
Unchaining the Power of Partial Delete Relaxation, Part II:
Finding Plans with Red-Black State Space Search

Maximilian Fickert, Daniel Gnad, and Jörg Hoffmann
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

{fickert,gnad,hoffmann}@cs.uni-saarland.de

Abstract
Red-black relaxation in classical planning allows
to interpolate between delete-relaxed and real plan-
ning. Yet the traditional use of relaxations to gene-
rate heuristics restricts relaxation usage to tractable
fragments. How to actually tap into the red-black
relaxation’s interpolation power? Prior work has
devised red-black state space search (RBS) for in-
tractable red-black planning, and has explored two
uses: proving unsolvability, generating seed plans
for plan repair. Here, we explore the generation
of plans directly through RBS. We design two en-
hancements to this end: (A) use a known tractable
fragment where possible, use RBS for the intracta-
ble parts; (B) check RBS state transitions for rea-
lizability, spawn relaxation refinements where the
check fails. We show the potential merits of both
techniques on IPC benchmarks.

1 Introduction
Relaxations are prominently used in AI Planning for the gene-
ration of heuristic functions (e. g. [Bonet and Geffner, 2001;
Hoffmann and Nebel, 2001; Helmert and Domshlak, 2009;
Helmert et al., 2014]). The delete relaxation in particular has
been highly influential. Under this relaxation, state variables
accumulate their values rather than switching between them.

The delete relaxation cannot account for having to move
to-and-fro, and it ignores resource consumption. Hence there
is a lot of work on taking some deletes into account (e. g. [Fox
and Long, 2001; Helmert and Geffner, 2008; Haslum, 2012;
Coles et al., 2013; Keyder et al., 2014]). Here we consider
red-black planning [Domshlak et al., 2015], a partial delete
relaxation method that allows to force delete-relaxed plans to
behave like real plans in the limit. A subset of (“red”) vari-
ables take the delete-relaxed semantics, accumulating values,
while the remaining (“black”) ones retain the true semantics.

The partition into red and black variables is called a pain-
ting, and its choice obviously allows to interpolate between
delete-relaxed and real planning. Yet for use as a heuris-
tic function, the painting must be chosen so that red-black
plan generation is tractable. Prior work therefore restricts the
black variables to what we will refer to as ACI, with acyclic
causal-graph dependencies and invertible value-transitions.

Acyclic dependencies and invertible value-transitions
occur only in small parts of practical planning tasks, so ACI
is typically very far from real planning. How can we actually
tap into the interpolation power of red-black planning?

We follow up on prior work on this question [Gnad et al.,
2016] (Gnad16 in what follows). Gnad16 have shown how
to generate red-black plans for arbitrary paintings, via red-
black state space search (RBS), a hybrid of forward search
and delete-relaxed planning, where every transition contains
a local delete-relaxed planning step over the red variables.
Gnad16 explored 1) the generation of red-black seed plans for
plan repair with LPG [Gerevini et al., 2003; Fox et al., 2006];
and 2) proving planning tasks unsolvable within the red-black
relaxation, via an iteration of more and more refined RBS
searches (more and more black variables).

Here, we explore the use of RBS for generating plans. This
is the natural complement of 2), in what we envision as a red-
black relaxation refinement process. The challenge is to make
RBS produce real plans early on, with few black variables.
We design two enhancements to this end:
A) We create synergy between RBS and ACI, by replacing

delete-relaxed planning with ACI planning in RBS. This
uses ACI where possible (e. g., moving to-and-fro on an
invertible road map), and uses RBS where not (e. g., non-
invertible resource consumption). We identify a maxi-
mally permissive condition on the black-variable depen-
dencies under which this combination is possible.

B) We design an adaptive variant of refinement, locally
within a single RBS search space where needed. We
check every transition s a−→ s′ for realizability of the red
parts, i. e., whether the delete-relaxed plan here works in
reality. Non-realizable transitions are pruned, and spawn
refinement options: red-black planning tasks starting at
s, with additional black variables addressing the non-
realizability of s a−→ s′. The refinement options become
search nodes in an overall heuristic search.

We evaluate our techniques on the IPC benchmarks. In over-
all performance, A) is competitive, while B) often suffers
from too many refinement options. Compared to Gnad16’s
approach 1), A) is better overall, and both A) and B) are
highly complementary to 1) per domain. In five domains,
our best configurations outperform the state-of-the-art sys-
tems LAMA and Mercury by large margins.

2 Preliminaries
We use the finite-domain representation (FDR) framework
[Bäckström and Nebel, 1995; Helmert, 2009]. An FDR plan-
ning task is a tuple Π = (V,A, I,G). V is a set of variables
v, each with a finite domainDv . A complete assignment to V
is a state. I is the initial state, and the goal G is a partial as-
signment to V . A is a finite set of actions, where each a ∈ A
is a triple (prea, effa, ca). The precondition prea and the ef-
fect effa are partial assignments to V ; ca ∈ R+

0 is the action’s
cost. We will sometimes refer to variable-value pairs v = d
as facts. For a partial assignment p, V(p) denotes the set of
variables instantiated by p. For V ′ ⊆ V(p), by p[V ′] := p|V ′
we denote the restriction of p to V ′. An action a is applicable
in a state s if s[V(prea)] = prea. The outcome state sJaK is
like s except that sJaK(v) = effa(v) for each v ∈ V(effa).

A transition system is a tuple Θ = (S,L, T, s0, SG). S is
a set of states. L is a set of labels. T ⊆ S × L× S is a set of
transitions. s0 ∈ S is the start state and SG ⊆ S is the set
of goal states. A plan for a state s is a transition path from s
to a state in SG. The state space of Π is the transition system
ΘΠ where S is the set of states in Π, L = A, (s, a, s′) ∈ T
iff a is applicable in s and s′ = sJaK, s0 = I , and s ∈ SG if
s[V(G)] = G. A plan π for I in ΘΠ is called a plan for Π.

The causal graph (e. g. [Jonsson and Bäckström, 1995;
Helmert, 2006]) is a digraph with vertices V and an arc
(v, v′) if v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a)) ∪ V(pre(a))]× V(eff(a)).

3 Red-Black Planning
We next give an overview of red-black planning and associa-
ted techniques, as needed to understand our contribution.

3.1 Definitions
A red-black planning task, or RB task, is a tuple ΠRB =
(V B, V R, A, I,G) with V B ∩ V R = ∅, where Π :=
(V,A, I,G) is an FDR task with V := V B ∪ V R. V B is
the set of black variables, V R is the set of red variables.
States are now RB states sRB, which map each variable v to
a subset of its domain, sRB(v) ⊆ Dv , where |sRB(v)| = 1
for v ∈ V B. In the RB initial state sRB0 each variable v
is mapped to {I(v)}. RB goal states are those sRB where
G(v) ∈ sRB(v) for all v ∈ V(G). An action a is applicable
in an RB state sRB if prea(v) ∈ sRB(v) for all v ∈ V(prea).
Upon executing a in sRB, v ∈ V(effa)∩V B is set to {effa(v)},
and v ∈ V(effa) ∩ V R is set to sRB(v) ∪ {effa(v)}. The
outcome state is denoted sRBJaK. A plan πRB under this se-
mantics is an RB plan for ΠRB. We also refer to πRB as an
RB plan for Π, viewing ΠRB as a red-black relaxation of
Π, where the choice of V B vs. V R is a painting defining the
relaxation.

The red-black relaxations of any FDR task Π form a refine-
ment hierarchy, with more refined relaxations having larger
sets V B. At the extremes, for V B = V we obtain real plan-
ning, and for V B = ∅we obtain fully delete-relaxed planning.
Example 1. Our example task Π has variables V = {T,M,
A,B} with domains DT = {l1, l2}, DM = {0, 1, 2}, DA =
{0, 1}, DB = {0, 1}. T encodes a traveling agent with two
locations l1 and l2, initially l2. The goal is to be at l2, and

to possess each product A and B. Each product is available
at l1 at price 1; A is also availa-
ble at l2, but at price 2. M is the
available money. The actions have
the form go(l, l′) and buy(l, p,m).
For example, go(l1, l2) has pre-
condition {T = l1} and effect
{T = l2}, and buy(l1, A, 2) has

l2 l1

precondition {T = l1,M = 2} and effect {A = 1,M = 1}.
A fully delete-relaxed plan for this task has two flaws: 1)

it does not go back from l1 to l2; 2) it may choose to buy A
at l2 instead of l1, over-spending the budget. We can fix 1)
by painting T black, and we can fix 2) by painting M black.
In the red-black relaxation where V B = {T,M} and V R =
{A,B}, every RB plan for Π is a real plan for Π.

3.2 Tractable Fragment: ACI
The initial line of work on red-black planning [Domshlak
et al., 2015], culminating in the Mercury system’s success
at IPC’14 [Katz and Hoffmann, 2014], generates a heuristic
function based on the tractable fragment ACI. We simplify
some details in what follows, for easier exposition.

ACI requires 1) that the causal graph over the black vari-
ables is acyclic, and 2) that every black variable is inverti-
ble. A variable v is invertible if every value transition can
be inverted under the same (or easier) conditions on other
variables. An RB plan can then be generated by finding a
fully delete-relaxed plan π+, and running ACI plan repair
on π+ to obtain an RB plan πRB. The repair process executes
π+ step-by-step under the red-black semantics; whenever a
condition (precondition or goal) g on V B is not satisfied, the
process inserts a subsequence π achieving g. The latter is al-
ways possible, in time polynomial in the length of π: thanks
to 1), V B can be solved in a sequence from clients (varia-
bles which can only be modified through actions depending
other variables) to servants (the dependent variables); thanks
to 2), whenever a servant v must provide a value d ∈ Dv for
a client, v can reach d from its current value.1

Example 2. In Example 1, T is invertible. A relaxed plan
is π+ = 〈buy(l2, A, 2), go(l2, l1), buy(l1, B, 2)〉. ACI plan
repair with V B = {T} finds flaw 1), π+ does not satisfy the
goal T = l2. It inserts go(l1, l2) at the end to fix that.

Given an FDR task Π, the painting strategies associated
with ACI choose V R so as to guarantee that the resulting re-
laxed task ΠRB is in ACI. A major weakness in practice here
is the restriction of V B to invertible variables. In our exam-
ple, T is the only such variable; we cannot paint M black, so
we cannot fix flaw 2) pertaining to money consumption.

Intuitively, using ACI instead of full delete relaxation fixes
the “moving to-and-fro” issue, for invertible moves now pain-
ted black (here: T). But it does not address resource con-
sumption, which involves non-invertible variables (here: M).

3.3 Red-Black State Space Search
To enable convergence to real planning in the limit, red-black
planning methods are required that can handle arbitrary pain-

1In our implementation, we adapted red facts following, the more
advanced repair algorithm by Katz and Hoffmann [2013].

tings. Addressing this, Gnad et al. [2016] (Gnad16) have in-
troduced red-black state space search (RBS). RBS performs
forward search with a relaxed fixed point over the red varia-
bles at each transition. At plan extraction time, RBS aug-
ments the solution path with a relaxed plan at each transition.

We require some notations. The red actions in an RB state
sRB, denotedAR(sRB), are the actions available to the relaxed
fixed point at sRB: the actions that comply with the black-
variable values. AR(sRB) := {aR | a ∈ A, prea[V B] ⊆ sRB,
effa[V B] ⊆ sRB}, where aR is the projection of a onto V R.

The relaxed fixed point at sRB is now formalized in terms
of a local planning task, namely the RB task Π+(sRB) :=
(∅, V R, AR(sRB), sRB[V R], ∅). The red completion of sRB is
the RB state F+(sRB) where F+(sRB)[V B] = sRB[V B], and
F+(sRB)[V R] is the set of all facts reachable in Π+(sRB).
Definition 1 (Gnad16). Let ΠRB be an RB planning task. The
RB state space is the transition system ΘRB = (SRB, TRB, A,
sRB0 , SRB

G). SRB is the set of RB states. sRB0 is the RB initial
state. SRB

G = {sRB | F+(sRB) is RB goal state}. TRB is
the set of transitions sRB a−→ tRB where a is applicable to
F+(sRB), eff(a)[V B] 6⊆ sRB[V B], and tRB = F+(sRB)JaK.

Example 3. Setting V B = {M}, F+(sRB0) contains T = l1
and T = l2, but neitherA = 1 norB = 1 as buying a product
affects the black variable M . The outgoing transitions of sRB0
are the buy actions. 〈buy(l1, A, 2), buy(l1, B, 1)〉 leads to
an RB goal state. For buy(l2, A, 2), in contrast, the outcome
RB state tRB has tRB(M) = {0}, so no further actions are
applicable here and we detect that this is a dead-end.

RB plan extraction augments backward solution path ex-
traction with a relaxed plan extraction step at each transi-
tion. Assume that π = 〈a0, . . . , an−1〉 is a plan for ΘRB,
assume that backward extraction has already extracted an
RB plan for the postfix πk := 〈ak, . . . , an−1〉, and assume
that the transition taken by ak−1 in π is sRBk−1

ak−1−−−→ sRBk .
Then the red goal for relaxed plan extraction at this transi-
tion isG(sRBk−1) := RegressR(G, ak−1◦πk)\sRBk−1[V R], where
RegressR is regression in the projection onto V R. Intuitively,
G(sRBk−1) is the set of red facts that must be achieved before
ak−1, and that cannot be achieved further below. Any relaxed
plan extraction mechanism can now be used on Π+(sRBk−1) to
find a relaxed plan π+(sRBk−1) achieving G(sRBk−1). Then πk is
replaced by π+(sRBk−1) ◦ ak−1 ◦ πk, and we iterate.
Example 4. In Example 3, denote π = 〈buy(l1, A, 2),
buy(l1, B, 1)〉 = 〈a0, a1〉. Denote the RB states along π as
sRB0 , sRB1 , sRB2 . Plan extraction first processes sRB1

a1−→ sRB2 .
The red goal here is G(sRB1) = ∅, as RegressR({A = 1, B =
1}, buy(l1, B, 1)) = {T = l1, A = 1} and sRB1 [V R] =
{T = l2, T = l1, A = 0, A = 1, B = 0}. The postfix thus
simply is π1 = 〈buy(l1, B, 1)〉. In the next step though, at
sRB0

a0−→ sRB1 , the red goal is G(sRB0) = {T = l1}, leading to
the relaxed plan 〈go(l2, l1)〉 and thus to the overall red-black
plan πRB = 〈go(l2, l1), buy(l1, A, 2), buy(l1, B, 1)〉.

Observe that πRB in Example 4 is correct about M , but
is flawed regarding T (as πRB does not go back from l1 to
l2 at the end, leaving the goal T = l2 unsatisfied). This is
complementary to the tractable fragment ACI, which can fix

T but cannot fixM (cf. Example 2). The first new method we
propose here is motivated by this kind of complementarity.
We combine RBS with ACI to handle each kind of flaw with
the most appropriate method.

4 Combining RBS with ACI
Any flaw in an RB plan πRB can in principle be fixed by pain-
ting the respective variable v black, V B := V B ∪ {v}, and
re-running RBS. Yet ΘRB grows exponentially in |V B|. Can
we avoid the computational cost incurred by painting v black?

As we now show, the answer is yes – if, like for v = T in
Example 4, we can handle v by ACI instead. We can use ACI
to effectively handle a tractable part of the task at hand (e. g.
invertible moves to-and-fro), combined with RBS to handle
the remainder (e. g. resource consumption).

4.1 The RBS+ACI Framework
Our combined framework, that we baptize RBS+ACI, dis-
tinguishes black variables of two different kinds, handled by
RBS vs. ACI. So a painting is now a partition of V into three
subsets V RBS, V ACI, V R where V B = V RBS ∪ V ACI.

Assume that such a partition is given. We need an RB plan
relative to the entire set V B of black variables, i. e. for the RB
task (V RBS ∪ V ACI, V R, A, I,G). The basic idea is to apply
ACI plan repair on the outcome of RBS on the coarser (more
relaxed) task ΠRB

+ := (V RBS, V R ∪ V ACI, A, I,G).
ACI plan repair is defined for fully delete-relaxed plans,

not RB plans, so we must adapt the repair process. We must
make sure that the repair 1) is always possible given the black
part V RBS already fixed, and 2) never affects that fixed part.

Let π be the plan found by RBS for ΠRB
+ . Our adapted

repair process, RBS+ACI plan repair, computes a plan wit-
hout conflicts on the entire set of black variables V RBS∪V ACI,
fixing unsatisfied conditions only on V ACI without modifying
the conflict-free V RBS.

To ensure 2), an obvious and natural requirement is that
there is no a ∈ A with V(effa) ∩ V ACI 6= ∅ and V(effa) ∩
V RBS 6= ∅. That is, the repair actions will never affect V RBS.

Ensuring 1) is more tricky. In RBS on ΠRB
+ , the red com-

pletion F+(sRB) of any state sRB uses only actions whose
precondition is satisfied given the black variable assignment
sRB[V RBS]. So one may think (and we did think at first) that
no further restrictions are needed. However, across transitions
sRB

a−→ tRB, the fixed repair context changes from sRB[V RBS]
to tRB[V RBS]. This causes problems because, during RBS,
the values reached for V ACI in F+(sRB) are propagated to
tRB. But due to the different context tRB[V RBS], the repair
process at tRB cannot necessarily reach these values.

Similar to Gnad and Hoffmann [2015], we impose that
there is no a ∈ A with V(effa) ∩ V ACI 6= ∅ and V(prea) ∩
V RBS 6= ∅, i. e., the repair actions do not have preconditions
on V RBS. We next show that this restriction is sufficient (the
repair will always work). We then show that the restriction is
necessary for computational reasons.

The conjunction of our two restrictions is equivalent to the
absence of a causal graph arc from V RBS to V ACI. We say in
this case that V ACI does not depend on V RBS.

Proposition 1. Given an RB planning task ΠRB = (V B, V R,
A, I,G), and a partition of V B into V RBS and V ACI so that
(V ACI, V R ∪ V RBS, A, I,G) is in ACI, and V ACI does not de-
pend on V RBS. Let π be an RB plan for ΠRB

+ = (V RBS, V R ∪
V ACI, A, I,G). Then RBS+ACI plan repair on π succeeds,
and its output πRB is an RB plan for ΠRB.

Proof. Any action a that may be inserted by ACI plan re-
pair, and hence by RBS+ACI plan repair, affects a variable in
V ACI. Therefore, by prerequisite, 1) a has no effect on V RBS,
and 2) a has no precondition on V RBS. So the arguments gi-
ven by Katz et al. [2013] remain applicable.

Example 5. Say we set V RBS = {M} and V ACI = {T}. Note
that M depends on T : this dependency direction is allowed.

RBS is run on ΠRB
+ = ({M}, {T,A,B}, A, I,G). The out-

come is π = 〈go(l2, l1), buy(l1, A, 2), buy(l1, B, 1)〉. Run-
ning ACI plan repair on π finds the unsatisfied goal condition
g = {T = l2} at the end. This is repaired by appending
〈go(l1, l2)〉 to π, yielding a plan for the original task.

Proposition 1 shows that our RBS+ACI framework is
sound for RB planning in ΠRB. Completeness holds, too:
Proposition 2. Under the prerequisites of Proposition 1, an
RB plan for ΠRB = (V RBS ∪ V ACI, V R, A, I,G) exists iff an
RB plan for ΠRB

+ = (V RBS, V R ∪ V ACI, A, I,G) exists.
Proof. The “if” direction holds by Proposition 1. The “only
if” direction holds because ΠRB is a refinement of ΠRB

+ .
So our approach works provided there is no CG arc from

V RBS to V ACI. Let us show that this restriction is neces-
sary. Consider the decision problem RBS-dependent ACI
PlanGen, defined as follows. Given ΠRB = (V B, V R, A,
I,G) and a partition of V B into V RBS and V ACI s.t. (V ACI,
V R∪V RBS, A, I,G) is in ACI, and all CG arcs between V RBS

and V ACI, if any, go from V RBS to V ACI. Given an RB plan π
for ΠRB

+ = (V RBS, V R∪V ACI, A, I,G). Denote by π|V RBS the
subsequence of V RBS-affecting actions in π. Decide whether
π|V RBS is a subsequence of an RB plan for ΠRB.

Theorem 1. RBS-dependent ACI PlanGen is NP-hard.

Proof sketch. By reduction from SAT. Our planning enco-
ding contains value-choosing actions for propositional vari-
ables pi, and clause-satisfying actions for clauses cj . In the
construction, V RBS contains a single “indicator” variable v;
V ACI contains variables vpi

representing the choice of values;
and V R contains variables vcj representing whether a clause
has been satisfied yet. Specifically, v has domain {0, 1} and
a single action a[v01] moving v from its initial value 0 to 1.
We can move vpi

invertibly between its initial value u and
d ∈ {0, 1}, but under the precondition v = d. Satisfying a
clause requires as precondition not only a suitable pi value,
but also v = 1. Given this, an RB plan for ΠRB exists iff φ is
satisfiable. Yet any RB plan π for ΠRB

+ has the same V RBS-
affecting subsequence π|V RBS = 〈a[v01]〉.

The full proof of Theorem 1 will be made available in
an online TR. By the theorem, given the fixed solution path
π|V RBS found by RBS for ΠRB

+ , augmenting π|V RBS to an RB
plan for ΠRB is hard. In our framework, such augmentation
is done by red (delete-relaxed) planning in ΠRB

+ alongside

π|V RBS , followed by RBS+ACI plan repair. So one of these
steps would need to have worst-case exponential runtime (un-
less P = NP). In other words, efficient RBS+ACI plan repair
is not possible when allowing CG arcs from V RBS to V ACI.

In practice, i. e., in our overall planning algorithm intro-
duced next, one can ameliorate the situation by attempting
RBS+ACI plan repair even if V ACI does depend on V RBS. If
the repair succeeds, all is fine. We only need to act – remove
the problematic variable(s) from V ACI – if the repair fails.

4.2 Overall Planning Process: Iterated RBS+ACI
We now know how to solve any RB task ΠRB with a painting
V RBS, V ACI, V R that qualifies for Proposition 1. But our aim
here is to find real plans, for the original FDR input task Π. So
RBS+ACI becomes a tool within an overall planning process.

That process is a loop around RBS+ACI searches with in-
creasingly refined paintings. In a pre-process, we compute
an ACI painting V B

0 , V
R
0 using the default painting strategy in

Mercury, which orders the variables by causal graph level and
iteratively paints variables red until the black CG is a DAG
[Katz and Hoffmann, 2014]. We then initialize our painting
as V RBS := ∅, V ACI := V B

0 , V
R := V R

0 . We run RBS+ACI
on that painting. If an RB plan does not exist, we know that
Π is unsolvable and we stop. Otherwise, we now have an RB
plan πRB. We check whether πRB is a real plan for Π. If
yes, we stop. Otherwise, we refine our painting. Namely, we
simulate the execution of πRB under the real planning seman-
tics in Π, and we count the number of flaws associated with
each variable v ∈ V R. We select v ∈ V R with a maximal
number of flaws (a criterion adapted from Mercury). We set
V RBS := V RBS ∪ {v} and V R := V R \ {v}, and iterate.

Adding v to V RBS may introduce dependencies of V ACI

on V RBS. Therefore, as discussed above, at some point
RBS+ACI plan repair may fail. In that case, we move the
culprit variable(s) from V ACI to V R, re-establishing the Pro-
position 1 guarantee that repair will succeed. The red-black
relaxation considered is, then, no longer a refinement of the
previous one. But convergence to V B = V remains intact,
so that the completeness of the overall planning process is
preserved.

Whenever checking whether an intermediate RB plan πRB

works under the real planning semantics in Π, a variant is
to commit to the prefix that works. We will refer to this as
prefix-execution. The advantage is that the next iteration of
RBS+ACI will not have to start from scratch on the initial
state. On the downside, of course this loses completeness.

5 Adaptive Refinement via Realizability
An iterative refinement loop around RBS, as in iterated
RBS+ACI, is wasteful in that every iteration of RBS starts
from scratch, re-building the entire RB state space. Prefix-
execution fixes this, but in a very limited way. Ideally, like
other abstraction refinement processes, we ought to refine in
an adaptive manner, only where needed, and do so incremen-
tally within a single, iteratively refined, relaxed search space.

But how to do this in RBS, and effectively for the purpose
of finding real plans? The straightforward approach would be
to search until an RB plan πRB is found, execute πRB against
the real semantics until the first flaw occurs at RB state sRB,

then accordingly refine the painting and re-do the RBS search
space below sRB. But there are a number of issues with this.
First, it saves us only the work otherwise done above sRB (si-
milarly as the much simpler prefix-execution). Second, with
many black variables – as needed to find real plans – finding
πRB becomes very expensive so there will be long time in-
tervals between the local refinement steps. Which is especi-
ally wasteful as, third, things often go wrong at the root of
an RBS sub-tree already. To illustrate the latter, say that the
only action applicable at the root sRB has red preconditions
p and q, each of which is reached in F+(sRB) but which are
in conflict so their conjunction is not reachable under the real
semantics. Then all search below sRB is wasted.

Given these observations, here we design an eager appro-
ach, imposing refinements whenever a transition in ΘRB will
not work out in reality. We first show how to do this in RBS,
then we discuss the combination with ACI.

5.1 Realizability Refinement: X-RBS
Let sRB be any RB state in ΘRB, and let sRB a−→ tRB be any
outgoing transition of sRB. By construction, we know that
prea[V R] ⊆ F+(sRB). That is, the red preconditions of a can
be achieved in the delete-relaxed task Π+(sRB) at sRB. Let
now π+

X be a relaxed plan for the goal prea[V R] in Π+(sRB),
extracted by some relaxed-plan extraction method X. If π+

X

achieves prea[V R] under the real semantics V B = V , we say
that sRB a−→ tRB is realized by π+

X and is realizable given X.

Definition 2. Let ΠRB be an RB planning task, and let X be a
relaxed-plan extraction method. The X-RB state space is the
transition system ΘRB

X defined like ΘRB except that:
(i) transitions sRB a−→ tRB not realizable given X are pru-

ned;
(ii) if sRB a−→ tRB is realized by π+

X , then tRB is the outcome
state of executing π+

X ◦ a in sRB with V B = V .
Some remarks are in order. First, the rationale behind (i)

is that red-black plans will be extracted using X, so if X does
not actually achieve prea in reality then sRB a−→ tRB won’t
be in a real plan. It is of course a restriction here to commit
to X. But there is no systematic alternative: short of a full-
scale planning process for prea – giving up on the relaxation
altogether – if X does not find a real plan, then the best one
could do is try another relaxed plan extraction method X’.

Second, that said, Definition 2 is only one half of the story.
Whenever a transition sRB a−→ tRB is pruned by (i), we spawn
a refinement option, discussed in detail below. A refinement
option is a refined RB planning task at sRB, addressing the
reason for non-realizability of sRB a−→ tRB.

Finally, (ii) has the immediate effect that every reachable
state sRB in ΘRB

X is in fact a real state. It turns the red part of
the search (the method X) into a fast macro-generator to the
next applicable black-variable affecting action. Observe that
this is a natural match with our realizability check. What re-
alizability affirms is that, in reality, we can reach prea at sRB.
In contrast, the over-approximated state transition, without
(ii), would pretend that we can reach the entire set F+(sRB).
Intuitively, we can check the validity of sRB a−→ tRB only in

a limited way, because we don’t a-priori know what the red
goal might be here at plan extraction time. So we commit to
the minimal way of both, checking and using, the transition.
(On the side, realizability checks without (ii) would apply the
real semantics starting from an RB state, another mismatch.)

Now, that said, (ii) is a choice we made in our work so far.
Exploring alternate definitions is a topic for future work.

Let us now turn to refinement options:
Definition 3. Let ΠRB = (V B, V R, A, I,G) be an RB plan-
ning task. Let sRB a−→ tRB be a transition pruned in ΘRB

X , not
realized by π+

X . Let v ∈ V R be s.t. π+
X contains a maximal

number of flaws on v. Then ΠRB
+v(sRB) := (V B ∪ {v}, V R \

{v}, A, sRB, G) is a refinement option for sRB a−→ tRB.

Whenever a transition sRB a−→ tRB is pruned in our explora-
tion of ΘRB

X , we generate a refinement option ΠRB
+v(sRB). That

option is inserted as a search node into the overall (heuristic)
search. Thus, the search decides not only which states to ex-
plore, but also which refinement is used to explore that state.
We will refer to this overall search framework as X-RBS.

Observe that the under-approximation (ii) loses complete-
ness, i. e., our overall search space may not contain a plan:
below realizable transitions, the commitment to π+

X may ex-
clude the solutions. As an optional fix, refinement-explored,
we also spawn refinement options at nodes sRB all of whose
descendants have been unsuccessfully explored. In such a
case, we do not have a concrete flaw to fix, so we pick a vari-
able v ∈ V R to paint black arbitrarily.

5.2 Combination with ACI
The number of refinement options can be a major source of
computational overhead in X-RBS. One way to ameliorate
this is to combine X-RBS with ACI (X-RBS+ACI): replacing
delete-relaxed planning with tractable red-black planning will
result in fewer flaws, and in more realizable transitions.

The combination is simple in X-RBS as relaxed planning
occurs only at individual transitions sRB a−→ tRB. It 1) gene-
rates F+(sRB) to test whether prea is relaxed-reachable; it 2)
extracts a relaxed plan using method X, to check realizability.

Using ACI instead, 1) remains unchanged. For 2), we use
ACI plan repair on top of X. This uses separate sets V RBS vs.
V ACI of black variables as before, but with no constraint on
their dependencies: in a realizability check – against the real
semantics – a success guarantee cannot be given anyhow.

6 Experiments
Our techniques are implemented on top of Gnad16’s RBS,
which modifies Fast Downward (FD) [Helmert, 2006] in a
minimally intrusive way, exchanging the state and state tran-
sition data structures while preserving all search algorithms.
All our configurations run FD’s greedy best-first dual-queue
search with Gnad16’s hFF extension and preferred operators.

We run each of RBS and X-RBS with vs. without ACI. We
run RBS with vs. without prefix-execution (PE), and X-RBS
with vs. without refinement-explored (RE), yielding eight dif-
ferent configurations. Among these, RBS with neither ACI
nor prefix-execution is a baseline easily derived from (though
not evaluated by) Gnad16. To represent the state of the art

RBS X-RBS
+ACI +ACI RBS Mer-

+PE +PE +RE +RE +LPG LAMA cury

Airport (50) 27 28 27 28 41 43 41 44 42 32 32
Barman (40) 0 3 0 3 0 7 0 0 24 39 40
Blocks (35) 35 35 35 35 35 35 24 33 35 35
Childsnack (20) 5 20 9 10 0 0 0 0 4 5 0
Depots (22) 15 17 16 18 1 9 14 15 21 20 21
Driverlog (20) 19 18 20 19 2 7 3 9 18 20 20
Elevat (50) 45 47 50 50 0 12 50 50 50 50 50
Floortile (40) 3 3 6 7 0 4 0 0 9 8 8
Freecell (80) 71 69 71 69 69 61 69 60 35 79 80
GED (20) 10 9 10 10 20 20 14 0 4 20 20
Grid (5) 4 4 5 4 0 2 4 5 4 5 5
Hiking (20) 20 20 15 17 18 15 18 20 19 18 20
Logistics (63) 62 62 63 63 0 12 63 63 35 63 63
Maintenan (20) 11 7 11 7 0 0 0 0 0 7
Mprime (35) 35 34 35 35 3 18 35 34 35 35 35
Mystery (19) 16 13 17 13 1 8 19 18 16 19 19
NoMystery (20) 19 19 19 17 0 4 1 4 19 11 14
ParcPrin(50) 49 49 49 49 39 48 36 37 35 49 50
Parking (40) 12 13 11 13 0 0 0 0 0 40 40
Pathways (30) 21 28 21 28 27 26 27 26 21 23 30
PegSol (50) 50 50 50 50 50 50 50 37 16 50 50
PipesNoT (50) 35 38 36 38 34 25 25 17 39 43 44
PipesTank (50) 31 26 28 30 26 20 34 18 24 42 42
PSR (50) 50 50 50 50 0 49 0 49 50 50 50
Rovers (40) 40 40 40 40 2 16 18 20 40 40
Satellite (36) 36 36 36 36 0 5 36 36 36 36
Scanaly (50) 42 46 42 50 43 42 44 44 46 50 50
Sokoban (50) 20 15 22 13 44 44 29 9 5 48 42
Storage (30) 18 20 18 18 16 17 28 28 25 19 19
Tetris (20) 0 3 0 2 1 0 3 2 0 13 19
Thoughtful (20) 6 11 6 10 15 13 9 5 16 13
Tidybot (20) 8 6 7 8 0 2 0 0 13 17 15
TPP (30) 30 30 30 30 0 10 30 27 30 30 30
Transpo (70) 31 33 70 70 0 20 61 57 45 61 70
Trucks (30) 12 12 12 12 4 10 0 8 20 15 19
VisitAll (40) 3 4 40 40 3 3 40 40 4 40 40
Woodw (50) 50 49 50 49 17 16 10 13 47 50 50
Zenotrav (20) 20 20 20 20 1 7 20 20 20 20∑

(1385) 961 987 1047 1061 512 680 855 848 755 1211 1238

Table 1: Coverage. Best results highlighted. We omit domains
where all tested planners have full coverage. RBS+LPG is RBS fol-
lowed by LPG plan repair (empty entries could not be run, see text).

in satisficing planning, we run LAMA [Richter and Westp-
hal, 2010] and Mercury [Katz and Hoffmann, 2014]. We
also run the best-performing LPG-plan-repair configuration
by Gnad16. This paints 90% of the variables black, uses RBS
to find an RB plan πRB, then calls LPG to repair πRB into a
real plan.

We run all IPC satisficing STRIPS benchmarks. All expe-
riments were run on a cluster of Intel Xeon E5-2650v3 ma-
chines, with runtime (memory) limits of 30 minutes (4 GB).

6.1 Coverage
Consider Table 1, and the variants of RBS (leftmost part of
the table). Relative to the baseline, our techniques (+ACI and
+PE) improve performance substantially. This is clearly vi-
sible in overall coverage. Per domain, +PE yields better co-
verage in 14 domains, +ACI in 12, and the two together in
15. Both techniques also have their drawbacks, as +PE does
not work well if the prefix often leads into dead ends (e.g. in
Sokoban). Furthermore, +ACI can sometimes introduce more
conflicts into the partially relaxed plan. This happens e.g. in
Childsnack, where otherwise the RBS+PE configuration only
needs to paint the sandwich objects and tray locations black
(22-25% of the total variables) to make the red-black plan a

real plan, solving all instances in less than 5 seconds.
For the X-RBS method, in the middle part of Table 1, the

results are much worse, in many domains and hence in the
overall. A key reason is the overhead from too many refine-
ment options. On average, 74% of the generated transitions
are realizable, in some domains much less (15% in Parking,
18% in Tetris). As expected, the combination with ACI ame-
liorates this significantly. But it remains a question for future
work how X-RBS can be made competitive overall. While
the +RE option helps in domains where X-RBS fails often, it
also increases the overhead of too many refinement options.

Consider now RBS+LPG. The empty entries in Table 1 are
domains where that architecture did not run properly, for im-
plementation reasons (Gnad16’s results do not include these
domains either). Filling in the gaps optimistically – assuming
that RBS+LPG can solve all instances in the missing dom-
ains – overall coverage becomes 934. This still lags behind
our RBS methods, even the baseline. On a per-domain le-
vel though, the methods are highly complementary: of the 32
domains, RBS beats RBS+LPG in 12 and is inferior in 12;
RBS+ACI+RE beats RBS+LPG in 16 and is inferior in 11.

For our X-RBS configurations, the comparison to
RBS+LPG is, naturally, less favorable. Complementarity
at per-domain level persists though. X-RBS+ACI beats
RBS+LPG in 13 domains and is inferior in 14.

Consider finally LAMA and Mercury. All our configura-
tions are far from their performance overall. Our best con-
figuration, RBS+ACI+PE, beats LAMA in 5 domains and is
inferior in 20; for Mercury, these numbers are 2 vs. 22.

That said, there are five domains in which at least one of
our configurations works exceptionally well. In Airport, our
best method gains +12 coverage over the best of LAMA and
Mercury; in Childsnack, +15; in Maintenance, +4; in NoMys-
tery, +5; in Storage, +9. So the new methods can potentially
contribute in portfolios or per-domain auto-configuration.

6.2 #Black Variables until Solution in RBS
The major motivation behind our +ACI and +PE extensions
to RBS is to reduce the size of V RBS required to find a real
plan. Figure 1 measures this impact directly.

Both extensions clearly help as intended. Without +ACI,
few instances can be solved without search (|V RBS| = 0) as,
there, the delete-relaxed plan for the initial state has to be a
real plan. The advantage of our extensions remains strong
when allowing larger V RBS, until about |V RBS|/|V | = 50%
where the gap narrows. After that, the difference is mainly

 0

 200

 400

 600

 800

 1000

 1200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RBS+ACI+PE

RBS+ACI

RBS+PE

RBS

Figure 1: Coverage as a function of the fraction of RBS variables,
|V RBS|/|V |, in the first iteration of RBS that finds a real plan.

due to benchmarks (like Transport) that ACI solves on the
initial state but that are beyond reach of RBS search alone.

7 Conclusion
We have shown that RBS can be synergetically combined
with ACI tractable red-black planning, and we have started
the exploration of adaptive relaxation refinement within RBS.
The results for the former show performance improvements
due to the smaller number of black variables that need to be
searched over. The results for the latter exhibit promise, but
the jury is still out how such adaptive refinement is best done.

Overall, our work contributes another piece in the puzzle
how to tap into the power of partial delete relaxation without
incurring a prohibitive overhead. This fits into the larger puz-
zle of how to use informative but costly approximations. We
believe that such research is valuable to complement the more
prominent focus on fast-but-inaccurate approximations, and
we hope that our ideas and insights may be useful for appro-
aches other than red-black planning as well.

Acknowledgments
This work was partially supported by the German Research
Foundation (DFG), under grants HO 2169/5-1 (“Critically
Constrained Planning via Partial Delete Relaxation”) and HO
2169/6-1 (“Star-Topology Decoupled State Space Search”).

References
[Bäckström and Nebel, 1995] Christer Bäckström and Bernhard

Nebel. Complexity results for SAS+ planning. Computational
Intelligence, 11(4):625–655, 1995.

[Bonet and Geffner, 2001] Blai Bonet and Héctor Geffner. Plan-
ning as heuristic search. Artificial Intelligence, 129(1–2):5–33,
2001.

[Coles et al., 2013] Amanda Jane Coles, Andrew Coles, Maria Fox,
and Derek Long. A hybrid LP-RPG heuristic for modelling nu-
meric resource flows in planning. Journal of Artificial Intelli-
gence Research, 46:343–412, 2013.

[Domshlak et al., 2015] Carmel Domshlak, Jörg Hoffmann, and
Michael Katz. Red-black planning: A new systematic approach
to partial delete relaxation. Artificial Intelligence, 221:73–114,
2015.

[Fox and Long, 2001] Maria Fox and Derek Long. Stan4: A hy-
brid planning strategy based on subproblem abstraction. The AI
Magazine, 22(3):81–84, 2001.

[Fox et al., 2006] M. Fox, A. E. Gerevini, D. Long, and I. Serina.
Plan stability: Replanning versus plan repair. In Derek Long
and Stephen Smith, editors, Proceedings of the 16th International
Conference on Automated Planning and Scheduling (ICAPS’06),
pages 212–221, Ambleside, UK, 2006. Morgan Kaufmann.

[Gerevini et al., 2003] Alfonso Gerevini, Alessandro Saetti, and
Ivan Serina. Planning through stochastic local search and tem-
poral action graphs. Journal of Artificial Intelligence Research,
20:239–290, 2003.

[Gnad and Hoffmann, 2015] Daniel Gnad and Jörg Hoffmann.
Red-black planning: A new tractability analysis and heuristic
function. In Levi Lelis and Roni Stern, editors, Proceedings of
the 8th Annual Symposium on Combinatorial Search (SOCS’15).
AAAI Press, 2015.

[Gnad et al., 2016] Daniel Gnad, Marcel Steinmetz, Mathäus Jany,
Jörg Hoffmann, Ivan Serina, and Alfonso Gerevini. Partial de-
lete relaxation, unchained: On intractable red-black planning and
its applications. In Jorge Baier and Adi Botea, editors, Procee-
dings of the 9th Annual Symposium on Combinatorial Search
(SOCS’16). AAAI Press, 2016.

[Haslum, 2012] Patrik Haslum. Incremental lower bounds for ad-
ditive cost planning problems. In Blai Bonet, Lee McCluskey,
José Reinaldo Silva, and Brian Williams, editors, Proceedings of
the 22nd International Conference on Automated Planning and
Scheduling (ICAPS’12), pages 74–82. AAAI Press, 2012.

[Helmert and Domshlak, 2009] Malte Helmert and Carmel
Domshlak. Landmarks, critical paths and abstractions: What’s
the difference anyway? In Alfonso Gerevini, Adele Howe,
Amedeo Cesta, and Ioannis Refanidis, editors, Proceedings of
the 19th International Conference on Automated Planning and
Scheduling (ICAPS’09), pages 162–169. AAAI Press, 2009.

[Helmert and Geffner, 2008] Malte Helmert and Hector Geffner.
Unifying the causal graph and additive heuristics. In Jussi Rin-
tanen, Bernhard Nebel, J. Christopher Beck, and Eric Hansen,
editors, Proceedings of the 18th International Conference on Au-
tomated Planning and Scheduling (ICAPS’08), pages 140–147.
AAAI Press, 2008.

[Helmert et al., 2014] Malte Helmert, Patrik Haslum, Jörg Hoff-
mann, and Raz Nissim. Merge & shrink abstraction: A method
for generating lower bounds in factored state spaces. Journal of
the Association for Computing Machinery, 61(3), 2014.

[Helmert, 2006] Malte Helmert. The Fast Downward planning sy-
stem. Journal of Artificial Intelligence Research, 26:191–246,
2006.

[Helmert, 2009] Malte Helmert. Concise finite-domain representa-
tions for PDDL planning tasks. Artificial Intelligence, 173:503–
535, 2009.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard Nebel.
The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

[Jonsson and Bäckström, 1995] Peter Jonsson and Christer
Bäckström. Incremental planning. In European Workshop on
Planning, 1995.

[Katz and Hoffmann, 2013] Michael Katz and Jörg Hoffmann.
Red-black relaxed plan heuristics reloaded. In Malte Helmert
and Gabriele Röger, editors, Proceedings of the 6th Annual Sym-
posium on Combinatorial Search (SOCS’13), pages 105–113.
AAAI Press, 2013.

[Katz and Hoffmann, 2014] Michael Katz and Jörg Hoffmann.
Mercury planner: Pushing the limits of partial delete relaxation.
In IPC 2014 planner abstracts, pages 43–47, 2014.

[Katz et al., 2013] Michael Katz, Jörg Hoffmann, and Carmel
Domshlak. Red-black relaxed plan heuristics. In Marie
desJardins and Michael Littman, editors, Proceedings of the
27th AAAI Conference on Artificial Intelligence (AAAI’13), pa-
ges 489–495, Bellevue, WA, USA, July 2013. AAAI Press.

[Keyder et al., 2014] Emil Keyder, Jörg Hoffmann, and Patrik Has-
lum. Improving delete relaxation heuristics through explicitly
represented conjunctions. Journal of Artificial Intelligence Rese-
arch, 50:487–533, 2014.

[Richter and Westphal, 2010] Silvia Richter and Matthias Westp-
hal. The LAMA planner: Guiding cost-based anytime plan-
ning with landmarks. Journal of Artificial Intelligence Research,
39:127–177, 2010.

