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Abstract
A key technique for proving unsolvability in classi-
cal planning are dead-end detectors ∆: effectively
testable criteria sufficient for unsolvability, prun-
ing (some) unsolvable states during search. Re-
lated to this, a recent proposal is the identification
of traps prior to search, compact representations
of non-goal state sets T that cannot be escaped.
Here, we create new synergy across these ideas.
We define a generalized concept of traps, relative
to a given dead-end detector ∆, where T can be
escaped, but only into dead-end states detected by
∆. We show how to learn compact representations
of such T during search, extending the reach of ∆.
Our experiments show that this can be quite ben-
eficial. It improves coverage for many unsolvable
benchmark planning domains and dead-end detec-
tors ∆, in particular on resource-constrained do-
mains where it outperforms the state of the art.

1 Introduction
Classical planning is concerned with the analysis of goal
reachability in large state spaces, compactly described in
terms of planning tasks specifying a vector of state vari-
ables, an initial state, a set of actions, and a goal condition.
Planning research has traditionally been concerned with solv-
able tasks, reflected for example in the benchmarks used in
the International Planning Competition (IPC) up to the year
2014 [Bacchus, 2001; Long and Fox, 2003; Hoffmann and
Edelkamp, 2005; Gerevini et al., 2009; Coles et al., 2012].
However, proving planning tasks unsolvable is also quite rele-
vant in practice. Unsolvable tasks occur, for example, in over-
subscription planning [Smith, 2004; Gerevini et al., 2009;
Domshlak and Mirkis, 2015] and in directed model check-
ing [Edelkamp et al., 2004; Kupferschmid et al., 2006;
2008]. Furthermore, even solvable planning tasks often
contain unsolvable – dead-end – states, for example when
dealing with limited resources [Laborie and Ghallab, 1995;
Nakhost et al., 2012; Coles et al., 2013].

Research in classical planning has recently seen a surge
of techniques addressing these issues, designing effective
techniques for proving unsolvability. After initial works
[Bäckström et al., 2013; Hoffmann et al., 2014], a wealth

of techniques participated in the inaugural Unsolvability In-
ternational Planning Competition (UIPC’16) (e. g., [Torralba
and Alcázar, 2013; Domshlak et al., 2015; Torralba et al.,
2016; Pommerening and Seipp, 2016; Seipp et al., 2016;
Steinmetz and Hoffmann, 2016a; Torralba, 2016; Gnad et al.,
2016]). One major strand of these works designs what we will
refer to as dead-end detectors ∆: effectively testable crite-
ria sufficient for unsolvability, designed to be called on every
state during search, serving to prune those dead-end states
detected. Such ∆ were designed based on suitable variants
of heuristic functions, namely pattern databases [Edelkamp,
2001], merge-and-shrink heuristics [Helmert et al., 2014;
Hoffmann et al., 2014], potential heuristics [Pommerening et
al., 2015], and critical-path heuristics [Haslum and Geffner,
2000; Steinmetz and Hoffmann, 2016b; 2017]. These detect
a state s to be a dead-end if s is unsolvable in the approxima-
tion underlying the heuristic function.

A recent related proposal is the identification of traps
[Lipovetzky et al., 2016]: compact representations of non-
goal state sets T that cannot be escaped, i. e., where from any
state s ∈ T , all states s′ reachable from s are also contained
in T . Such traps can be identified through an offline analysis,
prior to search. Here we extend the trap idea in two ways:

(i) We observe that traps can be combined for synergistic
effect with arbitrary dead-end detectors ∆.

(ii) We observe that traps can be learned online during
search, from the dead-end states encountered.

By (i), the trap Θ extends the reach of ∆, avoiding “the traps
set for the search by ∆”. By (ii), this is done dynamically
from information that becomes available during search.

Notably, our technique can also be run without any other
dead-end detector ∆ (technically: a trivial ∆ not detecting
any dead-ends). In this case, (i) is mute, and (ii) turns our
technique into an online-learning variant of the original traps
proposal [Lipovetzky et al., 2016].

In the ability to learn sound and generalizable knowledge
– “nogoods” – about dead-ends during search, our work is ri-
valed only by recent methods for the online refinement of a
critical-path heuristic dead-end detector ∆C [Steinmetz and
Hoffmann, 2016b; 2017].1 In the ability to exploit synergy
with another dead-end detector ∆, our technique is unique

1Most works on nogood learning in state space search assume
a plan length bound [Blum and Furst, 1997; Long and Fox, 1999;



in the following sense: if s is a state all of whose successor
states s′ are detected to be dead-ends by ∆, then we can learn
to detect s without having to detect also the states s′. This is
in contrast to all other known dead-end detectors: when learn-
ing to detect s, these necessarily – and redundantly with the
given ∆ – also learn to detect all s′. The latter is because
all known dead-end detectors are transitive, i. e., when they
detect a state s, they also detect all states reachable from s.
Transitivity is a natural property, as, after all, dead-end detec-
tors need to reason about all possible descendant states; for
dead-end detectors based on a heuristic function, transitivity
follows from consistency. Steinmetz and Hoffmann [2017]
explore combinations of ∆C-learning with other dead-end
detectors δ, yet find that these suffer from having to learn
to subsume δ. Our notion of ∆-traps does not have that issue,
and is empirically synergistic with several δ.

We implemented our techniques in combination with es-
sentially all known dead-end detectors, in particular those
run in UIPC’16. We also enhanced the UIPC’16 winner,
the Aidos portfolio [Seipp et al., 2016], in this manner. Our
experiments show that online ∆-trap learning can be quite
beneficial. It is competitive on its own, run without any
other dead-end detector. Combined with a variety of previous
dead-end detectors ∆, it improves coverage for many unsolv-
able benchmark planning domains, in particular on resource-
constrained domains where it outperforms the state of the art.

2 Background
We use the finite-domain representation (FDR) framework.
A planning task is a tuple Π = 〈V,A, I,G〉. V is a set of
state variables, each v ∈ V associated with a finite domain
D(v). A is a set of actions a, each a pair 〈prea, eff a〉 of
partial assignments to V . The initial state I is a complete
assignment to V , the goal is a partial assignment to V . A state
s is a complete assignment to V . An action a is applicable in
s if prea ⊆ s, and applying such a results in the state sJaK
overwriting s with eff a where eff a is defined. A plan for s
is an action sequence π whose iterative application leads to
sG where G ⊆ sG; s is a dead-end if no such π exists. For
a partial variable assignment t, we denote by V(t) the set of
variables v for which t(v) is defined. If t(v) is not defined,
we also write t(v) = ⊥. For a subset of variables V ⊆ V , the
projection of t onto V is denoted t|V .

We denote the set of all states in Π by S. A heuristic func-
tion is a function h : S 7→ R+

0 ∪ {∞}. The return value
∞ is used to indicate dead-ends. That ability has tradition-
ally been treated as a by-product of goal distance estimation,
but the aforementioned recent works have designed heuristic
function variants dedicated to dead-end detection.

Another recent proposal for dead-end detection are traps
[Lipovetzky et al., 2016]. A trap is a set T of non-goal states
that is invariant, i. e., once we are in T we can never leave it
again. Formally, for every state s ∈ T it must hold G 6⊆ s, and
for all actions a applicable to s that sJaK ∈ T . The idea is to

Kambhampati, 2000; Bradley, 2011; Suda, 2014]. The only excep-
tion is Kolobov et al’s SixthSense technique [Kolobov et al., 2012],
which learns to detect dead-ends in probabilistic forward search
planning, yet incorporates classical planning as a sub-procedure.

identify a compact representation Θ of such a T offline, prior
to search, and to use Θ to detect and prune dead-ends dur-
ing search. This compact representation is determined from
partial states, partial variable assignments t of size up to k,
where k is a parameter. The states induced by such Θ are
given by TΘ := {s ∈ S | ∃t ∈ Θ : t ⊆ s}. Verifying
whether TΘ is a trap can be done equivalently on Θ through
progression over partial states. Say that a is applicable to a
partial state t if prea|V(t) ⊆ t, and if applicable, define the
progression of t over a as the partial variable assignment tJaK
where tJaK(v) :=

eff a(v) if eff a(v) 6= ⊥,
t(v) if eff a(v) = ⊥ and t(v) 6= ⊥,
prea(v) if eff a(v) = t(v) = ⊥ and prea(v) 6= ⊥,
⊥ otherwise

In words, t is extended by prea and the resulting (partial)
variable assignment is overwritten by eff a. By definition,
tJaK ⊆ sJaK for the application of a in any state s where a
is applicable and t ⊆ s. It is easy to show that TΘ constitutes
a trap if and only if (a) every t ∈ Θ disagrees with the goal
on some v, and (b) Θ is closed under progression, i. e., for all
t ∈ Θ and for all actions a applicable to t, there is t′ ∈ Θ so
that t′ ⊆ tJaK.

3 Dead-End Detectors and the Traps they Set
We show that trap identification can be combined with arbi-
trary dead-end detectors. To this end, we consider a generic
notion of dead-end detectors, and we introduce an accord-
ingly modified notion of traps.

A dead-end detector is a function ∆ : S 7→ {0,∞}
where ∆(s) = ∞ only if s is a dead-end state. Like
for heuristic functions, the intention is to call ∆ on every
state during search, so ∆ will typically be effectively com-
putable. As a baseline, we will use the naı̈ve dead-end
detector, denoted ∆0, which returns 0 for all states (i. e.,
does not recognize any dead-end). More elaborate known
dead-end detectors we consider are ∆PDB (pattern databases
[Seipp et al., 2016]), ∆MS (merge-and-shrink [Torralba et
al., 2016]), ∆Pot (potential heuristics [Seipp et al., 2016]),
and ∆C (critical-path heuristics [Haslum and Geffner, 2000;
Steinmetz and Hoffmann, 2016a]). To consider combinations
of two (or more) dead-end detectors ∆i, we use addition,
which dominates each ∆i, returning∞ whenever ∆i does.

Given an arbitrary dead-end detector ∆, a ∆-trap is a set
T ⊆ S of states such that, for all s ∈ T , (a) G 6⊆ s, and
(b) for every action a applicable to s, either sJaK ∈ T or
∆(sJaK) = ∞. In other words, a ∆-trap is a set of non-goal
states whose only escape routes lead into dead-ends detected
by ∆. Intuitively, such T is a “trap set for the search by ∆”,
in that, starting from T , ∆ will eventually prune every search
path; yet ∆ doesn’t explicitly indicate this, so we will have to
search through the entirety of T before finding out.

For the trivial dead-end detector ∆ = ∆0, the additional
condition ∆0(sJaK) = ∞ is never satisfied. Thus, ∆-traps
generalize the original traps (the special case of ∆0-traps).
An important difference between ∆-traps and original traps,



as we move away from ∆0 and use more informed ∆, is tran-
sitivity. While ∆0-traps T , by definition, have the property
that for every s ∈ T and every transition s → s′, it must be
s′ ∈ T , this is no longer so for ∆-traps in general: those s′
where ∆(s′) = ∞ no longer need to be contained in T . As
previously discussed, this is key to synergy, as it allows T to
be complementary to ∆, instead of forcing T to subsume ∆.

4 Compact ∆-Trap Representations
To make use of ∆-traps in search, the idea is to identify
compact representations Θ whose computation does not re-
quire the enumeration of TΘ. This Θ can then be used for
dead-end detection through the dead-end detector ∆Θ where
∆Θ(s) =∞ if t ⊆ s for some t ∈ Θ, and ∆Θ(s) = 0 else.

For the characterization of such Θ, we require the dead-
end detector ∆ to be partial-state compatible. This is, it must
be possible to evaluate ∆ on every partial-state t efficiently,
where ∆(t) = ∞ if and only if ∆(s) = ∞ for all states
s ∈ S so that t ⊆ s. Note that in principle every dead-end
detector can be evaluated on partial states, since ∆(t) can
be computed trivially by enumerating the states s that satisfy
t, and evaluating ∆ for every one of them. But this is not in
general efficient as the number of states s is exponential in the
number of variables where t is undefined. Fortunately, many
dead-end detectors natively support the evaluation of partial
states, and for those that don’t, there usually exist sufficient
conditions for ∆(t) = ∞ that can be tested efficiently. We
give more details on that in the experiments section.

The original trap conditions are easily generalized:

Theorem 1 TΘ is a ∆-trap if (C1) all t ∈ Θ disagree with
G on some variable v, and (C2) for all actions a that are
applicable to t, there is either t′ ∈ Θ with t′ ⊆ tJaK or
∆(tJaK) =∞.

Proof. Assume the contrary. It follows immediately from
(C1) that TΘ cannot contain a goal state. Hence, there must
be a state s ∈ TΘ and an action a that is applicable to s so
that sJaK 6∈ TΘ and ∆(sJaK) <∞. Let t ∈ Θ be so that t ⊆
s. Note that because prea ⊆ s, it immediately follows that
prea|V(t) ⊆ t, and thus a is applicable to t. Now, due to (C2),
either there exists t′ ∈ Θ with t′ ⊆ tJaK, or ∆(tJaK) = ∞.
Since tJaK ⊆ sJaK, both cases end up in a contradiction. �

5 Offline Computation
The algorithm for computing ∆0-traps proposed by Lipovet-
zky et al. [2016] can be easily adapted to support the genera-
tion of ∆-traps for arbitrary partial-state compatible dead-end
detectors ∆. The procedure is depicted in Figure 1. It iden-
tifies a subset of the given partial state candidates C, guar-
anteeing that the result satisfies the conditions of Theorem 1.
Originally, all partial states of size up to k were considered in
C, where k was a parameter. However, this is not required for
the correctness of the algorithm; C may be chosen arbitrarily.

Finding the desired subset of partial states corresponds
to propagating markings through an AND/OR-graph whose
AND-nodes correspond to actions, whose OR-nodes corre-
spond to the selection of partial states in consideration, and

procedure ComputeTrap(C, ∆)
/* Construct and-or-graph (Nand, Nor, E): */
Nand := {at | t ∈ C, a applicable to t,∆(tJaK) <∞}
Nor := C
E := {(t, at′) | t ∈ Nor, a

t′ ∈ Nand, t
′ = t}

∪ {(at, t′) | at ∈ Nand, t
′ ∈ Nor, t

′ ⊆ tJaK}
/* Propagate markings */
marked := {t ∈ Nor | t|V(G) ⊆ G}
while marked changes do

for all at ∈ Nand \marked do
if t′ ∈ marked for all (at, t′) ∈ E then

marked := marked ∪ {at}
for all t ∈ Nor \marked do

if at
′ ∈ marked for some (t, at

′
) ∈ E then

marked := marked ∪ {t}
/* Return partial states that have not been marked */
return Nor \marked

Figure 1: Computation of the maximal subset Θ ⊆ C so that Θ
satisfies the conditions of Theorem 1.

whose edges correspond to progression over those partial
states. The partial states not marked during this procedure
give the resulting Θ. The propagation starts with the OR-
nodes, so partial states, that do not disagree with the goal
on any variable, i. e., those violating (C1). An AND-node
is marked when all its successors are marked, and thus the
corresponding progression would not be covered by the re-
sulting trap. An OR-node is marked when at least one of its
successors is marked, i. e., when there is an action whose pro-
gression would lead out of the trap, violating (C2).

The main difference to Lipovetzky et al.’s algorithm is that
an action a applicable to t is ignored if the progression of
t over a is already detected by ∆ as dead-end. The result-
ing AND/OR-graph may hence contain fewer edges, so fewer
partial states may be touched during marking propagation and
hence removed from C, resulting in larger traps TΘ.

The procedure guarantees to find a maximal trap:

Theorem 2 For the result Θ of ComputeTrap(C,∆), it holds

(i) Θ satisfies (C1) and (C2) of Theorem 1, and

(ii) if Θ′ satisfies (C1) and (C2) and Θ′ ⊆ C, then Θ′ ⊆ Θ.

Claim (i) is a simple extension of the argument by Lipovet-
zky et al. [2016]. Claim (ii) holds because the procedure does
not unnecessarily remove any partial states.

6 Online Learning
One major drawback of the algorithm from the previous sec-
tion is that the computation of Θ requires an a-priori choice
of partial state candidates C. The only known method is the
enumeration of all partial states of size up to k. This is feasi-
ble only for small k. On the other hand, many of those par-
tial states might actually not be relevant for the resulting trap
representation, and by imposing a size bound on the partial
states, we might be missing the ones that actually matter.

Inspired by the online-learning paradigm by Steinmetz and
Hoffmann [2017], in this section we present a method to



choose the partial states dynamically during search. How-
ever, instead of computing C fed into Algorithm 1, we com-
pute a ∆-trap representation Θ directly. The general idea is to
run search with dead-end detector ∆+∆Θ, starting with the
trivial initialization Θ = ∅. As search keeps progressing, ∆-
traps T will become known that are not yet represented by Θ.
Whenever this happens, we compute a generalization Θ′ of
Θ, guaranteeing that Θ′ still satisfies (C1) and (C2) of Theo-
rem 1, and, additionally, (C3) Θ′ is weaker than Θ, i. e., every
state represented by Θ is also represented by Θ′, and (C4) the
states in T are all covered by Θ′. Conditions (C1) and (C2)
ensure that TΘ′

still constitutes a ∆-trap; (C3) and (C4) en-
sure progress in that Θ′ recognizes strictly more dead-ends
than Θ. When the computation of Θ′ is finished, we replace
Θ by Θ′ and continue with search. This refinement has the
potential to generalize to states outside of T , and in particu-
lar to states not visited by search so far, so may lead to less
search in the future.

6.1 Identifying ∆-Traps in Search
Before we go into details on the generalization step, let us
briefly discuss how the states required for that step are identi-
fied in search. Following the notation of Steinmetz and Hoff-
mann [2017], a dead-end s becomes known in search as soon
as every successor of s either has been visited by search and
is not a goal state, or is identified by ∆+∆Θ as dead-end for
the current Θ. In other words, s becomes a known dead-end
as soon as it is possible to prove s to be a dead-end by com-
bining ∆+∆Θ with the knowledge about the state space that
the search has provided so far.

Steinmetz and Hoffmann have shown how to extend search
algorithms for the purpose of identifying known dead-ends.
This particularly becomes easy in depth-oriented search algo-
rithms, where a dead-end s becomes known as soon as search
backtracks out of the maximal strongly-connected component
(SCC) S which contains s. Moreover, before this actually
happens, every successor of every state in S that is not con-
tained in S itself must have been identified as known dead-
end already due to the depth-oriented nature of the explo-
ration. Hence, if we guarantee that Θ is updated whenever a
known dead-end is found, then before search backtracks out
of S, ∆+∆Θ recognizes every such successor state, and thus
S ∪ TΘ constitutes a ∆-trap. Note that in particular before a
task is proven to be unsolvable, search has to backtrack out of
the maximal SCC containing the initial state. If Θ is gener-
alized on this SCC as well, then the resulting trap represents
every reachable state not recognized as a dead-end by ∆.

6.2 Generalizing ∆-Traps
The search methods just described deliver, for the purpose of
any one generalization step, a set S of states where S ∪ TΘ

constitutes a ∆-trap, and S 6⊆ TΘ. Our aim in the gener-
alization step is to compute a Θ′ that compactly represents
S ∪ TΘ, i. e., that satisfies (C1) – (C4), and that may general-
ize to states outside S.

A Θ′ that satisfies (C1) – (C4) can trivially be computed
by just adding the variable assignments from S to Θ. That
every partial state in Θ ∪ S disagrees with the goal on some
variable follows from the invariant that Θ satisfies (C1), and

procedure TrapGeneralization(Θ, S)
/* (C1) */
for s ∈ S do

let v be so that G(v) is defined and s(v) 6= G(v)
Vs := {v}

endfor
/* (C2) */
while there is s ∈ S so that s|Vs

violates (C2) do
let v be so that v 6∈ Vs
Vs := Vs ∪ {v}

endwhile
return Θ ∪ {s|Vs

| s ∈ Θ}

Figure 2: Computing a generalization Θ′ of Θ so that Θ′ satisfies
(C1) – (C4).

the assumption that S does not contain a goal state. That (C2)
is satisfied follows from the invariant that Θ satisfies (C2),
and from the way how S is selected: every transition going
out of the states in S ends in a dead-end recognized by ∆, or
a state that is represented by Θ. (C3) and (C4) are satisfied by
construction. However, in this computation of Θ′, TΘ′

would
merely be an extension of the previous trap TΘ to the states
in S. In particular, Θ′ does not generalize to states that have
not yet been visited by search so far.

In order to obtain Θ′ that may generalize to other states
than S, the idea is compute partial states from S by removing
variable assignments not relevant w.r.t. (C1) and (C2). The
pseudocode of this generalization procedure is shown in Fig-
ure 2. For each state in S, a subset of variables is computed
so that the extension of Θ by the projections of the states in
S on their respective variable subset still satisfies (C1) and
(C2). The smaller those variable subsets are, the more states
are represented by the resulting set of partial states.2

To ensure that Θ′ satisfies condition (C1), for every state
s ∈ S, the corresponding variable subset is initialized to
one of the variables where s disagrees with the goal. Such
a variable must exist because S does not contain a goal state
by assumption. Condition (C2) is ensured by iteratively re-
adding variables to the variable subsets of the states. As ar-
gued above, Θ∪S satisfies (C2), and hence this happens when
Vs = V for all s ∈ S at the latest. Note that regardless which
state is selected inside the while loop, there must be always
a variable v ∈ V that is not contained in Vs. For any state s
whose variable subset Vs contains all variables, it holds that
s|Vs

= s, and hence sJaK ∈ S or (∆+∆Θ)(sJaK) = ∞,
due to the assumption how S is selected. Since s′|Vs′ ⊆ s′

for every state s′ ∈ S, this however means that s cannot be
the state violating (C2), i. e., such states s cannot be chosen.
Hence, the execution of TrapGeneralization(Θ, S) is well-
defined, and terminates with Θ′ that satisfies (C1) and (C2).
Θ′ satisfies (C3) because it is a superset of Θ. Θ′ satisfies
(C4) because it contains the projection of s onto Vs for every

2When extending Θ by new partial states, it may become possi-
ble to also minimize the existing partial states in Θ. Thus, it could
makes sense to apply the procedure of Figure 2 to all partial states
Θ ∪ S, instead of just S. Yet in our experiments this turned out to
be detrimental.



state s ∈ S. Finally, Θ′ may generalize to states outside of S
as soon as at least one Vs does not contain all variables.

Theorem 3 The execution of TrapGeneralization(Θ, S) is
well-defined, and terminates with Θ′ satisfying (C1) – (C4).

7 Experiments
Our implementation is in FD [Helmert, 2006]. We use the
UIPC’16 benchmarks;3 the part of Hoffmann et al.’s [2014]
unsolvable benchmark collection that is not used in UIPC’16;
and unsolvable versions of the resource-constrained bench-
marks by Nakhost et al. [2012], obtained by scaling resource
constrainedness within {0.5, 0.6, . . . , 0.9}. All experiments
were run on a cluster of Intel Xeon E5-2650v3 machines, with
runtime (memory) limits of 30 minutes (4 GB).

We experiment with seven dead-end detectors ∆ for ∆-trap
detection, mostly taken from the UIPC’16 participants:

• ∆0 is included as a baseline, showing the impact of
dead-end detection by traps alone.

• Critical-path heuristic hm for m = 1 and m = 2
[Haslum and Geffner, 2000]. For partial states t, we ap-
proximate the value of ∆m(t) through hm(t+), where
t+ contains v = t(v) if t(v) is defined, and contains
v = d for every d ∈ D(v) if t(v) is not defined. Obvi-
ously, hm(t+) =∞ implies ∆m(t) =∞, so this can be
used as a sufficient condition.

• The two most competitive unsolvability merge-and-
shrink (M&S) abstractions [Hoffmann et al., 2014;
Torralba et al., 2016]: MSp which computes the perfect
dead-end detector ∆∗, recognizing all dead-ends; and
MSa which imposes a bound on the abstraction size, and
hence approximates ∆∗. We include MSp for reference
only, and do not use it for computing ∆-traps. For a par-
tial state t, ∆MSa(t) is computed by finding all abstract
states of the states represented by t (this can be done
effectively given the cascading tables representation of
MSa). Then, ∆MSa(t) = ∞ iff every such abstract state
is a dead-end in the abstract state space.

• The dead-end PDB heuristic from the UIPC’16 winner
Aidos [Seipp et al., 2016]. We approximate ∆PDB(t) by
checking whether the PDB heuristic contains a pattern
V so that V ⊆ V(t) and t|V is recognized as dead-end
in the respective abstraction.

• The operator-counting heuristic Seq that is obtained
from state-equation constraints [Pommerening et al.,
2014]. For a state s, ∆Seq(s) = ∞ if the corresponding
LP does not have a solution. To approximate ∆Seq(t),
we set the the lower- and upper-bounds of the constraints
in the corresponding LP so that these constitute lower-,
respectively upper-bounds for every state that is repre-
sented by t. Hence, if this LP does not have a solution,
the LP corresponding to every s with t ⊆ s cannot have
one either, i. e., ∆Seq(t) =∞.

3In 9 instances of Diagnosis, conditional effects were introduced
during FD’s grounding procedure. Such effects are not supported by
any of the tested configurations, and those instances are thus left out.

• The dead-end potential heuristic Pot from Aidos, also
an operator-counting heuristic. Our approximation of
∆Pot(t) follows the same idea as for ∆Seq(t).

We evaluate the benefit of each of these dead-end detectors
∆ for two different purposes: (1) offline identification of ∆-
traps Θ, with subsequent search using only ∆Θ for dead-
end detection; and (2) online learning of a ∆-trap Θ, during
search, using ∆+∆Θ for dead-end detection (vs. ∆ alone).
We also experiment with a variant of the Aidos portfolio in
which we added ∆-trap online learning to each of its compo-
nents. In this context, we disable two of Aidos’ techniques,
partial-order reduction and resource variable detection, nei-
ther of which is compatible with the ∆-trap learning algo-
rithm. All configurations, apart from the original Aidos ver-
sion, run depth-oriented search with duplicate detection.

Figure 3(a) shows the coverage results. The modified Ai-
dos configuration is indicated by “†”. The version that partici-
pated in UIPC’16 is shown on the right-hand side of the table,
together with MSp and the only other online dead-end learn-
ing technique ∆C [Steinmetz and Hoffmann, 2016a]. The
results for ∆-trap online learning are shown in the middle
part of the table (“–” shows the results for ∆ alone, “Θ” for
∆+∆Θ). The left part shows the results for dead-end de-
tection by ∆Θ, for offline computed ∆0-traps Θ. The par-
tial state candidates for the offline ∆-trap computation are
chosen to all partial states of size up to k = 1, respectively
k = 2. Remember that ∆0-traps correspond exactly to the
traps as originally proposed by Lipovetzky et al. [2016], and
that offline ∆0-traps are computed according to exactly that
proposal. Figure 3(b) shows the effect of the different ∆ on
offline computed traps for k = 2. The results for k = 1 look
similar, and are left out for space reasons.

Consider first offline construction. Partial states of size
1 are not enough to compute a non-empty ∆0-trap in any
domain but DocTransfer, effectively turning the respective
configuration into blind search. The computed ∆0-traps for
k = 2 help in Bottleneck, DocTransfer, and most notably in
Mystery for which the initial state was already represented
by the trap in every single task. As indicated by Figure 3(b),
the different dead-end detectors ∆ have complementary ef-
fects on trap generation. Any one ∆ helps in some domain,
yet is detrimental in others. The latter is due to the addi-
tional overhead resulting from the evaluation of such ∆ dur-
ing trap construction. At the same time, ∆ does not always
help to improve the computed trap. An extreme example for
that is MSa, which vastly increases coverage in the resource-
constrained domains, but worsens the results on all other do-
mains considerably. Overall, dead-end detection through an
offline computed ∆-trap alone cannot compete with current
state-of-the-art methods.

The potential of ∆-traps really becomes alive, however, in
online learning. State-of-the-art performance is achieved in
many domains even for Θ using ∆0, i. e., without any addi-
tional dead-end detector. This vanilla configuration outper-
forms, in particular, the only other dead-end learning config-
uration ∆C in its prime discipline, the resource-constrained
domains. Coverage in the latter can be increased even further
through combination with the PDB heuristic, pushing the re-
spective ∆-trap learning configuration to perfect coverage in



Offline Online
∆0 ∆0 ∆1 ∆2 MSa PDB Seq Pot Aidos†

Domain # k=1 k=2 – Θ – Θ – Θ – Θ – Θ – Θ – Θ – Θ Aidos MSp ∆C

Unsolvable Benchmarks [Hoffmann et al., 2014]
3unsat 30 15 15 15 11 15 10 15 10 10 5 15 10 20 15 20 15 15 10 30 10 5
Mystery 9 2 9 2 1 2 2 8 8 6 6 6 6 1 1 9 9 9 9 9 6 5∑

39 17 24 17 12 17 12 23 18 16 11 21 16 21 16 29 24 24 19 39 16 10
UIPC’16 Benchmarks

BagBarman 20 12 12 12 0 8 0 0 0 4 0 12 0 4 0 4 0 12 0 12 0 0
BagGripper 25 5 1 6 5 3 3 0 0 3 3 3 3 23 23 3 3 25 23 5 3 3
BagTransport 29 7 7 7 7 6 7 16 16 6 6 7 7 29 29 24 24 29 29 22 1 7
Bottleneck 25 10 15 10 8 20 16 21 19 10 4 19 18 25 25 25 25 25 25 25 5 9
CaveDiving 25 7 7 7 5 7 5 6 5 7 4 7 5 8 6 8 7 9 7 8 3 8
ChessBoard 23 5 5 5 3 5 3 4 3 5 2 5 3 23 23 23 23 23 23 23 2 2
Diagnosis 11 4 5 4 6 6 9 5 6 4 4 5 9 4 9 4 8 5 9 5 5 8
DocTransfer 20 6 11 5 5 7 11 7 7 10 6 12 16 6 10 7 7 15 16 13 5 5
NoMystery 20 2 2 2 11 2 11 2 8 8 9 11 13 2 11 5 6 11 13 11 11 11
Rovers 20 7 7 7 13 7 13 7 12 9 10 12 17 6 12 6 12 12 16 14 15 12
TPP 30 17 17 17 24 17 23 15 20 24 23 24 24 14 14 19 19 24 24 29 24 20
PegSol 24 24 24 24 18 24 18 21 16 24 16 24 16 24 18 22 20 24 16 24 24 14
PegSolRow5 15 5 5 5 4 5 4 4 4 5 4 5 4 15 15 15 15 15 15 15 3 4
SlidingTiles 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Tetris 20 10 10 10 10 5 5 5 5 5 5 10 10 20 20 20 20 20 20 20 5 5∑

327 131 138 131 129 132 138 123 131 134 106 166 155 213 225 195 199 259 246 236 116 118
Unsolvable Resource-Constrained Benchmarks [Nakhost et al., 2012]

NoMystery 150 26 26 26 143 52 142 83 125 130 134 149 150 16 136 68 79 149 150 149 150 130
Rovers 150 3 3 3 142 7 139 67 120 111 111 93 150 1 125 1 125 93 150 109 129 144
TPP 25 5 8 5 19 7 21 8 9 17 12 20 21 1 1 11 11 19 21 25 16 14∑

325 34 37 34 304 66 302 158 254 258 257 262 321 18 262 80 215 261 321 283 295 288∑
691 182 199 182 445 215 452 304 403 408 374 449 492 252 503 304 438 544 586 558 427 416

(a)

@
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y
∆0 ∆1 ∆2 MSa PDB Seq Pot Cov

∆0 – 2 10 12 0 4 6 199
∆1 2 – 9 12 2 5 7 213
∆2 2 1 – 8 2 2 2 165
MSa 6 6 10 – 6 7 7 308
PDB 2 3 10 12 – 6 6 202
Seq 1 1 10 12 1 – 5 193
Pot 2 1 8 10 2 2 – 192
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Figure 3: (a) Coverage results: number of instances solved within the limits. (b) Comparison of different ∆ for ∆-trap offline construction
(k=2). The table shows the number of domains on which the offline computed trap for ∆ “x” achieves higher coverage than the offline
computed trap for ∆ “y”, and total coverage (Cov); (c) Impact of ∆-trap online learning on the ∆0-baseline. Per-instance based comparison
of search reduction factors (x-axis) vs. runtime reduction factors (y-axis) for UIPC (+) and resource-constrained domains (x).

NoMystery and Rovers. In TPP, ∆-trap learning is inferior
only to Aidos’ resource-variable identification component.

∆-trap learning improves overall coverage on the resource-
constrained domains for every tested ∆ except for MSa. On
the other domains, the overall picture is not as consistently
good. The number of domains where ∆-trap learning pos-
itively (negatively) affects coverage are 9 (7) for ∆1; 7 (5)
for ∆2; 3 (10) for MSa; 7 (7) for PDB; 6 (4) for Seq; 5 (4)
for Pot; and 7 (5) for Aidos†. Synergistic effects, where the
combination of ∆ with ∆-trap learning solves instances not
solved by either of the component techniques alone, occur for
PDBs in the resource-constrained domains, as well as for ∆1,
Seq, and Pot in Diagnosis and DocTransfer.

Figure 3(c) compares for every benchmark instance the
search and runtime reduction factors that result from enabling
trap online learning in the ∆0-baseline (the results for other
∆ are similar). Search reduction is computed from the num-
ber of states that are visited in search. The difference between
search and runtime reduction corresponds exactly to the over-
head induced by trap evaluation and refinement. In the in-
stances where runtime could not be reduced (points below
100), trap refinement does not generalize at sufficient scale,
and thus the overhead outweighs the benefits of trap learning.
Extreme examples are the various PegSol domains, for which
generalization does not happen at all. In contrast, search ef-
fort is reduced by several orders of magnitude in, e. g., Doc-
Transfer, Diagnosis, and the resource-constrained domains.

Regarding Aidos, our modified variant performs better on
the UIPC domains because partial-order reduction and re-

source variable detection have small positive effects, yet have
a large negative impact in BagGripper. Extending Aidos† by
∆-trap online learning increases overall coverage, turning it
into the overall best configuration. The difference emerges
from the synergies of ∆-trap learning with Aidos’ compo-
nents as already pointed out. Over the UIPC domains, ∆-trap
learning is slightly worse overall, but its overall disadvantage
is due primarily to BagBarman, where the ∆-trap generaliza-
tion algorithm struggles, and often runs out of time.

8 Conclusion
Dead-end detection is an important technique in planning.
One major limitation of previous dead-end detectors is transi-
tivity, which entails that, while we can of course use as many
dead-end detectors as we like, each of those is doomed to
ignore the information provided by its peers. We introduce
∆-traps as a remedy, generalizing the previous trap idea to al-
low for synergy with a complementary dead-end detector ∆.
We furthermore introduce methods allowing to learn the trap
online, instead of a static offline analysis. Our experiments
show that both contributions can be quite beneficial.

For future work, an aspect to look at is the generalization
step in online learning, which might be optimizable for com-
putational cost and generalization power. Beyond this, and
beyond just trap learning, major questions are whether one
can usefully exploit search knowledge falling short of fully
identified dead-end components, and whether one can design
learning methods targeted at resource limits specifically.
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Alcázar. Constrained symbolic search: On mutexes, BDD
minimization and more. In Malte Helmert and Gabriele
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