
Decoupled Strong Stubborn Sets (Extended Abstract)

Daniel Gnad1, Martin Wehrle2, and Jörg Hoffmann1

1 Saarland University,
Saarbrücken, Germany

{gnad,hoffmann}@cs.uni-saarland.de
2 University of Basel

Basel, Switzerland
martin.wehrle@unibas.ch

1 Star-Topology Decoupled State Space Search

State space search is a canonical approach to testing reachability in large transition
systems, like goal reachability in classical planning which is where this work is placed.
Decomposition techniques for state space search have a long tradition, most notably
in the form of Petri net unfolding [20, 7, 14] decomposing the search over concurrent
transition paths, and factored planning [19, 2, 8, 4] decomposing the search into local
vs. global planning over separate components of state variables.

Recent work by part of the authors [9, 10] has devised star-topology decoupling,
which can be viewed as a hybrid between Petri net unfolding and factored planning,
geared at star topologies. The state variables are factored into components whose cross-
component interactions form a star topology. The search is akin to a Petri net unfolding
whose atomic elements are component states, exploring concurrent paths of leaf com-
ponents in the star independently. Relative to both Petri net unfolding and traditional
factored planning, the key advantage lies in exploiting the star topology, which gets
rid of major sources of complexity: the need to reason about conflicts and reachable
markings, respectively the need to resolve arbitrary cross-component interactions.

The best way to understand the star topology impact is in terms of a particular form
of “conditional independence”: given a fixed path of transitions by the center component
in the star, the possible center-compliant paths are independent across the leaf compo-
nents. For example, say the center is a single truck-position variable t, and each leaf is
a single package-position variable pi. Given a fixed state-transition path πC for t, the
compliant state-transition paths for any pi, alongside πC , are those which load/unload
pi at suitable points along πC . Any such load/unload sequence – any πC-compliant
path – can be committed to for pi, independently of what any other pj is committed to.
Star-topology decoupled search exploits this by searching over center paths πC only.
Alongside each πC , it maintains, for each leaf separately, the leaf states reachable on
πC-compliant paths. This avoids the enumeration of combined states across leaves. In
imprecise analogy to conditional independence in graphical models, star-topology de-
coupling “instantiates” the center to break the dependencies between the leaves.

Star-topology decoupling is exponentially separated from all previous search reduc-
tion techniques, i. e., there are example families which it handles exponentially more
effectively than Petri-net unfolding, factored planning, partial-order reduction [23, 24],

2 Daniel Gnad, Martin Wehrle, and Jörg Hoffmann

symmetry reduction [22, 6], etc. While this is merely a theoretical result pointing out
that star-topology decoupling is, in principle, complementary to previous methods, the
potential advantage of star-topology decoupling is also very much manifested in prac-
tice. On planning problems with a pronounced star topology, the empirical impact of
star-topology decoupling is dramatic. Taking the effort required to build and represent
the entire state space as the most basic measure of reduction power, Table 1 gives data
comparing star-topology decoupling to its closest relatives.

Instances Reachable State Space. Right: Average over Instances Commonly Built
Success Representation Size (in Thousands)

Domain All X Std POR Punf Cunf OPT COM Std POR OPT COM
Solvable Benchmarks: From the International Planning Competition (IPC)

Depots 22 22 4 4 2 2 3 5 30,954.8 30,954.8 35,113.1 3,970.0
Driverlog 20 20 5 5 3 3 8 10 35,632.4 35,632.4 706.1 127.2
Elevators 100 100 21 17 1 3 8 41 22,652.1 22,651.1 21,046.2 186.7
Floortile 80 80 2 2 0 0 0 2
Logistics 63 63 12 12 7 11 23 27 3,793.8 3,793.8 85.5 8.2
Miconic 150 145 50 45 25 30 45 145 52,728.9 52,673.1 218.8 2.4
NoMystery 40 40 11 11 5 7 40 40 29,459.3 25,581.5 11.5 10.0
Pathways 30 30 4 4 3 3 4 4 54,635.5 1,229.0 11,211.9 11,211.9
PSR 50 3 3 3 3 3 3 3 39.4 33.9 11.1 11.1
Rovers 40 40 5 6 4 4 5 5 98,051.6 6,534.4 4,045.9 4,032.9
Satellite 36 36 5 5 5 5 4 4 2,864.2 582.5 2,219.1 352.7
TPP 30 29 5 5 4 4 11 11 340,961.5 326,124.8 .9 .8
Transport 140 140 28 23 11 11 18 34 4,958.6 4,958.5 12,486.4 173.3
Woodworking 100 87 11 20 16 22 16 16 438,638.5 226.8 16,624.1 9,688.9
Zenotravel 20 20 7 7 2 4 7 7 17,468.0 17,467.5 1,028.5 99.4

Unsolvable Benchmarks: Extended from [15]
NoMystery 40 40 9 8 2 4 40 40 85,254.2 65,878.2 3.9 3.8
Rovers 40 40 4 4 0 0 4 4 697,778.9 302,608.9 22,001.8 20,924.4∑

1001 935 186 181 93 116 239 398

Table 1. State space size data. Best results highlighted in boldface. “Success”: reachable state
space fully explored. “X”: X-shape factoring identified. “Std”: standard state space. Other no-
tations see text. All planning competition benchmark domains were run. Domains on which no
X-shape was identified anywhere, and domains where no approach could build any state space,
are not included in the table. Multiple test suites of the same domain are accumulated into the
same table row. Runtime limit 30 minutes, memory limit 4 GB.

The “OPT” variant of our technique keeps track of leaf-state costs and preserves
optimality, the “COM” variant keeps track of leaf-state reachability and preserves com-
pleteness only. We compare to Petri-net unfolding using “Punf” [18], as well as con-
textual Petri net unfolding using “Cunf” [21] which directly supports non-consumed
(prevail) preconditions. We compare to standard state space search with strong stub-
born set pruning [24], as star-topology decoupling can also be viewed (like Petri net
unfolding) as a form of partial-order reduction. We do not compare here to factored
planning because, while conceptually the use of separate components is a commonality,
the concrete algorithms end up being completely different when considering arbitrary
cross-component interactions (as all previous method do), vs. exploiting a star topol-
ogy. Representation size is the number of integer variables in our C++ implementation
based on FD [12]. We do not include representation size data for Petri net unfolding as
these lag far behind in terms of the number of state spaces built.

The data clearly attest to the power of our approach. There are some domains where
previous techniques are stronger, but overall the picture is very clearly in our favor,

Decoupled Strong Stubborn Sets 3

with typical improvements of orders of magnitude, up to 5 and 6 orders of magnitude in
the extreme cases. Considering that partial-order reduction and unfolding are venerable
techniques into which sustained research effort was invested since decades, while star-
topology decoupling was only just invented, we find this remarkable.

The major weakness evident from Table 1 is the absence of data for all the other
competition domains. We show only those domains where a simple automatic factoring
strategy succeeded – taking a few milliseconds to identify what we call an X-shape, a
simple special case of star topologies where the interaction between the center and each
leaf is one-way. X-shapes do occur in planning competition domains, but not widely.

Preempting the conclusion section a bit, one major conclusion here is the need for
more powerful factoring strategies. Every planning task has star-topology factorings.
We currently do not lose any runtime on cases we cannot handle, but the number of such
cases is large. Another major conclusion is that domain-independent planning may not
be the prime target application for star-topology decoupling – why go search for star
topologies in arbitrary input problems when there are so many important problems that
come with a star topology by definition?

2 Combination with Strong Stubborn Sets Pruning

As star-topology decoupling is complementary to all previous methods, the question
arises whether it can be combined with these methods to mutual benefit. The question
is especially pertinent as star-topology decoupling essentially just reformulates the state
space into a component-wise fashion, and should thus leave many of the technicalities
of other methods intact. In the IJCAI’16 paper [11] this extended abstract is based on,
we show that this is indeed so for strong stubborn set pruning, the most well-known and
wide-spread partial-order reduction method.

Given a state s during search, a stubborn set for s is a subset S of actions so that,
in s, to preserve optimality it suffices to branch over those actions from S applicable
in s. To ensure this, S collects actions that (1) make progress to the goal, that (2) are
required for this progress and are applicable in s, and that (3) interfere with applicable
actions already included into S. For (1), it is enough to pick one open goal fact from the
goal conjunction; for (2), one recursively includes actions achieving open preconditions
of actions already included into S; given (3), all true alternatives at this point – all
conflicting decisions one may take in s – are included in S and will be branched over.

As we show in detail in the paper, (1) – (3) transfer directly, almost straightfor-
wardly, to decoupled search, when restricting to fork topologies where the leaf compo-
nents depend on the center but not vice versa. In this setting, reachability within each
leaf factor can only grow along a search path (along a transition path by the center), and
one can view a decoupled search state s as the union s of all leaf states reachable at that
point. Given this, in a nutshell, (1) remains as-is, (2) redefines “applicability” relative
to s, and (3) needs to consider only interference with applicable center actions as all
applicable leaf actions (more precisely, their effects) are already incorporated into s.

The only additional complication is that, to guarantee optimality, decoupled search
has to proceed beyond decoupled goal states, as cheaper leaf-goal costs may become
available on a longer center-component path. Standard strong stubborn sets are unde-

4 Daniel Gnad, Martin Wehrle, and Jörg Hoffmann

fined for goal states, so a new concept is required here. That can be achieved by replac-
ing (1) with a simple notion of “making progress towards cheaper leaf-goal costs”.

In theory, the combination of star-topology decoupling with strong stubborn sets
dominates each of its components, and is exponentially separated from each of its com-
ponents. Indeed, there are cases where the combination is exponentially stronger than
both its components, i. e., there can be synergistic effects where, thanks to the decou-
pling, strong stubborn sets are able to exploit a structure they are unable to exploit in
the original state space. For example, this happens in simple transportation-style do-
mains akin to the planning competition “Logistics” benchmarks, where a decoupling
over packages enables partial-order reduction over trucks.

Blind Heuristic LM-cut
Domain # A∗ SSS DS DSSS A∗ SSS DS DSSS
Driverlog 20 7 7 11 11 13 13 13 13
Logistics’00 28 10 10 22 24 20 20 28 28
Logistics’98 35 2 2 4 5 6 6 6 6
Miconic 145 50 45 35 36 136 136 135 135
NoMystery 20 8 7 17 15 14 14 20 19
Pathways 29 3 3 3 3 4 4 4 4
Rovers 40 6 7 7 9 7 9 9 11
Satellite 36 6 6 6 6 7 11 7 11
TPP 27 5 5 23 22 5 5 18 18
Woodworking’08 13 4 6 5 7 6 11 10 11
Woodworking’11 5 0 1 1 2 2 5 4 5
Zenotravel 20 8 7 11 11 13 13 13 13∑

418 109 106 145 151 233 247 267 274

Table 2. Coverage data. Best results highlighted in boldface. “SSS”: standard search with strong
stubborn sets pruning; “DS”: star-topology decoupled search; “DSSS”: our combination of the
two. Results shown on planning competition benchmarks with a fork topology.

In practice, the proposed combination is almost as strong as in theory. It inherits the
strengths of its components in almost all cases, and it outperforms both its components
in some cases. Table 2 shows coverage data. Observe that the benefit of star-topology
decoupling is much stronger for blind search, where the search space reduction does
not compete with the reduction already provided by the heuristic function (the state-of-
the-art admissible heuristic LM-cut [13]). The additional advantage brought by using
strong stubborn sets on top of the decoupling is similar in both settings though.

3 Conclusion

Star-topology decoupling is a powerful new approach to state-space decomposition.
The possible benefits are dramatic, the space of opportunities is wide open, the research
questions are manifold.

The most obvious direct follow-up on our work here regards the extension of de-
coupled strong stubborn sets to general star topologies, beyond forks. We believe that
this is possible and will lead to similar theoretical and practical results, but that remains
to be proven. More generally, the combination with alternate search enhancements is a
whole research line in its own right: symmetry reduction; heuristic functions exploit-
ing the star topology; BDDs compactly representing leaf state spaces; adaptations to
multi-core search; adaptations of bitstate hashing; etc.

Regarding domain-independent planning, the most pressing question regards more
powerful factoring strategies. Much more interesting factorings than our current ones

Decoupled Strong Stubborn Sets 5

– X-shapes and forks – definitely exist. As a simple rim case, every partition into 2
subsets of state variables is a star-topology factoring, already opening an exponentially
large space of factorings to choose from. The more practically pertinent factorings,
though, presumably are the ones with maximum number of leaves. These correspond
to maximum independent sets in the input task’s causal graph, so approximations to the
latter could form the starting point for factoring strategies.

A cute thought is to generalize from the idea to fix and exploit a star-topology pro-
file: target-profile factoring could, perhaps, work also for different structural profiles,
like chains, trees, DAGs, etc. This suggests an entirely new way of exploiting structure
in planning. Instead of relaxing the planning task into a (structurally defined) fragment
to obtain a heuristic function, try to factorize the task into a fragment to obtain a plan.
The huge amount of effort invested into tractability analysis (e. g. [17, 3, 5]) could then
be redirected to the design of fragments suited to specialized combinatorial search al-
gorithms. In the long term, this could lead to an entire portfolio of target profiles.

Lastly and probably most importantly, the world is full of star topologies so we
should go out there and apply star-topology decoupling to those. For AI, a highly sug-
gestive thought is that of multi-agent systems interacting via a set of shared variables –
so the agents are the leaves, and the shared variables are the center? Star topology also
is a classical system design paradigm, which cries out for applications in model check-
ing. A highly relevant recent direction are concurrent programs under weak memory
models (e. g. [16, 1]). Processes run on separate processors (leaves), yet a consistent
view of shared memory (center) needs to be guaranteed. The objective is verification,
i. e., exhausting the state space, for which star-topology decoupling is especially benefi-
cial (compare Table 1 against Table 2). Key challenges include the adaptation to model
checking languages, and the extension to properties beyond reachability.

Acknowledgments. Daniel Gnad was partially supported by the German Research
Foundation (DFG), as part of project grant HO 2169/6-1, ”Star-Topology Decoupled
State Space Search”. Martin Wehrle was supported by the Swiss National Science Foun-
dation (SNSF) as part of the project “Automated Reformulation and Pruning in Factored
State Spaces (ARAP)”.

References

1. Yehia Abd Alrahman, Marina Andric, Alessandro Beggiato, and Alberto Lluch-Lafuente.
Can we efficiently check concurrent programs under relaxed memory models in maude?
In Revised Selected Papers of the 10th International Workshop on Rewriting Logic and Its
Applications (WRLA’14), pages 21–41, 2014.

2. Eyal Amir and Barbara Engelhardt. Factored planning. In Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’03), pages 929–935, 2003.

3. Ronen Brafman and Carmel Domshlak. Structure and complexity in planning with unary
operators. Journal of Artificial Intelligence Research, 18:315–349, 2003.

4. Ronen Brafman and Carmel Domshlak. On the complexity of planning for agent teams and
its implications for single agent planning. Artificial Intelligence, 198:52–71, 2013.

5. Hubie Chen and Omer Giménez. Causal graphs and structurally restricted planning. Journal
of Computer and System Sciences, 76(7):579–592, 2010.

6 Daniel Gnad, Martin Wehrle, and Jörg Hoffmann

6. Carmel Domshlak, Michael Katz, and Alexander Shleyfman. Enhanced symmetry break-
ing in cost-optimal planning as forward search. In Proceedings of the 22nd International
Conference on Automated Planning and Scheduling (ICAPS’12), 2012.

7. Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of mcmillan’s unfolding
algorithm. Formal Methods in System Design, 20(3):285–310, 2002.

8. Eric Fabre, Loı̈g Jezequel, Patrik Haslum, and Sylvie Thiébaux. Cost-optimal factored plan-
ning: Promises and pitfalls. In Proceedings of the 20th International Conference on Auto-
mated Planning and Scheduling (ICAPS’10), pages 65–72, 2010.

9. Daniel Gnad and Jörg Hoffmann. Beating LM-cut with hmax (sometimes): Fork-decoupled
state space search. In Proceedings of the 25th International Conference on Automated Plan-
ning and Scheduling (ICAPS’15), 2015.

10. Daniel Gnad and Jörg Hoffmann. Red-black planning: A new tractability analysis and
heuristic function. In Proceedings of the 8th Annual Symposium on Combinatorial Search
(SOCS’15), 2015.

11. Daniel Gnad, Martin Wehrle, and Jörg Hoffmann. Decoupled strong stubborn sets. In Pro-
ceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI’16),
2016.

12. Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence
Research, 26:191–246, 2006.

13. Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions: What’s
the difference anyway? In Proceedings of the 19th International Conference on Automated
Planning and Scheduling (ICAPS’09), pages 162–169, 2009.

14. Sarah L. Hickmott, Jussi Rintanen, Sylvie Thiébaux, and Langford B. White. Planning via
petri net unfolding. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI’07), pages 1904–1911, 2007.

15. Jörg Hoffmann, Peter Kissmann, and Álvaro Torralba. “Distance”? Who Cares? Tailoring
merge-and-shrink heuristics to detect unsolvability. In Proceedings of the 21st European
Conference on Artificial Intelligence (ECAI’14), 2014.

16. Bengt Jonsson. State-space exploration for concurrent algorithms under weak memory or-
derings. SIGARCH Computer Architecture News, 36(5):65–71, 2008.

17. Peter Jonsson and Christer Bäckström. Incremental planning. In European Workshop on
Planning, 1995.

18. Victor Khomenko and Maciej Koutny. Towards an efficient algorithm for unfolding petri
nets. In Proceedings of the 12th International Conference on Concurrency Theory (CON-
CUR’01), pages 366–380, 2001.

19. Craig Knoblock. Automatically generating abstractions for planning. Artificial Intelligence,
68(2):243–302, 1994.

20. Kenneth L. McMillan. Using unfoldings to avoid the state explosion problem in the verifica-
tion of asynchronous circuits. In Proceedings of the 4th International Workshop on Computer
Aided Verification (CAV’92), pages 164–177, 1992.

21. César Rodrı́guez and Stefan Schwoon. Cunf: A tool for unfolding and verifying petri nets
with read arcs. In Proceedings of the 11th International Symposium on Automated Technol-
ogy for Verification and Analysis (ATVA’13), pages 492–495, 2013.

22. Peter Starke. Reachability analysis of petri nets using symmetries. Journal of Mathematical
Modelling and Simulation in Systems Analysis, 8(4/5):293–304, 1991.

23. Antti Valmari. Stubborn sets for reduced state space generation. In Proceedings of the 10th
International Conference on Applications and Theory of Petri Nets, pages 491–515, 1989.

24. Martin Wehrle and Malte Helmert. Efficient stubborn sets: Generalized algorithms and selec-
tion strategies. In Proceedings of the 24th International Conference on Automated Planning
and Scheduling (ICAPS’14), 2014.

