stack around SOAP, WSDL, and UDDI enables the technical provision and use

of Web services, the development of sophisticated SOA technology with accurate

support for both service providers and clients remains a grand challenge [2, 11].

For this, the concept of Semantic Web Services (SWS) employs semantic tech-

nologies for supporting the service usage cycle, with the aim of faciliating flexi-

ble detection and consumption of services by providing automated mechanisms for

the discovery, composition, and execution of Web services that leverage on formal,

ontology-based descriptions [30, 4].

A central operation in SWS environments as envisioned by promiment ap-

proaches (esp. OWL-S [21], WSMO [14], and SAWSDL [12]) is discovery, which

is concerned with the automated detection of suitable Web services for a given

client request. Despite remarkable research results on semantic matchmaking as

the base technique, most existing solutions lack computational performance. This

hampers the usability in large-scale SOA applications, because the discovery task

is usually performed as the first processing step that needs to consider all available

Web services and thus forms a scalability bottleneck.

To overcome this problem, we present a two-phased approach for automated

Web service discovery that is extended with a caching mechanism for enhancing

computational performance. At design time, the suitable Web services for goals –

i.e. generic and reusable descriptions of client objectives – are determined by seman-

tic matchmaking. The result is captured in a directed acyclic graph that organizes

the goals in subsumption hierarchies and captures the relevant knowledge on the

usability of the available Web services. At runtime, the captured knowledge is lever-

aged in order to minimize the computational effort for detecting the suitable Web

services for actual client requests, which are defined by instantiating goals with

concrete inputs. The graph is updated whenever goals or Web services are added,

removed, or changed, hence forming a cache for future searches. In comparison to

existing optimization techniques, this approach allows us to perform the discov-

ery task in an efficient and scalable manner while maintaining the high retrieval

accuracy that can be obtained by employing semantic matchmaking techniques.

This article presents the main results of a PhD thesis [27], providing a revision

of a preliminary approach presented in [28] along with a comprehensive evaluation.

It is structured as follows: Section 2 introduces the problem setting and provides an

overview of the approach. Section 3 defines the formal foundations and the semantic

matchmaking techniques that we use for Web service discovery. Section 4 specifies

the graph structure for caching discovery results, and Section 5 presents the opti-

mized runtime discovery that utilizes the captured knowledge. Section 6 provides

an empirical evaluation, and Section 7 positions our approach within related work.

Finally, Section 8 concludes the article.

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 3

2. Overview

The following introduces the research context. We first explain the SWS approach

and identify the need for optimizing automated Web service discovery, and then

outline our approach for this.

2.1. Semantic Web Services

The overall aim of Semantic Web Services (SWS) – considering particularly the ini-

tial research efforts around OWL-S [21] and WSMO [14] – is to automate the Web

service usage cycle for clients. This shall overcome the limitations of the classic Web

service technology stack where the detection of suitable Web services is left to man-

ual inspection. For this, inference-based techniques are developed for automating

the central tasks of the Web service usage cycle by leveraging formal, ontology-based

descriptions of Web services, client requests, and other relevant resources.

Figure 1 illustrates the workflow that is commonly realized in existing SWS

environments (e.g. [13, 9]). For solving a given client request, at first the discovery

component detects the potential candidates out of the available Web services. Then,

the selection and ranking component chooses to most suitable candidate with re-

spect to non-functional aspects, and the behavioral compatibility component checks

whether the communication between the provider and the requester carried out suc-

cessfully. Alternatively, the composition component automatically combines several

Web services in order to solve the client request. The above components may uti-

lize mediation facilities for handling potentially occurring mismatches that hamper

successful interaction. Finally, the detected Web services are executed.

Fig. 1. Automated Web Service Usage with SWS

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

4 Stollberg, Hoffmann, Fensel

The discovery component is a bottleneck for scalability of such systems: it must

consider all available Web services, and perform potentially expensive matchmaking

for determining the suitable candidates out of them. This becomes in particular

relevant for larger SOA applications as well as for advanced SWS techniques where

automated discovery is a central and often performed operation (e.g. [3], [15]).

In consequence, two central requirements arise for automated discovery engines:

(1) a high retrieval accuracy for determining candidate services, and (2) a high

computational performance to ensure that the discovery task is performed in an

efficient and scalable manner. While the former can most suitably be achieved by

employing semantic matchmaking techniques that work on exhaustive formal and

ontology-based descriptions, the latter requires optimization for reducing the neces-

sary matchmaking effort. Most existing works address either of the two requirements

separately. However, a sophisticated solution needs to meet both in order to assure

the functional and the operational reliability of automated discovery engines.

The present work provides an integrated framework for this. The following gives

an overview of our solution that is explained in detail in the subsequent sections.

2.2. Approach for Scalable Automated Discovery

The overall aim is to facilitate automated service discovery with high accuracy in a

scalable manner, therewith satisfying the requirements identified above. For this, we

follow the approach of working with highly expressive formal descriptions of services

and client requests envisioned by prominent SWS frameworks: these allow achieving

a retrieval accuracy for service discovery, but require optimization in order to be

applicable in larger SOA systems.

Following the conception that underlies OWL-S and especially by WSMO, we

take a goal-driven approach where a goal formally describes the objective that a

client wants to achieve by using Web services, and the system automatically de-

termines and executes the necessary Web services for solving the goal. This allows

clients to request and consume Web services in a problem-oriented manner, ab-

stracting from technical details for the actual invocation. To better support this,

we distinguish Goal Templates as generic and reusable descriptions of client objec-

tives that are stored in the system, and Goal Instances that describe concrete client

requests and are defined by instantiating a goal template with concrete inputs.

On this basis, we separate the discovery task into two phases: at design time, the

suitable Web services for Goal Templates are discovered by semantic matchmaking

of their formal functional descriptions, while the actual Web services for solving

a specific Goal Instance are determined at runtime. The latter is the time critical

operation with respect to the operational reliability for solving concrete client re-

quests. We optimize this by capturing relevant results from design time discovery,

and then exploiting this in order to minimize the necessary matchmaking effort for

runtime discovery. This adapts the concept of caching to Web service discovery,

hence we refer to it as Semantic Discovery Caching (SDC).

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 5

Fig. 2. Overview of the Approach

Figure 2 provides an overview of the framework as a dataflow diagram. The Goal

Templates and the Web services along with their formal descriptions are stored in

the system. The SDC graph forms the cache for the design time discovery results.

This is defined as a directed acyclic graph (DAG) that properly describes the rele-

vant relationships: it organizes the Goal Templates in subsumption hierarchies with

respect to the requested functionalities, and captures the relevant knowledge on

the functional usability of the available Web services in form of directed arcs anno-

tated with the respective matching degree. At runtime, clients formulate concrete

requests by creating a Goal Instance, and the runtime discovery determines the

actually suitable Web services by utilizing the knowledge kept in the SDC graph.

This approach is suitable for satisfying both requirements identified above in an

integrated manner. The remainder of the article first explains the technical solution

in detail (Sections 3 - 5), then evaluates the achievable performance increase (Section

6), and finally positions the approach within related work (Section 7).

3. Semantic Web Service Discovery

This section defines semantic matchmaking techniques for automated Web service

discovery, summarizing the approach presented in [29]. We follow a standard ap-

proach where the requested and provided functionalities are formally described in

terms of preconditions and effects. We use classical first-order logic (FOL) as the

specification language. This is undecidable in the general case, but provides high

expressivity and serves as a logical umbrella for most of the ontology languages

developed for the Semantic Web [6] that are used by prominent SWS frameworks.

3.1. Foundations

According to the common understanding, we consider Web service discovery to

be primarily concerned with functional aspects. This relates to what a service can

do, respectively what a client wants to achieve. If a service does not provide the

functionality that is necessary to solve a goal, then it is not usable, and further

investigations on other aspects become obsolete [24].

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

6 Stollberg, Hoffmann, Fensel

As the conceptual model that underlies our approach, we consider an actual

execution of a Web service W to denote a sequence τ = (s0, . . . , sm) that is ob-

servable in the world. In the context of discovery, we are merely interested in the

start- and end states, because these constitute the provided functionality that can

be described in terms of preconditions and effects. We thus define T = (s0, sm)

as an abstraction that contains all observable executions with the same start- and

end state. Then, we can consider the functionality provided by W as the set of all

possible solutions, denoted by {T }W .

Analogously, we consider the functionality requested by a Goal Template G as

the set {T }G of all its possible solutions, i.e. changes of the world from a given start-

state to a desired final state wherein the client objective is achieved. Then, a Web

service W is usable for solving a Goal Template G if there is at least one possible

execution of W that is a solution for G. Formally, we define the basic matching

condition under functional aspects as match(G,W) : ∃T . T ∈ ({T }G ∩ {T }W).

A Goal Instance GI(G, β) describes a concrete client request by instantiating a

suitable Goal Template G with an input binding β, i.e. an assignment of concrete

values to the inputs defined in G. We require goal instances to be valid instantia-

tions, denoted by GI(G, β) |= G, which is given if β satisfies the conditions defined

in G. Then, the solutions for GI(G, β) are a subset of those for its corresponding

goal template, i.e. {T }GI(G,β) ⊂ {T }G. For solving a Goal Instance, a suitable Web

serviceW is invoked with the input binding defined in GI(G, β). Thus, we define the

basic matching condition asmatch(GI(G, β),W) : ∃T . T ∈ ({T }GI(G,β)∩{T }W (β))

where {T }W (β) ⊂ {T }W is the set of possible executions of W when it is invoked

with a particular β.

This constitutes the basis of our two-phased discovery framework: the suitable

Web services for goal templates can be determined at design time, and only these

need to be inspected to detect the actually suitable Web services for goal instances

at runtime. The following defines the necessary formal descriptions and semantic

matchmaking techniques for evaluating these conditions.

3.2. Functional Descriptions

Following the common approach for semantically enabled Web service discovery

(e.g. [22, 20]), we describe the functionality provided by a Web service as well as

the one requested by a goal in terms of inputs, outputs, preconditions, and effects

on the basis of ontologies.

Formally, we define a functional description D over a signature Σ with FOL as

the underlying logic by four elements: a set of input variables IN = {i1, . . . , in}, a

set of output variables OUT = {o1, . . . , om}, a precondition φpre that constrains

the possible start states, and an effect φeff that constrains the possible end states.

Each element is defined on the basis of consistent background knowledge Ω that

is defined in terms of ontologies. In order to precisely describe the dependency of

the start- and end states, IN occur as free variables in both φpre and φeff . For a

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 7

formula φ, we denote the set of free variables by free(φ) and the set of quantified

variables by quant(φ).

Definition 3.1. Let Σ be a signature and Ω be a consistent ontology. A functional

description over Σ and Ω is a 4-tuple D = (IN ,OUT , φpre, φeff) where

(1) IN is the set of input variables i1, . . . , in
(2) OUT is the set of output variables o1, . . . , om
(3) φpre is the precondition, a FOL formula with free(φpre) = IN and quant(φpre)∩

OUT = ∅

(4) φeff is the effect, a FOL formula with free(eff) ⊆ IN and quant(eff) ⊇ OUT.

An input binding that is defined by a Goal Instance and then used to invoke

a Web service is a total function β : {i1, . . . , in} → U that instantiates each IN -

variable with an object of the universe U .

Fig. 3. Examples for Functional Descriptions

Goal Template G Web Service W

“ship a package of any weight in Europe” “shipment in Germany, max 50 kg”

Ω: location & shipment ontology

IN : {?s,?r,?p,?w}

OUT : {?o}

φpre: sender(?s) ∧ in(?s, europe)

∧ receiver(?r) ∧ in(?r, europe)

∧ package(?p) ∧ weight(?p, ?w).

φeff : ∃?o, ?price. shipmentOrder(?o, ?p)

∧ from(?p, ?s) ∧ to(?p, ?r)

∧ costs(?o, ?price)).

Ω: location & shipment ontology

IN : {?s,?r,?p,?w}

OUT : {?o}

φpre: sender(?s) ∧ in(?s, germany)

∧ receiver(?r) ∧ in(?r, germany)

∧ package(?p) ∧ weight(?p, ?w)

∧maxWeight(?w < 50kg).

φeff : ∃?o, ?price. shipmentOrder(?o, ?p)

∧ from(?p, ?s) ∧ to(?p, ?r)

∧ costs(?o, ?price)).

Figure 3 shows examples of functional descriptions for the shipment scenario

defined in the SWS challenge [23]. The goal template describes the objective of

shipping a package of any weight in Europe. This is defined by four input variables

that are constrained in the precondition, and the effect states that the desired out-

put is a shipment order for the package. The Web service offers a more restricted

functionality for shipping packages of maximal 50kg within Germany. This is de-

scribed analogously. The location & shipment ontology defines the relevant back-

ground knowledge; in FOL, we define ontology concepts as unary predicates, and

attributes as well as relations as n-ary predicates. Note that the input variables

occur as the only free variables in both φpre and φeff ; these will be instantiated by

input bindings defined in goal instances for shipping a particular package. We here

model the outputs with existential quantification; Definition 3.1 allows arbitrary

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

8 Stollberg, Hoffmann, Fensel

FOL formula for this.

We define the formal meaning of a functional description as an implication

between the precondition and the effect. This means that a Web service W provides

the functionality described by DW , denoted by W |= DW , if and only if for all

T ∈ {T }W holds that if s0 |= φpre then sm |= φeff . In order to deal with functional

descriptions in terms of model-theoretic semantics, we present this as a FOL formula

φDW of the form φpre ⇒ φeff . Then, W |= DW is given if and only if every T ∈

{T }W is represented by a Σ-interpretation that is a model of φDW .

Analogously, the possible solutions for a Goal Template G are represented by

the models of the FOL formula φDG that defines the implication semantics for the

functional description DG. On this basis, we can formally define the goal instantia-

tion GI(G, β) |= G to be given if φDG is satisfiable under the input binding β. As a

prerequisite for meaningful reasoning, we consider all functional descriptions to be

consistent, meaning that φD is satisfiable under an input binding β. Otherwise, a

Web service W |= D would not realizable, and there would not be any solution for

a goal [17].

3.3. Semantic Matchmaking

We now define the semantic matchmaking techniques for our 2-phased discovery

framework. For this, we specify proof obligations on the basis of the formal func-

tional descriptions defined above that evaluate the matching conditions discussed

at the beginning of this section. The following first defines the matchmaking on the

goal template level for discovery at design time, and then for runtime discovery on

the level of goal instances.

3.3.1. Goal Template Level

As discussed above, we consider a Web service W to be usable for a Goal Template

G if at least one of its possible executions is a solution for G. We express this in

terms of matching degrees that properly describe all possible situations: four degrees

distinguish situations where a match is given (exact, plugin, subsume, intersect),

while disjoint denotes that W is not usable for solving G.

Table 1 shows the definition of the matching degrees, and depicts their meaning

in terms of the set-theoretic relation between the possible executions of W and the

possible solutions of G. We define the proof obligations on the basis of the formula

φD := φpre ⇒ φeff that reflects the formal meaning of the functional descriptions

as explained above, along with a quantification of the input variables. This ensures

that the signatures of DG and DW must be compatible in order to determine a

match, and, furthermore, that all free variables that can occur in the preconditions

and effects are bound. Thus, we can apply automated theorem proving for the

matchmaking. The conditions for the degrees exact, plugin and subsume require

logical entailment, while intersect as the weakest degree where a match is given

requires a satisfiability test. We always use the highest possible degree to properly

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 9

Table 1. Definition of Matching Degrees

Denotation Definition Meaning

exact(DG,DW) Ω |= ∀β. φDG ⇔ φDW {T }G = {T }W

plugin(DG,DW) Ω |= ∀β. φDG ⇒ φDW {T }G ⊆ {T }W

subsume(DG,DW) Ω |= ∀β. φDW ⇒ φDG {T }G ⊇ {T }W

intersect(DG,DW)
∧
Ω ∧ φDG ∧ φDW

is satisfiable
{T }G ∩ {T }W 6= ∅

disjoint(DG,DW)
∧
Ω ∧ φDG ∧ φDW

is not satisfiable
{T }G ∩ {T }W = ∅

denote the usability of a Web service by considering the following formal relations:

(1) plugin ∧ subsume ⇔ exact, (2) plugin ⇒ intersect, (3) subsume ⇒ intersect,

and (4) ¬ intersect ⇔ disjoint.

We remark that similar matching degrees have been defined in other works

before (e.g. [22, 20]). However, our matchmaking conditions are defined over more

expressive functional descriptions, and thus can warrant a higher retrieval accuracy

for the discovery task. We shall discuss this in more detail below in Section 7.

3.3.2. Goal Instance Level

For runtime discovery, we consider a Web service to be usable for a Goal Instance

GI(G, β) if it can provide a solution for GI(G, β) when invoked with the respective

input binding. Formally, this is given iff the formula Ω∧[φDG]β∧[φ
DW]β is satisfiable.

This means that, under consideration of the ontology, there must be a common

model for φDG and φDW when the functional descriptions are instantiated with the

input binding defined in the Goal Instance (denoted by [φD]β).

However, we can simplify the necessary matchmaking effort by using the knowl-

edge on the usability of W for the corresponding Goal Template G as follows.

Theorem 3.1. Let G be a Goal Template, and let GI(G, β) be a Goal Instance such

that GI(G, β) |= G. Let W be a Web service, and let DW be a functional description

such that W |= DW .

W is usable for solving GI(G, β) if and only if:

(1) exact(DG,DW) or

(2) plugin(DG,DW) or

(3) subsume(DG,DW) and Ω ∧ [φDW]β is satisfiable, or

(4) intersect(DG,DW) and Ω ∧ [φDG]β ∧ [φDW]β is satisfiable.

Referring to [27] for the proof, this states that only those Web services that are

usable for a Goal Template G are potentially usable for a Goal Instance GI(G, β),

and that the actual usability can be determined with reduced matchmaking ef-

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

10 Stollberg, Hoffmann, Fensel

fort. The disjoint degree describes the situation where {T }G ∩ {T }W = ∅. Here,

W can not provide any solution for the Goal Instance because GI(G, β) |= G im-

plies that {T }GI(G,β) ⊆ {T }G. Under the exact and the plugin degree, it holds that

{T }GI(G,β) ⊆ {T }G ⊆ {T }W . Thus, in these situations W is usable for any valid in-

stantiation of G, and we do not need to perform any additional matchmaking at run-

time. Under the subsume degree, all executions of W are solutions of G but not vice

versa. The modelling sample above in Figure 3 is an example for this situation. Con-

sider a Goal Instance that defines β = {?s|paris, ?r|vienna, ?p|aPackage, ?w|3.1kg}.

Although this properly instantiates the Goal Template, β does not provide valid

inputs for invoking the Web service (which is restricted to Germany); thus, it is not

usable here. Under the intersect degree, the complete matching condition explained

above needs to checked, because there can be solutions for GI(G, β) that can not

be provided by the Web service and vice versa.

This provides the first step towards optimizing Web service discovery at runtime.

The caching mechanism presented in the following builds upon this in order to

minimize the necessary matchmaking effort.

4. The Semantic Discovery Cache

This section introduces the Semantic Discovery Caching technique (SDC) for en-

hancing the computational performance of automated Web service discovery. The

following defines the SDC graph that captures the relevant knowledge from de-

sign time discovery, specifies the algorithms for its creation and maintenance, and

analyzes its formal properties.

4.1. Overview

The approach for optimizing the discovery task is to reduce the search space and

minimize the necessary matchmaking operations by exploiting the relationships

between goal templates, goal instances, and Web services. The central element for

this is the SDC graph that organizes goal templates in a subsumption hierarchy

with respect to their semantic similarity, and captures the relevant knowledge on

the functional usability of the available Web services for the goal templates that is

obtained from design time discovery.

As the constituting notion, we consider two Goal Templates Gi and Gj to be sim-

ilar if they have at least one common solution. We express this in terms of similarity

degrees d(Gi, Gj) where d = {exact, plugin, subsume, intersect} that denote the

matching degree between the functional descriptions DGi
and DGj

and are formally

defined analogously to Table 1 above. In order to enable efficient search, we define

the SDC graph such that the only occurring similarity degree is subsume(Gi, Gj).

If this is given, then (1) the solutions for the child Gj are a subset of those for the

parent Gi, and thus (2) the Web services that are usable for Gj are a subset of

those usable for Gi.

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 11

In consequence, the SDC graph consists of two layers. The upper one is

the goal graph that properly describes the semantic similarity among all exist-

ing goal templates and organizes them in subsumption hierarchies by directed

arcs of the form (Gi, Gj). The lower layer is the discovery cache that expli-

cates the usability of each available Web service W for every goal template

G by directed arcs that are annotated with the usability degree d(G,W) with

d = {exact, plugin, subsume, intersect} as defined in Table 1. It omits those

arcs for which the usability degree can be directly inferred by rules of the form

d(Gi, Gj) ∧ d(Gi,W) ⇒ d(Gj ,W). Therewith, the SDC graph forms a directed

acyclic graph (DAG) that defines the minimal set of arcs necessary to perform

efficient runtime discovery on the basis of Theorem 3.1.

Fig. 4. Example of a SDC Graph

Figure 4 illustrates the structure of the SDC graph for our running exam-

ple. There are three goal templates: G1 for package shipment in Europe, G2 for

Switzerland, and G3 for Germany. Their similarity degrees are subsume(G1, G2)

and subsume(G1, G3). Thus, G1 becomes the root node of the SDC graph, and

G2 and G3 become its child nodes in the goal graph. Let W1 be a Web service for

package shipment in Europe. Its usability degree for G1 is exact, which is explicated

in the discovery cache. From this, we can infer that the usability degree of W1 for

G2 and G3 is plugin; these arcs are omitted in the SDC graph. The same holds for

W2 where plugin(G1,W2), while under the usability degrees subsume and intersect

the precise usability degree for the child nodes of G1 can not be inferred directly.

The following defines the structure, constructs, and background of the SDC

graph formally.

4.2. The SDC Graph

As outlined above, the SDC graph is a directed acyclic graph (DAG) with the goal

graph as the inner layer and the discovery cache as the outer layer. The following

formally defines its structure, and we explain the constructs and properties in more

detail below.

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

12 Stollberg, Hoffmann, Fensel

Definition 4.1. Let d(Gi, Gj) be the similarity degree of goal templates Gi and Gj,

and let d(G,W) be the usability degree of a Web service W for a Goal Template G.

Given a set G of goal templates and a set W of Web services, the SDC graph is the

directed acyclic graph (VG ∪ VW , Esim ∪ Euse) where:

1) VG := G ∪ GI is the set of inner vertices, where

• G = {G1, . . . , Gn} are the goal templates; and

• GI := {GI | Gi, Gj ∈ G, d(Gi, Gj) = intersect, GI ≡ Gi ∧ Gj} are the intersec-

tion goal templates for G

2) W := {W1, . . . ,Wm} is the set of leaf vertices that represent Web services

3) Esim := {(Gi, Gj) | Gi, Gj ∈ VG} is the set of directed arcs constituting the goal

graph, where

• d(Gi, Gj) = subsume; and

• not exists G ∈ VG such that d(Gi, G) = subsume, d(G,Gj) = subsume

4) Euse := {(G,W) | G ∈ VG ,W ∈ VW} is the set of directed arcs constituting the

discovery cache, where

• d(G,W) ∈ {exact, plugin, subsume, intersect}; and

• not exists Gi ∈ VG such that d(Gi, G) = subsume, d(Gi,W) ∈ {exact, plugin}.

4.2.1. The Goal Graph

The goal graph organizes the existing goal templates in subsumption hierarchies

that properly reflect their similarity with respect to the requested functionalities.

This constitutes the skeletal structure of the SDC graph; the discovery cache amends

this with the relevant knowledge on the usability of the available Web services.

We define the goal graph by directed arcs (Gi, Gj) that represent

subsume(Gi, Gj) as the only occurring similarity degree. This facilitates efficient

search, because under this degree the Web services that are usable for the child

Gj are always a subset of those usable for the parent Gi as it holds that if

{T }Gi
⊇ {T }Gj

and {T }Gi
∩ {T }W = ∅ then also {T }Gj

∩ {T }W = ∅. To avoid

redundancy, we describe functional subsumption hierarchies among several goal

templates by the minimal set of goal graph arcs (cf. clause 3 of Definition 4.1).

In order to properly describe the functional similarities for any set of goal tem-

plates, we handle the other possible similarity degrees as follows: if exact(Gi, Gj),

only one of the goal template is kept while the other one is redundant for our pur-

poses; if plugin(Gi, Gj), we store the opponent arc (Gj , Gi). If disjoint(Gi, Gj),

then both goal templates are kept as separated nodes. Thus, the SDC graph can

have disconnected subgraphs where each one contains a set of semantically similar

goal templates along with their usable Web services.

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 13

The only critical similarity degree is intersect(Gi, Gj), which denotes that Gi

and Gj have a common solution but there are also exclusive solutions for each. This

can cause cycles in the SDC graph which hamper its search properties. To avoid

this, we create an intersection goal template GI(Gi, Gj) (cf. clause 1). Formally,

this is defined as the conjunction of the functional descriptions of the original goal

templates, i.e. φ
D

GI (Gi,Gj) = φDGi ∧ φ
DGj . Therefore, GI(Gi, Gj) describes exactly

the common solutions of Gi and Gj , i.e. {T }GI(Gi,Gj) = {T }Gi
∩ {T }Gj

. In conse-

quence, it holds that subsume(Gi, G
I(Gi, Gj)) and also subsume(Gj , G

I(Gi, Gj)).

Thus, GI(Gi, Gj) becomes a child node of both Gi and Gj in the goal graph, as

illustrated in Figure 5. Intersection goal templates are merely logical constructs in

the SDC graph; their their functional descriptions do not have to be materialized.

This is applied for every occurring intersect similarity degree, so that eventually

all similar goal templates are organized in a subsumption hierarchy without cycles.

With this handling of the possible similarity degrees, the goal graph provides a

general purpose structure for organizing any set of goal templates in redundancy-

free subsumption hierarchies wherein every goal template is allocated at a precisely

defined position. It however can contain disconnected subgraphs and child nodes

can have multiple parents, so that in general the SDC graph is a directed acyclic

graph but not a tree.

Fig. 5. Intersection Goal Templates

4.2.2. The Discovery Cache

The discovery cache captures the relevant knowledge on the functional usability of

the available Web services for the existing goal templates, which is obtained from

design time discovery. This is defined by direct arcs d(G,W) annotated with the

respective matching degree, so that the Web services denote the leaf nodes of the

SDC graph (cf. clause 2 of Definition 4.1).

The main purpose is to enable efficient runtime discovery in accordance to Theo-

rem 3.1, cf. Section 3.3.2. For this, we only define discovery cache arcs when the ba-

sic matching condition is satisfied, i.e. where d ∈ {exact, plugin, subsume, intersect}.

Moreover, we only define the minimal set of arcs that is necessary to deduce the pre-

cise matching degree of every Web service for every goal template (cf. clause 4). This

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

14 Stollberg, Hoffmann, Fensel

Table 2. Inference Rules for Usability Degrees under subsume(Gi, Gj)

(1) exact(Gi,W) ⇒ plugin(Gj ,W).

(2) plugin(Gi,W) ⇒ plugin(Gj ,W).

(3) subsume(Gi,W) ⇒ exact(Gj ,W)∨

plugin(Gj ,W)∨

subsume(Gj ,W)∨

intersect(Gj ,W)∨

disjoint(Gj ,W).

(4) intersect(Gi,W) ⇒ plugin(Gj ,W)∨

intersect(Gj ,W)∨

disjoint(Gj ,W).

(5) disjoint(Gi,W) ⇒ disjoint(Gj ,W).

is facilitated by general rules for inferring the usability degree among semantically

similar goal templates.

Table 2 above lists the most important rules: if a Web service W is usable

for a Goal Template Gi under the degree exact or plugin and Gi is a parent of

another Goal Template Gj in the goal graph (i.e. subsume(Gi, Gj)), the only pos-

sible usability degree of W for the child Gj is plugin because it then holds that

{T }W ⊇ {T }Gi
⊃ {T }Gj

(cf. rules 1 and 2). Thus, the arc (Gj ,W) is not explicitly

defined in the discovery cache, and this is applied for all occurrences of directly in-

ferable discovery cache arcs. We refer to [27] for the formal definition of all inference

rules that are used by the SDC technique.

4.3. SDC Graph Management

In order to serve as a suitable search index for goals and Web services, it is necessary

that the SDC graph describes the relevant relationships correctly and at all times.

For this, we provide algorithms for creating and maintaining the SDC graph that

ensure its structure as defined above whenever a goal template or a Web services is

added, removed, or modified.

Figure 6 shows the algorithm for creating an SDC graph. This is done by the

subsequent insertion of new goal templates, following the rules explained above.

At first, the new Goal Template Gnew is allocated at the correct position in the

goal graph. For this, we check its semantic similarity with the already existing root

nodes, and then position Gnew in the goal graph. The sub-procedures implement

the rules for handling the possible similarity degrees. In particular, child node

insertion positionsGnew as a new child node by subsequently inspecting its seman-

tic similarity with the goal templates in an already existing subsumption hierarchy,

and insersectGT insertion handles all occurrences of the intersect similarity by

defining the necessary intersection goal templates. After that, the discovery cache is

created, respectively updated. We distinguish two procedures for this: if Gnew has

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 15

Fig. 6. SDC Graph Creation Algorithm

been inserted as a child node in the goal graph, the child node discovery merely

needs to inspect the Web service that are usable for its direct parents (cf. rule 5 in

Table 2). Otherwise, the root node discovery needs to inspect all available Web

services, because there might be Web services that are only usable for Gnew.

The algorithms for removing or modifying goal templates and Web services

work analogously. They mainly remove the obsolete nodes and arcs, and revise

the structure of the SDC graph if necessary. We refer to [27] for the exhaustive

specification of all SDC graph management algorithms. These can be integrated

with the system repositories, so that the updates are triggered whenever a change

on the resources occurs.

4.4. Formal Analysis

We conclude the specification of the SDC graph with discussing its properties as a

search index for goals and Web services. In particular, we show that the SDC graph

holds all relevant knowledge that is relevant for optimizing discovery operations in

a concise and redundancy-free manner, and we analyze its asymptotic complexity.

4.4.1. Inferential Completeness and Minimality

The SDC graph as defined above exposes two properties that are relevant for its

application purpose. The first one is that we can infer (a) the precise similarity

between every pair of goal templates, and (b) the precise usability degree of each

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

16 Stollberg, Hoffmann, Fensel

Web service for every existing goal template. This knowledge is necessary for opti-

mizing Web service discovery, in particular at runtime; we thus refer to this as the

inferential completeness of the SDC graph. The second property is that the SDC

graph describes this knowledge in a concise and redundancy-free manner: every arc

in the SDC graph is necessary to establish the inferential completeness, and every

additional arc that describes a correct relationship between the goal templates and

the Web services is redundant because it can be inferred from the existing arcs.

We call this the inferential minimality of the SDC graph, which greatly eases its

maintainability. The following states this formally.

Theorem 4.1. Let SDC = (VG ∪ VW , Esim ∪ Euse) be the SDC graph over a

set of goal templates G and a set of Web services W. Let ASDC = {d(x, y)|d ∈

{exact, plugin, subsume, intersect}, x ∈ G, y ∈ {G,W}, (x, y) ∈ (Esim, Euse)} be all

atoms defined in SDC. Let IR be the set of all inference rules that hold between

d(x, y), and let cl⋆(ASDC) = {d(x, y)|ASDC ∧IR |= d(x, y)} be the deductive closure

of ASDC over IR.

SDC is inferentially complete and minimal:

(1) d(x, y) ∈ cl⋆(ASDC) if and only if d(x, y) is true for G ×W; and

(2) for all d(x, y) ∈ ASDC : cl⋆(ASDC \ d(x, y)) ⊂ cl⋆(ASDC).

Referring to [27] for the proof, the rationale for this is as follows. Every atom

d(x, y) ∈ ASDC describes a relationship that is obtained from semantic matchmak-

ing, and thus is true for G ×W by definition. The deductive closure cl⋆(ASDC) is

the set of all atoms ASDC ∪ {d⋆(x, y)} where d⋆(x, y) can be deduced from the in-

ference rules for usability degrees (cf. Table 2). By definition, only those deducible

atoms are true for G × W that correspond to arcs omitted in the SDC graph.

Hence, cl⋆(ASDC) contains all atoms that are necessary to correctly describe all

relationships among G and W, therewith constituting the inferential completeness.

The removal of a single arc from the SDC graph disables this property: the respec-

tive atom d(x, y) does not exist any more in ASDC , and thus the related deducible

atoms d⋆(x, y) that are necessary to assure the inferential completeness can not be

determined by the inference rules any longer. This shows the minimality.

4.4.2. Asymptotic Complexity

We now analyze the structural complexity of the SDC graph. For this, we consider

the insertion of goal templates as the most expensive operation: it requires a possibly

complete traversal of the goal graph in order to allocate the new goal template at

the proper position, and then the discovery cache must be updated (cf. Figure 6).

All other management operations on SDC graphs are significantly less expensive.

For the analysis, we consider the number of necessary matchmaking operations as

the central indicator, independent of the specification language used for goal and

Web service descriptions.

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 17

We can distinguish two situations for inserting a new Goal Template Gnew with

respect to the number of necessary matchmaking operations. The first one is when

Gnew becomes a new root node in the SDC graph. For this, we need to first ensure

that there is no root node Groot in the SDC graph with subsume(Groot, Gnew),

because then Gnew would become a child node of this. Then, we need to inspect all

existing Web services for Gnew using the root-node-discovery procedure explained

above. The other situation is when Gnew becomes a child node in the goal graph.

This requires expectably less matchmaking effort, because we only need to inspect

the Web services that are usable for the existing goal templates. The necessary steps

for this are: (1) find the existing root node Groot where subsume(Groot, Gnew), (2)

allocate Gnew in the subgraph of Groot by subsequently checking the similarity with

the already existing child nodes, and (3) check the usability of those Web services

WGp
⊆ W that are usable under the subsume or the intersect degree for the goal

templates Gp that now are parents of Gnew.

The following defines this in terms of the O-notation, using standard notions

from graph theory: the diameter of the goal graph diam(SDCGG) is the maximal

distance between a root and a leaf node, and the branching factor b(SDCGG) is the

maximal number of children of a goal template in the goal graph [8].

Proposition 4.1. The computational costs for inserting a new goal template Gnew

into a SDC graph are

• O(|Groot|+ |W|) when Gnew becomes a new root node of SDC

• O(|Groot| + (diam(SDCGG) ∗ b(SDCGG)) + |WGp
|) where (Gp, Gnew) ∈

Esim,WGp
= {W | d(Gp,W) ∈ {subsume, intersect}} otherwise.

This indicates that the complexity for creating and managing SDC graphs is

relatively high. However, this is performed at design time, and thus does not hamper

the runtime efficiency for solving goal instances. Note that the matchmaking is

undecidable in general when using classical FOL as defined in Section 3. In [27], we

define modelling restrictions for functional descriptions which ensure that the proof

obligations are decidable as NExpTime-complete problems, which is complexity

class of prominent ontology languages for the Semantic Web [7].

5. Optimized Runtime Discovery

This section presents the optimization of the runtime discovery task by exploiting

the knowledge kept in the SDC graph. We specify the algorithms for this, analyze

their complexity, and illustrate them in our example.

5.1. Discovery Algorithm

As outlined above, the approach for optimizing Web service discovery at runtime is

to minimize the computational effort by exploiting the SDC graph. In particular, we

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

18 Stollberg, Hoffmann, Fensel

use the captured knowledge to (1) reduce the search space by considering the most

specialized goal template because for this only the minimal number of Web services

needs to be inspected, and (2) to minimize the number of necessary matchmaking

operations by first inspecting Web services for which no matchmaking is required at

runtime. Listing 1 shows how this is implemented in the algorithm for discovering

one usable Web service for a given goal instance.

1 discoverSingleWS(GI(G,β)) {
2 if (validInstantiation (GI(G,β))) = false) then

3 return ’ invalid goal instance ’;
4 if (lookup(G) = W) then return W;
5 while ((G,Gc) in goalgraph) {
6 if (validInstantiation (GI(Gc,β)) then G = Gc;
7 forall ((G,W) in discoverycache) {
8 if (degree(G,W) = (exact,plugin)) then

9 return result = W; } }
10 if (checkOtherWS(G,β)) = W) then return W;
11 else { return ”no Web service found”; }
12 lookup(G) {
13 result = empty;
14 forall ((G,W) in discoverycache) {
15 if (degree(G,W) = (exact,plugin)) then return result = W;
16 else { forall (Gp and (Gp,G) in goalgraph) { lookup(Gp); } } }
17 if (result = empty) return result ; }
18 checkOtherWS(G,β)) {
19 result = empty;
20 forall ((G,W) in discoverycache and degree(G,W) = subsume) {
21 if (satisfiable (W,β))) then return result = W; }
22 forall ((G,W) in discoverycache and degree(G,W) = intersect) {
23 if (satisfiable (G,W,β))) then return result = W; }
24 if (result = empty) then return result ; }

Listing 1. Algorithm for SDC-enabled Runtime Discovery

The input of the main procedure is a Goal Instance GI(G, β) for which a Web

service shall be found. At first, we check if this is a valid instantiation of the cor-

responding goal template G (lines 2-3); this must be given to perform discovery

by semantic matchmaking. Then, the algorithm consists of three methods with in-

creasing matchmaking efforts that hence are invoked successively if the preceding

one has not been successful.

The first one is the lookup-method (line 4). This searches for a Web service W

that is usable for the given goal template G under the exact or the plugin degree:

we know that this W is usable for GI(G, β) without the need of matchmaking at

runtime (cf. clauses 1 and 2 in Theorem 3.1). Lines 12-17 define the algorithm for

finding such a W in the SDC graph. We first inspect the discovery cache arcs for the

given goal template G. As soon as an arc annotated with exact or plugin is detected,

the respective Web service is returned as the discovery result for GI(G, β). If this is

not successful, we continue the search for the direct parents Gp of G until reaching

a root node of the SDC graph.

If lookup as the most efficient method is not successful, we continue with the

refinement-method. This successively replaces the given goal template G with

a child node Gc of which the goal instance is a valid instantiation, i.e. where

subsume(G,Gc) and GI(G, β) |= Gc (lines 5-9). This reduces the relevant search

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 19

space, because fewer Web services are usable for Gc (cf. rule 5 in Table 2). By def-

inition of the SDC graph, we need to consider only one Gc for which this is given:

each pair (Gc1, Gc2) of direct children of G is disjoint unless there is an intersection

goal template GI for them (cf. clause 3 in Definition 4.1). In the latter case, GI is

found by traversing either the path G → Gc1 → GI or the path G → Gc2 → GI

because GI(G, β) |= GI(Gc1, Gc2) only if GI(G, β) |= Gc1 and GI(G, β) |= Gc2. We

thus can traverse the goal graph until finding the most adequate goal template for

the given goal instance. In each refinement step, we search for Web services that

are usable for Gc under the exact or plugin degree with a reduced version of the

lookup-method (lines 7-9).

If this should not be successful, we finally inspect those Web services that are

usable for the (possibly refined) goal template under the subsume or the intersect

degree. This requires additional matchmaking, and lines 18-24 show the algorithm

that performs the necessary satisfiability tests (cf. clauses 3 and 4 of Theorem 3.1).

A Web service for which this holds is immediately returned as the discovery result.

If this is not successful, then then a Web service for solving GI(G, β) does not exist.

The algorithm for finding all Web services works analogously: after validating

the goal instantiation, we first refine the goal template towards the most specialized

one, and then collect the results of the lookup- and the checkOtherWS -method as

the discovery result.

5.2. Complexity Analysis

We now analyze the computational costs of the algorithms, which corresponds to

the search complexity of the SDC graph. As above, we consider the number of

required matchmaking operations as the main indicator.

The lookup-method does not require matchmaking, thus we disregard it here.

The refinement-method traverses the goal graph in a depth-first manner until find-

ing the most specialized goal template G′, performing the goal instantiation check.

The checkOtherWS -method needs to perform matchmaking for all Web services

that usable for G′ under the subsume or intersect degree.

Proposition 5.1. The costs for finding a usable Web service W for a Goal Instance

GI(G, β) in a SDC graph are

O((diam(SDCGG) ∗ b(SDCGG)) + |WG′ |) where

WG′ = {W | d(G′,W) ∈ {subsume, intersect}}

This indicates a high search complexity of the SDC graph in general. However,

our hypothesis is that in most application scenarios the relationship of the ac-

tual goal templates and Web services allows the construction of SDC graphs where

diam(SDCGG), b(SDCGG) ≪ |G| and also |WG| ≪ |W|, so that a significant per-

formance increase can be achieved with the SDC technique. We shall evaluate this

below in Section 6.

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

20 Stollberg, Hoffmann, Fensel

5.3. Illustrative Example

In order to illustrate the above definitions, the following explains the creation of

the SDC graph and the optimized runtime discovery for the shipment scenario

introduced above. We here consider a condensed scenario setting that appears to

be sufficient for demonstrating the operating principles of the SDC technique.

Figure 7 provides the relevant information for our discussion. Following the

original scenario from [23], we consider three goal templates and three Web services

for package shipment. The goal templates are (1) gtUS2world for shipping packages

of any weight from the USA to anywhere in the world, (2) gtUS2NA for package

shipment from the USA to North America, and (3) gtNA2NAlight for shipping

light packages within North America. The Web services are (1) wsMuller that

offers shipment from the USA to almost anywhere in the world for packages with

a maximal weight of 50 kg, (2) wsRunner for shipping packages of any weight from

the USA to all continents apart from North America and Africa, and (3) wsWeasel

that offers shipment within the USA for packages of any weight. The functional

descriptions of all resources are analog to the ones illustrated Figure 3, so that we

can apply the semantic matchmaking techniques as defined in Section 3.3.

Fig. 7. Overview of Illustrative Example

The SDC graph for this scenario is structured as follows: gtUS2world is a

root node with gtUS2NA as a child, because this defines a proper specialization

of the requested functionality. The similarity degree between gtUS2world and

gtNA2NAlight is intersect : their common solutions are shipment orders for light

packages from the USA to North America. However, the insersectGT insertion

procedure (cf. Figure 6) allocates the resulting intersection goal template iGT as a

common child of gtUS2NA and gtNA2NAlight, because their similarity degree is also

intersect with exactly the same common solutions. The discovery cache captures the

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 21

design time discovery results. We observe that for the more general goal templates

all Web services are merely usable under the subsume and intersect degree, while

for the more specialized ones we also find plugin matches.

Let us now consider a concrete client request for shipping a pack-

age of 5.16 kg from San Francisco to New York City. This is de-

scribed as a Goal Instance GI(gtUS2world, β) with the input binding β =

(?s|sanFrancisco, ?r|newY orkCity, ?w|5.16 kg). Here, gtUS2world is not the most

appropriate one among the existing goal templates. We assume this to be a typi-

cal situation in real-world settings, e.g. when the request is created out of a client

application that needs to support shipment to any location in the world.

The optimized runtime discovery algorithm from Listing 1 will find a usable

Web service for this goal instance as follows. It commences with checking the goal

instantiation condition: GI(gtUS2world, β) |= gtUS2world is given because San

Francisco is located in the USA, New York City is located in the world, and the

package weight of 5.16 kg is included in the weight class heavy. Then, it tries to

find a suitable Web service via the lookup-method. This is not successful because

all Web services are only usable under the subsume degree. Hence, we continue

with the refinement-method. In the first iteration, this will define gtUS2NA as the

new goal template: this is a direct child of gtUS2world in the SDC graph, and

GI(gtUS2world, β) |= gtUS2NA is satisfied. Although this results in a reduction

of the search space, the lookup-method for gtUS2NA is also not successful because

the only existing usability degrees are subsume and intersect. Thus, we continue

with the second iteration of the refinement-method, which defines the intersection

goal template iGT as the new corresponding goal template. For this, wsMuller is

usable under the plugin degree. This is detected by the lookup-method, and the

algorithm returns this Web service as the discovery result for the Goal Instance

GI(gtUS2world, β). The algorithm for finding all usable Web services will also de-

tect wsWeasel to be usable because it offers shipment within the USA for packages

of any weight; for this, the checkOtherWS -method needs to be applied because the

usability degree wsWeasel for iGT is intersect.

6. Evaluation

This section evaluates the SDC technique, in particular its suitability for optimizing

automated Web service discovery. In order to quantify the achievable performance

increase for runtime discovery as the time critical task, we compare our optimized

discoverer with not optimized engines in larger application scenarios.

The following explains the experiment setup and presents the comparison test

results. Afterwards, we discuss the practical relevance of our approach.

6.1. Experiment Setup

The overall aim of the SDC technique is to optimize automated Web service dis-

covery at runtime, which is the time critical operation in our 2-phased framework

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

22 Stollberg, Hoffmann, Fensel

(cf. Section 2.2). Hence, the primary focus of this evaluation is to quantify the

increase in the computational performance that can be achieved with the for the

SDC-enabled runtime discovery presented above. For this, a sophisticated bench-

marking technique does not exist, as present comparison measurements for com-

paring semantically enabled discovery merely focus on the retrieval accurcary but

do not cover performance or scalability aspects (e.g. [19]). Also, a comparsion with

other optimzation techniques for automated Web service discovery appears to not

be feasible, because existing approaches commonly lack of retaining a high retrieval

accuracy (see Section 7 for a detailed related work discussion).

In consequence, the following compares the performance of the SDC-enabled

runtime discovery with not optimized runtime discovery engines along with a de-

tailed examination on the impact of exploiting the SDC graph. The first comparison

engine is a naive runtime discoverer that does not apply any optimization tech-

niques. It retrieves the available Web services in a random order, and performs

the basic matchmaking to determine their usability for a given goal instance (cf.

Section 3.3.2). It uses the same matchmaker and infrastructure as the SDC engine.

For the comparison test, we define a set of goal instances for the shipment scenario,

and inspect the behavior of the engines for increasingly larger sets of available Web

services. This test allows us to quantify the absolute performance increase, and we

discuss this in terms of the following standard criteria: efficiency as the time re-

quired for completing a discovery task, scalability as the ability to deal with a large

search space of available Web services, and stability as a low variance of the execu-

Fig. 8. SDC Prototype – Technical Architecture

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 23

tion time of several invocations [10]. In a second comparison test, we compare our

engine with a runtime discoverer that implements our 2-phase framework but does

not exploit the SDC graph for optimization. This allows us to evaluate the relative

performance increase that can be achieved with the SDC technique. All implemen-

tations along with the original evaluation data and a detailed documentation are

available online at www.michael-stollberg.de/phd/.

For conducting the evaluation test, we implemented all engines as discovery

components in WSMX, the reference implementation of the WSMO framework

(www.wsmx.org). Figure 8 shows the technical architecture of the SDC prototype

that contains all components explained above: the Matchmaker implements all neces-

sary semantic matchmaking techniques on the basis of vampire [25], a resolution-

based automated theorem prover for classical first-order logic with equality that

allows us to realize the matchmaking techniques exactly as specified in Section 3.

The SDC Graph Creator and the Evolution Manager implement the management

algorithms for SDC graphs (cf. Section 4.3), and the SDC Runtime Discoverer

implements the algorithms for optimized runtime discovery (cf. Section 5).

gtworld2world

gtUS2world

gtUS2AF gtUS2ASgtUS2EU gtUS2NAgtUS2SA gtUS2OC

gtUSEUlight

gtNA2NAlight

iGT

subsumeWeasel

subsumeWalker

subsumeRunner

subsumeRacer

subsumeMuller

subsumeWeasel

subsumeWalker

subsumeRunner

subsumeRacer

subsumeMuller

subsumeWeasel

subsumeWalker

subsumeRunner

subsumeRacer

subsumeMuller

subsumeWeasel

subsumeWalker

subsumeRunner

subsumeRacer

subsumeMuller

intersectWeasel

intersectWalker

intersectRacer

intersectMuller

intersectWeasel

intersectWalker

intersectRacer

intersectMuller

intersectWalker

pluginRunner

intersectRacer

intersectMuller

intersectWalker

pluginRunner

intersectRacer

intersectMuller

pluginWalker

pluginRacer

pluginMuller

pluginWalker

pluginRacer

pluginMuller

intersectWalker

intersectRacer

intersectMuller

intersectWalker

intersectRacer

intersectMuller

intersectWalker

pluginRunner

intersectRacer

intersectMuller

intersectWalker

pluginRunner

intersectRacer

intersectMuller

intersectWalker

pluginRunner

intersectRacer

intersectWalker

pluginRunner

intersectRacer

IntersectWalker

pluginRunner

intersectRacer

IntersectWalker

pluginRunner

intersectRacer

subsumeWeasel

intersectWalker

intersectRacer

intersectMuller

subsumeWeasel

intersectWalker

intersectRacer

intersectMuller

intersectWeasel

pluginWalker

pluginRacer

pluginMuller

intersectWeasel

pluginWalker

pluginRacer

pluginMuller

Goal Template goal graph arc discovery cache arc (aggregated)
Legend

degreeWeb Service degreeWeb Service

Fig. 9. SDC Graph for Shipment Scenario

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

24 Stollberg, Hoffmann, Fensel

6.2. Use Case

As the use case, we consider the shipment scenario that we have already discussed

as the running example above. We here use the original data set as defined in [23].

This consists of 5 Web services for shipping packages: in addition those discussed in

Section 5.3, Racer and Walker offer worldwide shipment of packages with a maximal

weight of 70 kg, respectively 50 kg.

As the use case, we consider the shipment scenario that we have already dis-

cussed as the running example above. We here use the original data set as defined

in [23]. This consists of 5 Web services for shipping packages: in addition those

discussed in Section 5.3, Racer and Walker offer worldwide shipment of packages

with a maximal weight of 70 kg, respectively 50 kg.

We define a set of goal templates, and create the SDC graph shown in Figure 9.

Here, gtworld2world is the most general goal template and thus is the root node;

gtUS2world is the same as defined above, and its direct children request package

shipment from the USA to specific continents. The SDC graph shows properly

defines all relevant relationships. Its creation with our prototype takes 48.11 seconds;

the average time for inserting a single goal template is ca. 5 seconds, and 110

milliseconds for a single matchmaking operation.

For the comparison tests, we define a set of 10 goal instances as shown in Figure

10. Each goal instance is a valid instantiation of its corresponding goal template.

The figure also enlists the usable Web services for each goal instance, representing

the results of runtime discovery runs: these are identical for all compared engines.

4
Muller Racer

Runner Walker
9.99 kgAmsterdam

San
Francisco

gtUS2EUlightgi10

2Racer Runner57.8 kgBeijingStanfordgtUS2ASgi9

3
Racer Runner

Walker
7.58 kgQuito

San
Francisco

gtUS2SAgi8

3
Racer Runner

Walker
17.3 kgSydney

Santa
Barbara

gtUS2worldgi7

1Runner Runner60 kgBerlinMonterey gtUS2worldgi6

4
Muller Racer

Walker Weasel
5.5 kg

New York
City

Los
Angeles

gtUS2NAgi5

2Racer Runner4.3 kg BristolPaolo AltogtUS2EUgi4

1Racer50.5 kgTunisBerkley gtUS2worldgi3

4
Muller Racer

Runner Walker
1.5 kg

Luxembourg
City

Los
Angeles

gtworld2worldgi2

3
Muller Racer

Walker
1 kgTunis

San
Francisco

gtUS2AFgi1

totalnameweightreceiversender

usable Web Services Input Binding corresp.
Goal Template

Goal
Instance

4
Muller Racer

Runner Walker
9.99 kgAmsterdam

San
Francisco

gtUS2EUlightgi10

2Racer Runner57.8 kgBeijingStanfordgtUS2ASgi9

3
Racer Runner

Walker
7.58 kgQuito

San
Francisco

gtUS2SAgi8

3
Racer Runner

Walker
17.3 kgSydney

Santa
Barbara

gtUS2worldgi7

1Runner Runner60 kgBerlinMonterey gtUS2worldgi6

4
Muller Racer

Walker Weasel
5.5 kg

New York
City

Los
Angeles

gtUS2NAgi5

2Racer Runner4.3 kg BristolPaolo AltogtUS2EUgi4

1Racer50.5 kgTunisBerkley gtUS2worldgi3

4
Muller Racer

Runner Walker
1.5 kg

Luxembourg
City

Los
Angeles

gtworld2worldgi2

3
Muller Racer

Walker
1 kgTunis

San
Francisco

gtUS2AFgi1

totalnameweightreceiversender

usable Web Services Input Binding corresp.
Goal Template

Goal
Instance

Fig. 10. Goal Instances for Comparison Tests

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 25

6.3. Comparison Test Results

The following presents and discusses the results of the two comparison tests. We

here summarize the central findings, referring to [27] for further details.

6.3.1. SDC vs. Naive Engine

We commence with the comparison of the SDC runtime discoverer with the not

optimized engine. Here, the main interest is the behavior of the engines within

larger search spaces of available Web services. For this, we define incrementally

larger search spaces (from 10 up to 2000 Web services): each set contains the 5

Web services from the scenario description, while all others do not offer package

shipment and thus are not usable. In order to obtain statistically valuable results,

we performed 50 repetitions of every discovery task. Table 3 shows the aggregated

results of all test runs for the discovery of a single Web service.

We can make two important observations from this comparison. The first one

is that an optimization of automated Web service discovery techniques appears to

be necessary in order to warrant the operational reliability even in relatively small

application scenarios. The naive engine requires between 0.1 and 26 seconds for a

search space of 200 Web services (these are the actually measured minimal and

maximal values) with a very high variance among the individual invocations. This

performance appears to be not acceptable, in particular when considering industrial

SOA systems that usually encompass more than 1000 Web services.

Table 3. Single WS Discovery – Aggregated Comparison Results(all values in seconds)

no. of

WS
Engine Mean µ Median x̄

Standard

Deviation

σ

10 SDC 0.28 0.27 0.03 (11.74 %)

naive 0.41 0.39 0.21 (51.71 %)

50 SDC 0.28 0.28 0.09 (11.79 %)

naive 2.00 1.79 1.29 (64.59%)

100 SDC 0.29 0.28 0.03 (11.53 %)

naive 3.96 3.68 2.55 (64.48 %)

200 SDC 0.29 0.28 0.03 (11.51 %)

naive 7.61 6.67 5.05 (66.35 %)

500 SDC 0.29 0.29 0.04 (13.42 %)

naive 18.33 15.61 13.26 (72.34 %)

1000 SDC 0.29 0.29 0.04 (14.79 %)

naive 37.69 33.22 26.28 (69.70 %)

2000 SDC 0.31 0.29 0.05 (18.03 %)

naive 72.96 65.55 52.13 (71.45 %)

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

26 Stollberg, Hoffmann, Fensel

The second observation is that the SDC technique appears to be a sophisticated

optimization technique. Considering the standard criteria, the results show that

the SDC-enabled engine is sufficiently efficient because it performs the discovery

task in 300 milliseconds in average, it warrants the scalability because the required

times are independent of the search space size, and it exposes a high stability among

several invocations with marginal variations in the actual processing times.

The comparison for the discovery of all Web services provides even more sig-

nificant results. The SDC engine requires about 500 milliseconds, independent of

the search space size. The naive engine always needs to inspect all available Web

services, so that its processing times grow proportionally with the search space size.

6.3.2. SDC vs. SDClight

In the above test, a considerable part of the achieved performance improvements

result from our two-phased discovery model where only the usable Web services

of the corresponding goal template need to be inspected as potential candidates

for the given goal instance. Thus, the second comparison test focuses explicitly on

the performance increase that can be achieved by exploiting the SDC graph. The

comparison engine uses the design time discovery results but does not reduce the

search space with the refinement-method from the optimized runtime discovery

algorithm (cf. Listing 1).

Fig. 11. Performance Comparison SDC vs. SDC light

Figure 11 shows the comparison test results for both the discovery of a single and

of all Web services. We observe that also here the full SDC-enabled engine is faster

in average. However, there are cases where the search space reduction is more ex-

pensive than inspecting the candidates for the originally defined goal template (e.g.

the discovery of all Web services for gi5 in the test scenario). This effect disappears

when more Web services are usable for the goal templates. Moreover, the perfor-

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 27

mance increase by omitting unnecessary matchmaking operations becomes more

significant when dealing with more complex ontologies and functional descriptions

for which the matchmaking is more expensive.

6.4. Discussion

The comparison tests reveal that the SDC technique can achieve substantial per-

formance improvements. However, it adopts the concept of caching, and thus the

enhancements for a specific application are dependent on the actual resources: the

maximal optimization is achievable when there are several similar goal templates

and many Web services with similar functionalities.

In order to determine the practical relevance, we conducted an explorative ap-

plicability study for the Verizon SOA system. Referring to [27] for details, this

contains around 1500 Web services for homogenizing the data management among

more than 650 distributed sales stores. The client applications use them for creating,

modifying, and querying information on products, customers, and sales orders. The

structure of these client requests is very similar, and the Web services mainly differ

in the details of the input and output types. We can semantically describe these

on the basis of an already existing business taxonomy. Then, we can construct an

SDC graph that exposes a fine-grained subsumption hierarchy, and thus significant

performance improvements can be achieved with the SDC technique. Similar im-

provements can be expected in other SOA applications, in particular in industrial

solutions where larger numbers of similar requests and services need to be handled.

Besides, the goal-based approach can enhance the system flexibility by overcoming

the deficits of hard-wired service invocations.

This indicates that optimization of semantically enabled techniques for auto-

mated Web service discovery appears to be necessary for the employment in larger

SOA systems that can be found in industrial settings, because the Verizon SOA

system exceeds the dimension where non-optimzed discovery engines expose an ac-

ceptable performance (cf. Table 3 above). However, the general decision for employ-

ing SWS also determined by other factors, particularly regarding the business need

for high-accuracy service discovery and the effort required of creating the richer

semantic descriptions of the existing services and client requests.

7. Related Work

This section discusses related work. Although there is a wealth of insightful research

on semantically enabled Web service discovery, we are not aware of any approach

that addresses the performance challenge in a similar way. The following outlines

the background of our approach and positions it within other works.

Our approach has been inspired by the WSMO framework that promotes goal-

driven approach for Semantic Web Services [14]. We integrated the results of several

associated works on automated Web service discovery, provided a general purpose

formalization in first-order logic, and extended this with the caching mechanism

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

28 Stollberg, Hoffmann, Fensel

for optimization. Our prototype is implemented as a component of the reference

implementation WSMX [13], and thus can be integrated with other related SWS

environments, e.g. the IRS system that provides a goal-based broker for Semantic

Web Services [9].

The first area of related work is automated Web service discovery by semantic

matchmaking. This has been subject to several research efforts that provide valuable

insights. Rooted in formal software specification (e.g. [33]), the matching degrees

were already defined in early works (e.g. [20, 22]). However, these merely perform

matchmaking on the separate elements of functional descriptions; the dependencies

among the inputs, outputs, preconditions and effects are not considered. This has

been addressed in later works, e.g. [18, 16]. Inspired by [17], our contribution to

this is the semantic matchmaking techniques that work on sufficiently expressive

functional descriptions and thus ensure a high retrieval accuracy for both design

time and runtime discovery.

The second area is concerned with the optimization of automated Web service

discovery. Although commonly considered to be essential for making SWS tech-

niques applicable in real-world scenarios (e.g. [24, 4]), only a few works address

this challenge. The majority follows the categorization approach already supported

in UDDI: the available Web services are organized in hierarchical categorization

schemes on the basis of ontologies; this is used to perform the pre-filtering of candi-

dates which are then inspected by semantic matchmaking (e.g. [26, 32, 31, 1]). The

central deficit is the imprecision of keyword-based annotations, which can lead to

incorrect filtering results that conflict with the results of discovery by semantic

matchmaking of rich functional descriptions. Thus, this approach is more problem-

atic than ours in terms of ensuring a high retrieval accuracy.

An approach that leverages on formal functional descriptions to overcome the

imprecision problem is presented in [5]. This defines a search tree where so-called

interval constraints organize the provided functionalities in a subsumption hierarchy

and the actual Web services are the leaf nodes. However, the interval constraints

describe the inputs, outputs, preconditions, and effects in a disconnected manner.

This is significantly less expressive than our functional descriptions, so that the

index structure as well as the obtainable discovery results are less precise than with

the SDC technique. Furthermore, the search tree needs to be traversed down to the

leaf nodes in order to find a Web service. This could be enhanced by adapting our

caching mechanism, which facilitates discovery by lookup without matchmaking.

8. Conclusions

This article has presented Semantic Discovery Caching (SDC) as a novel optimiza-

tion technique for automated, semantically enabled Web service discovery. The aim

is to enable the detection of suitable services for specific client requests with a high

retrieval accuracy in a scalable manner, therewith facilitating the employment of

Semantic Web Service techniques within larger SOA systems.

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 29

For this, we have proposed a two-phased discovery framework where client re-

quests are described as goals that abstract from technical details. At design time,

the suitable Web services for goal templates as generic and reusable descriptions of

client objectives are discovered. The results are captured in a graph structure that

organizes similar goal templates in subsumption hierarchies and keeps the relevant

knowledge on the usable Web services in a redundancy-free manner. This is called

the SDC graph, which serves as cache for the results of service discovery activities

that can be performed at design time. At runtime, concrete client requests are de-

scribed by goal instances that instantiate a goal template, and the discovery task

is optimized by exploiting the knowledge kept in the SDC graph.

We have defined the relevant constructs and matchmaking techniques in a first-

order logic framework, therewith allowing the applicability to various SWS frame-

works that utilize higher-level Semantic Web languages. We further have formally

defined the SDC graph along with the basic management techniques, and specified

the algorithms for optimized runtime discovery. An empirical evaluation has shown

that an optimization of semantically enabled service discovery techniques is neces-

sary to allow the applicability in larger SOA systems, and that the SDC technique

can achieve significant improvements in performance and scalability for this.

Acknowledgements

This work has been partially funded by the European Commission under the re-

search projects SUPER, SHAPE, and INDENICA. The authors thank Uwe Keller

and John Domingue for fruitful discussion and feedback.

References

[1] W. Abramowicz, K. Haniewicz, M. Kaczmarek, and D. Zyskowski. Architecture for
Web services Filtering and Clustering. In Proc. of the 2nd International Conference
on Internet and Web Applications and Services (ICIW 2007), Mauritius, 2007.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Archi-
tectures and Applications. Data-Centric Systems and Applications. Springer, Berlin,
Heidelberg, 2004.

[3] P. Bertoli, J. Hoffmann, F. Lecue, and M. Pistore. Integrating Discovery and Auto-
mated Composition: from Semantic Requirements to Executable Code. In Proc. of
the IEEE 2007 International Conference on Web Services (ICWS’07), Salt Lake City,
USA, 2007.

[4] J. Cardoso and A. Sheth. Semantic Web Services, Processes and Applications. Se-
mantic Web and Beyond. Springer, 2006.

[5] I. Constantinescu, W. Binder, and B. Faltings. Flexible and Efficient Matchmaking
and Ranking in Service Directories. In Proc. of the 3rd International Conference on
Web Services (ICWS 2005), Florida, USA, 2005.

[6] J. de Bruijn. Logics for the Semantic Web. In J. Cardoses, editor, Semantic Web:
Theory, Tools and Applications. Idea Publishing Group, 2006.

[7] J. de Bruijn and S. Heymans. Logical foundations of (e)RDF(S): Complexity and
Reasoning. In Proc. of the 6th International Semantic Web Conference (ISWC 2007,
Seoul, Korea, 2007.

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

30 Stollberg, Hoffmann, Fensel

[8] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer,
Heidelberg, 3. edition, 2005.

[9] J. Domingue, L. Cabral, S. Galizia, V. Tanasescu, A. Gugliotta, B. Norton, and
C. Pedrinaci. IRS-III: A Broker-based Approach to Semantic Web Services. Journal
of Web Semantics, 2008.

[10] C. Ebert, R. Dumke, M. Bundschuh, and A. Schmietendorf. Best Practices in Software
Measurement. Springer, 2004.

[11] T. Erl. Service-Oriented Architecture (SOA). Concepts, Technology, and Design.
Prentice Hall PTR, 2005.

[12] J. Farrell and H. Lausen. Semantic Annotations for WSDL and XML Schema. W3C
Recommendation 28 August 2007, 2007. online: http://www.w3.org/TR/sawsdl/.

[13] D. Fensel, M. Kerrigan, and M. Zaremba. Implementing Semantic Web Services -
The SESA Framework. Springer, 2008.

[14] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and
J. Domigue. Enabling Semantic Web Services. The Web Service Modeling Ontology.
Springer, Berlin, Heidelberg, 2006.

[15] M. Hepp, F. Leymann, J. Domingue, A. Wahler, and D. Fensel. Semantic Business
Process Management: A Vision Towards Using Semantic Web Services for Business
Process Management. In Proc. of the IEEE International Conference on e-Business
Engineering (ICEBE 2005), October 18-20, 2005, Beijing, China, 2005.

[16] D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens. Deciding
Semantic Matching of Stateless Services. In Proc. of the 21st National Conference on
Artificial Intelligence (AAAI’2006), 2006.

[17] U. Keller, H. Lausen, and M. Stollberg. On the Semantics of Funtional Descriptions
of Web Services. In Proc. of the 3rd European Semantic Web Conference (ESWC
2006), Montenegro, 2006.

[18] M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A
Logical Framework for Web Service Discovery. In Proc. of the ISWC 2004 workshop
on Semantic Web Services: Preparing to Meet the World of Business Applications,
Hiroshima, Japan, 2004.

[19] U. Küster and B. König-Ries. Measures for Benchmarking Semantic Web Service
Matchmaking Correctness. In Proc. of the 7th ExtendedSemantic Web Conference
(ESWC 2010), Heraklion, Crete, Greece, June 2010.

[20] L. Li and I. Horrocks. A Software Framework for Matchmaking based on Semantic
Web Technology. In Proc. of the 12th International Conference on the World Wide
Web, Budapest, Hungary, 2003.

[21] D. Martin. OWL-S: Semantic Markup for Web Services. W3C Member Submission
22 November 2004, 2004. online: http://www.w3.org/Submission/OWL-S/.

[22] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web
Services Capabilities. In Proc. of the 1st International Semantic Web Conference,
Sardinia, Italy, 2002.

[23] C. Petrie, T. Margaria, H. Lausen, and M. Zaremba (eds.). Semantic Web Services
Challenge. Springer, 2009.

[24] C. Preist. A Conceptual Architecture for Semantic Web Services. In Proc. of the 2nd
International Semantic Web Conference (ISWC 2004), 2004.

[25] A. Riazanov and A. Voronkov. The Design and Implementation of VAMPIRE. AI
Communications, 15(2):91–110, 2002. Special Issue on CASC.

[26] N. Srinivasan, M. Paolucci, and K. Sycara. Adding OWL-S to UDDI – Implemen-
tation and Throughput. In Proc. of the First International Workshop on Semantic
Web Services and Web Process Composition at the ICWS 2004, San Diego, Califor-

March 25, 2011 22:12 WSPC/INSTRUCTION FILE IJSC-main

A Caching Technique for Optimizing Automated Service Discovery 31

nia, USA, 2004.
[27] M. Stollberg. Scalable Semantic Web Service Discovery for Goal-driven Service-

Oriented Architectures. PhD thesis, Semantic Technology Institute, University of
Innsbruck, Austria, 2008.

[28] M. Stollberg, M. Hepp, and J. Hoffmann. A Caching Mechanism for Semantic Web
Service Discovery. In Proc. of the 6th International Semantic Web Conference (ISWC
2007), Busan, Korea, 2007.

[29] M. Stollberg, U. Keller, H. Lausen, and S. Heymans. Two-phase Web Service Dis-
covery based on Rich Functional Descriptions. In Proc. 4th European Semantic Web
Conference (ESWC 2007), Innsbruck, Austria, 2007.

[30] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated Discovery, In-
teraction and Composition of Semantic Web services. Journal of Web Semantics,
1(1):27–46, September 2003.

[31] B. Tausch, C. d’Amato, S. Staab, and N. Fanizzi. Efficient Service Matchmaking
using Tree-Structured Clustering. In Poster at the 5th International Semantic Web
Conference (ISWC 2006), Athens, Georgia (USA), 2006.

[32] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller.
METEOR-S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publi-
cation and Discovery of Web Services. Journal of Information Technology and Man-
agement, 6(1):17–39, 2005.

[33] A. M. Zaremski and J. M. Wing. Specification Matching of Software Components.
ACM Transactions on Software Engineering and Methodology, 6(4):333–369, 1997.

