
Neural Network Action Policy Verification via Predicate Abstraction

Marcel Vinzent,1 Marcel Steinmetz,1 Jörg Hoffmann1,2

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

{vinzent, steinmetz, hoffmann}@cs.uni-saarland.de

Abstract

Neural networks (NN) are an increasingly important repre-
sentation of action policies. Verifying that such policies are
safe is potentially very hard as it compounds the state space
explosion with the difficulty of analyzing even single NN de-
cision episodes. Here we address that challenge through ab-
stract reachability analysis. We show how to compute predi-
cate abstractions of the policy state space subgraph induced
by fixing an NN action policy. A key sub-problem here is the
computation of abstract state transitions that may be taken by
the policy, which as we show can be tackled by connecting
to off-the-shelf SMT solvers. We devise a range of algorith-
mic enhancements, leveraging relaxed tests to avoid costly
calls to SMT. We empirically evaluate the resulting machin-
ery on a collection of benchmarks. The results show that our
enhancements are required for practicality, and that our ap-
proach can outperform two competing approaches based on
explicit enumeration and bounded-length verification.

1 Introduction
Neural networks (NN) are an increasingly important rep-
resentation of action policies, in particular in planning (Is-
sakkimuthu, Fern, and Tadepalli 2018; Groshev et al. 2018;
Garg, Bajpai, and Mausam 2019; Toyer et al. 2020). But how
to verify that such a policy is safe?

While there has been remarkable progress on analyzing
individual NN decision episodes (Katz et al. 2017, 2019;
Huang et al. 2017; Gehr et al. 2018; Li et al. 2019), the ver-
ification of NN decision sequences is still in its early stages.
The most prominent line of works addresses neural con-
trollers of dynamical systems, where the NN outputs a vec-
tor u of reals forming input to a continuous state-evolution
function f . This has been investigated for linear f (Sun,
Khedr, and Shoukry 2019; Tran et al. 2019) as well as for
Lipschitz continuous f (Huang et al. 2019; Dutta, Chen, and
Sankaranarayanan 2019). Recent work extends this thread
to hybrid systems, addressing smooth (tanh/sigmoid) acti-
vation functions by compilation into such systems (Ivanov
et al. 2021). In a context closer to AI sequential decision
making, but still considering NN controllers influencing a
linear state-evolution function, the use of MIP encodings for
safety verification has been explored (Akintunde et al. 2018,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2019). Here we explore a context and method complemen-
tary to all those, namely NN policies π with ReLU activa-
tion functions taking discrete action choices in sequential
decision making, and the extension of predicate abstrac-
tion (PA) (Graf and Saı̈di 1997; Ball et al. 2001; Henzinger
et al. 2004) for verifying the safety of such π.

We tackle non-deterministic state spaces over bounded-
integer state variables. Given a policy π, a start condition
φ0, and an unsafety condition φU , we verify whether a state
sU |= φU is reachable from a state s0 |= φ0 under π. We
do so by building an abstraction defined through a set P of
predicates, where each p ∈ P is a linear constraint over the
state variables (e.g. x = 7 or x ≤ y). Abstract states are
characterized by truth value assignments to P , grouping to-
gether all concrete states that result in the same truth values.
Like in other abstraction methods (e.g. underlying heuristic
functions (Edelkamp 2001; Helmert et al. 2014; Seipp and
Helmert 2018)), transitions are over-approximated to pre-
serve all possible behaviors. However, we abstract not the
full state space Θ, but the policy-restricted state space Θπ ,
i.e., the state-space subgraph containing only the transitions
taken by π. We refer to the predicate abstraction of Θπ as
the policy predicate abstraction (PPA) Θπ

P . We build the
fragment of Θπ

P reachable from φ0, and check whether φU
is reached. If this is not the case then π is safe.

To compute the PA ΘP , one frequently needs to solve the
sub-problem of deciding whether there is a transition from
abstract state A to abstract state A′: does there exist a state
s ∈ A and an action a s.t. executing a in s results in s′ ∈ A′?
This satisfiability problem is routinely addressed using SMT
solvers such as Z3 (de Moura and Bjørner 2008). To com-
pute the PPA Θπ

P however, we additionally need to check
whether π(s) = a, i.e., whether the policy actually selects a
on s. This is still an SMT problem: one can encode the entire
NN as a conjunction of constraints – one for every neuron –
and add those to the SMT encoding. But scalability of course
becomes an issue as these SMT encodings can get large.

We devise a range of algorithmic enhancements to address
this, using relaxed tests to avoid costly calls to SMT. Most
importantly, continuous relaxation of the state variables al-
lows to leverage recent SMT solvers specialized to NN with
ReLU activation functions (Katz et al. 2017, 2019). We de-
vise a method that simplifies exact-SMT tests via informa-
tion obtained on relaxed tests, and a method using branch-

and-bound around relaxed tests to avoid exact tests alto-
gether. While these enhancements are conceptually straight-
forward (and effective PA though not PPA has been inten-
sively explored (Cimatti et al. 2009; Cavada et al. 2014)),
our overall machinery constitutes a substantial engineering
effort. We contribute that effort in terms of an implemen-
tation based on the automata language JANI (Budde et al.
2017). Our tool (and all experiments) are publicly available.1

We run experiments on a collection of benchmarks, con-
sisting of Racetrack, Blocksworld, SlidingTiles, and a sim-
ple Transport domain. We adapted the latter three of these
to include non-determinism and an unsafety condition. We
do not automate the selection of abstraction predicates yet,
instead providing these as input and scaling them as an im-
portant algorithm parameter in our experiments. As com-
peting approaches, we implement a naı̈ve approach explic-
itly enumerating all states the policy can reach, as well as
a bounded-length verification approach following the ideas
of Akintunde et al. (2018; 2019). Our results show that our
algorithmic enhancements are required for practicality, and
that our approach can outperform its competitors.2

2 State Space Representation
The particular language JANI we use in our implementa-
tion is not relevant to understanding our contribution. We
hence abstract from the language to a generic representation
of non-deterministic state spaces, as follows.

A state space is a tuple 〈V,L,O〉 of state variables V ,
action labels L, and operators O. For each variable v ∈ V
the domain Dv is a non-empty bounded integer interval. We
denote by Exp the set of linear integer expressions over
V , i.e., expressions of the form d1 · v1 + · · · + dr · vr + c
with d1, . . . , dr, c ∈ Z. C denotes the set of linear integer
constraints over V , i.e., constraints of the form e1 ./ e2
with ./ ∈ {≤,=,≥} and e1, e2 ∈ Exp, and all Boolean
combinations thereof. An operator o ∈ O is a tuple (g, l, u)
with label l ∈ L, guard g ∈ C , and update u : V → Exp.

A (partial) variable assignment s over V is a function
with domain dom(s) ⊆ V and s(v) ∈ Dv for v ∈ dom(s).
Given s1, s2, we denote by s1[s2] the update of s1 by s2, i.e.,
dom(s1[s2]) = dom(s1)∪dom(s2) with s1[s2](v) = s2(v)
if v ∈ dom(s2), else s1[s2](v) = s1(v). By e(s) we denote
the evaluation of e ∈ Exp over s, and by φ(s) the evaluation
of φ ∈ C . If φ(s) evaluates to true, we write s |= φ.

The state space of 〈V,L,O〉 is a labeled transition system
(LTS) Θ = 〈S,L, T 〉. The set of states S is the (finite) set of
all complete variable assignments over V . The set of transi-
tions T ⊆ S × L × S contains (s, l, s′) iff there exists an
operator o = (g, l, u) such that s |= g and s′ = s[u(s)], i.e.,
the guard is satisfied in the source state s, and the successor
state s′ results from applying the update to s. Here, u(s) de-
notes the partial variable assignment induced by u evaluated
over s, i.e., u(s) = {v 7→ u(v)(s) | v ∈ dom(u)}.We also
write s |= o for s |= g, and abbreviate sJoK for s[u(s)].

1https://fai.cs.uni-saarland.de/vinzent/downloads/icaps22.zip
2We skip many formal details here. These are available in an

online TR at https://fai.cs.uni-saarland.de/vinzent/papers/icaps22-
tr.pdf, which also discusses related work in more detail.

From an AI Planning perspective, the only unusual aspect
here (reflecting JANI/automata languages) is the separation
between action labels and operators. This is useful because
it supports both, state-dependent effects (different operators
with the same label l applicable in different states); as well as
action outcome non-determinism (different operators with
the same label l applicable in the same state).

3 NN Action Policies
An action policy π is a function S → L. The policy-
restricted state space Θπ is the subgraph 〈S,L, T π〉 of Θ
with T π = {(s, l, s′) ∈ T | π(s) = l}.

Note that we allow π to select inapplicable actions, i.e.,
there may be s ∈ S for which π(s) does not label any
outgoing transition. In this case, the policy execution stops.
Two remarks are in order here: (1) the possibility of the pol-
icy getting stuck raises the issue of deadlock verification
(as known from concurrent systems); (2) a popular practi-
cal trick is to super-impose applicability on π, letting it se-
lect only from the applicable actions. Our approach can in
principle be adapted to perform deadlock verification or to
super-impose applicability. Both require substantially more
complex SMT encodings though, resulting in serious com-
putational challenges that future work needs to address.

We consider action policies represented by neural net-
works (NN), specifically fully connected feed-forward NN.
These consist of an input layer with an input for each state
variable; arbitrarily many hidden layers; and an output layer
with an output for each action. The policy π is obtained
by applying argmax to the output layer. Our approach is,
in principle, agnostic to the activation functions used. In
our current implementation we leverage SMT solvers spe-
cialized to rectified linear units (ReLU), ReLU (x) =
max(x, 0), so our experiments focus on those exclusively.

4 Safety Properties & Predicate Abstraction
We next review safety of systems in general, not considering
a policy. We give a corresponding definition of safety, and
give the background on predicate abstraction in this context.

Definition 1 (Safety Property). A safety property is a pair
ρ = (φ0, φU) with φ0, φU ∈ C . ρ is violated in Θ iff there
exist states s0, sU ∈ S such that s0 |= φ0, sU |= φU , and
sU is reachable from s0 in Θ. Θ is unsafe with respect to ρ
if ρ is violated in Θ, and safe otherwise.

The unsafety condition φU identifies the set of unsafe
states that should be unreachable from the set of possible
start states S0 represented by φ0.

Predicate abstraction (Graf and Saı̈di 1997) verifies
safety within an abstract state space, as follows. Assume a
set of predicates P ⊆ C . An abstract state sP is a (com-
plete) truth value assignment over P , also referred to as a
predicate state. The abstraction of a (concrete) state s ∈ S
is the predicate state s|P with s|P(p) = p(s) for each p ∈ P .
Conversely, [sP] = {s′ ∈ S | s′|P = sP} denotes the con-
cretization of predicate state sP , i.e., the set of all concrete
state represented by sP . The abstract state space now is de-
fined in a transition-preserving manner:

Definition 2 (Predicate Abstraction). The predicate ab-
straction of Θ over P is the LTS ΘP = 〈SP ,L, TP〉,
where SP is the set of all predicates states over P , and
TP = {(s|P , l, s′|P) | (s, l, s′) ∈ T }.

We say that a predicate state sP satisfies a constraint φ ∈
C , written sP |= φ, iff there exists s ∈ [sP] such that s |= φ.
Similarly, a safety property ρ = (φ0, φU) is violated in ΘP
iff there exist sP , s′P ∈ SP with sP |= φ0, s′P |= φU and s′P
is reachable from sP in ΘP . Due to the over-approximating
nature of ΘP , safety in Θ can be proven via safety in ΘP :

Proposition 3 (Safety in ΘP). Let ρ be a safety property. If
ΘP is safe with respect to ρ, then so is Θ.

The computation of ΘP necessitates to solve a satisfia-
bility problem for every possible abstract state transition:
(sP , l, s

′
P) ∈ TP iff there exists an operator o ∈ O with

label l and a concrete state s ∈ [sP] such that s |= o and
sJoK ∈ s′P . We denote this test by TSat(sP , o, s′P).

TSat(sP , o, s′P) can be encoded into a satisfiability mod-
ulo theories (SMT) (Barrett et al. 1994) formula over the
variables V , including a primed and an unprimed form for
each. The unprimed variables represent concrete states in
[sP], the primed ones [s′P]. Predicate state constraints en-
force that the predicates over the (un)primed variables eval-
uate according to the truth values in sP (s′P). Operator con-
straints ensure that the unprimed variables satisfy the guard
of o, and the primed variables are consistent with the updates
of o. For example, say we have state variables x, y each with
range [0, 5], P = {p} with p = (x ≥ y), sP = (p 7→ 1),
s′P = (p 7→ 0), and o with guard x ≥ y and update x :=
x− 1. Then the encoding of TSat(sP , o, s′P) is the conjunc-
tion of x ≥ y [sP , guard]; x′ = x − 1 [update]; ¬(x′ ≥ y)
[s′P]; and the bounding constraints 0 ≤ x, y, x′, y′ ≤ 5. This
is satisfiable (e.g. by s(x) = s(y) = 1), so there is an ab-
stract state transition from sP to s′P . A full specification of
the SMT encoding is in the TR.

5 Policy Predicate Abstraction
We now extend the above concepts to policy verification.
As we shall see, the definitions themselves transfer straight-
forwardly. What becomes substantially more complex is the
satisfiability test needed to identify abstract state transitions.

Definition 4 (Policy Safety). Let ρ be a safety property, and
let π be a policy. π is safe with respect to ρ iff Θπ is safe
with respect to ρ.

In words, we apply the definition of safety (Definition 1)
to the policy-restricted state space Θπ . Predicate abstraction
for policy verification is defined correspondingly:

Definition 5 (Policy Predicate Abstraction). Let P ⊆ C be
a predicate set, and let π be a policy. The policy predicate
abstraction of Θπ over P is the LTS Θπ

P = 〈SP ,L, T πP 〉
where T πP = {(s|P , l, s′|P) | (s, l, s′) ∈ T , π(s) = l}.

Applying the same arguments as above, policy predicate
abstraction yields a sufficient condition for policy safety:

Proposition 6 (Safety in Θπ
P). Let ρ = (φ0, φU) be a safety

property. If Θπ
P is safe with respect to ρ, then so is π.

We compute the fragment of Θπ
P reachable from the ab-

stract start states S0|P = {sP ∈ SP | sP |= φ0}. If
that fragment does not contain any abstract unsafe state
s′P |= φU , then with Proposition 6 the policy is safe.3

The new source of complexity in computing abstract
state transitions is that, in addition to the standard test
TSat(sP , o, s′P), we now need to check whether the policy
π actually chooses l in the state s ∈ [sP]:

Definition 7 (Transition Test of Θπ
P). Let sP , s′P be pred-

icate states, and let o = (g, l, u) be an operator. The tran-
sition test of Θπ

P , denoted TSatπ(sP , o, s
′
P), is satisfied iff

there exists s ∈ [sP] s.t. s |= o, sJoK ∈ [s′P] and π(s) = l.

Whether and how this test can be conducted depends
on the representation of π. Policy predicate abstraction is
applicable in principle so long as any method for solv-
ing TSatπ(sP , o, s

′
P) is available. Here, we focus on feed-

forward NN with ReLU activation functions.
We encode these into SMT by extending the

TSat(sP , o, s′P) encoding as follows. The inputs to the
NN are the unprimed variables from TSat(sP , o, s′P). We
add an additional variable for every internal and output
edge of the NN. Each neuron is a constraint relating its
input and output edges, with the ReLU activation being
encoded via an if-then-else construct. The NN output edges
are constrained such that the maximal-valued edge is the
one corresponding to the label l.

For illustration, say that in the example from Section 4
we have a single-layer NN with three neurons whose out-
puts are encoded by variables n1, n2, and n3, of which n2
corresponds to the label of the desired operator o. Then
TSatπ(sP , o, s

′
P) contains constraints relating x and y to

each of n1, n2, n3 according to the NN weights and ReLU
cases, as well as the constraints n2 > n1 and n2 > n3 en-
coding that the correct label is chosen. A full specification
of the SMT encoding is in the TR.

6 Enhancements through Relaxed Tests
An exact SMT solution of TSatπ(sP , o, s

′
P) is computation-

ally very expensive, due to the large number of disjunctions
encoding every ReLU activation function – every neuron –
in the NN policy representation. Indeed, as we shall see in
our experiments, this computational expense makes policy
predicate abstraction infeasible in practice.

To improve this, we next introduce a range of algo-
rithmic enhancements, leveraging relaxed tests that over-
approximate TSatπ(sP , o, s

′
P). If such a relaxed test is un-

satisfiable, then TSatπ(sP , o, s
′
P) is unsatisfiable and we

don’t need to call the exact SMT solver. We design such
relaxed SMT tests in two ways, namely 1. through re-
duced conditions that are necessary for TSatπ(sP , o, s

′
P) to

be satisfiable, and 2. through continuous relaxation of the
bounded-integer state variables. We now consider these two

3One could in principle build the entire graph Θπ
P , not restricted

to a start condition, based on which one could then answer arbitrary
safety queries ρ. Yet this would forego the graph-size reduction
resulting from the use of a fixed policy from a fixed start condition.
As we will see, that reduction is crucial for practicability.

possibilities in turn. Then we introduce additional enhance-
ments: 3. using results of the relaxed test as per 2. to simplify
the exact SMT test; and 4. using branch-and-bound around
relaxed test as per 2. to avoid the exact SMT test altogether.

6.1 Necessary Conditions for TSatπ(sP , o, s
′
P)

We devise four different conditions that are necessary for
TSatπ(sP , o, s

′
P) to be satisfiable. The conditions essentially

check different parts of TSatπ(sP , o, s
′
P) in isolation. The

resulting SMT encodings are smaller, and hence cheaper to
reason about.

• Transition test of TP : TSatπ(sP , o, s
′
P) can only be

satisfied if TSat(sP , o, s′P) is. The SMT encoding of
TSat(sP , o, s′P) does not involve the NN.

• Selection test IsSelectπ(sP , l): TSatπ(sP , o, s
′
P) can

only be satisfied if there exists a concrete state s ∈
[sP] such that π(s) = l, where l is the label of o.
While still involving the NN, IsSelectπ(sP , l) does not
include the operator-related constraints. Moreover, once
IsSelectπ(sP , l) is violated for some l, one can skip the
transition tests TSatπ(sP , o, s

′
P) for all l-labeled opera-

tors o and predicate states s′P altogether.
• Applicability test isApp(sP , o): TSatπ(sP , o, s

′
P) can

only be satisfied if o is applicable in some concrete state
s ∈ [sP], i.e., s |= o. The SMT encoding of this test
is a subset of that of TSat(sP , o, s′P). If isApp(sP , o) is
violated, one can directly skip TSatπ(sP , o, s

′
P) for all

predicate states s′P .
• Policy-restricted applicability test isAppπ(sP , o):

TSatπ(sP , o, s
′
P) can only be satisfied if the policy ac-

tually selects the label l of o for some state for which o
is applicable. The SMT encoding of this test is given by
the combination of IsSelectπ(sP , l) and isApp(sP , o).

6.2 Continuous Relaxation
Each test involving the NN can be relaxed by interpreting
the integer state variables at the NN input as continuous vari-
ables (with domain R). We notate such continuously-relaxed
tests by an R subscript, e.g., TSatπR(sP , o, s

′
P).

The decisive advantage of this relaxation is the applica-
bility of existing SMT solvers dedicated to NN analysis.
Specifically, this allows us to leverage Marabou (Katz et al.
2019), an SMT solver tailored to satisfiability queries over
neural networks. Marabou assumes a neural network with
ReLU activation functions, and conjunctions of linear con-
straints over the NN inputs and outputs. It decides whether
there exists an input/output pair of tuples over R satisfying
these constraints. All our continuously-relaxed tests match
this profile and can thus be tackled by Marabou.

6.3 Fixing Activation Cases
If the continuously relaxed test TSatπR(sP , o, s

′
P) is sat-

isfiable, then we still need to run the exact test
TSatπ(sP , o, s

′
P). One can, however, even in this case lever-

age TSatπR(sP , o, s
′
P) to improve the performance of the

TSatπ(sP , o, s
′
P), namely by fixing some of the “activation

cases” in the neural network. This idea has been deployed

in other contexts before (e.g. (Mohammadi et al. 2020; Katz
et al. 2019)), and here we adopt it in our setting.

The idea for ReLU works as follows: if the activation-
function input x is known to be ≤ 0, then the SMT con-
straints can fix the output x′ to x′ = 0; if x is known to be
≥ 0, the output can be fixed to x′ = x. The required knowl-
edge here can be derived from reasoning about the relaxed
encoding (e.g. TSatπR(sP , o, s

′
P)). Marabou does so by iden-

tifying bounds implied by individual constraints, as well as
reasoning about network topology through symbolic inter-
val propagation (Wang et al. 2018). We use these bounds to
simplify the exact SMT encoding (e.g. TSatπ(sP , o, s

′
P)).

6.4 Branch & Bound around Relaxation
Observe that, in the case where a relaxed test (like
TSatπR(sP , o, s

′
P)) is satisfiable, the corresponding exact test

(like TSatπ(sP , o, s
′
P)) is not needed if the solution to the

relaxed test found by Marabou happens to be integer. While
this will typically not be the case, one can iterate calls to
Marabou in a search for such a solution, instead of calling
the exact SMT test.

We realize this approach in terms of a branch & bound
(B&B) search around Marabou. In each iteration, if there
exists a state variable v assigned to a non-integer value α in
the solution returned by Marabou, we pick one such v and
create two search branches, adding v ≤ bαc respectively
v ≥ dαe to the relaxed-test encoding. A branch is terminated
when the encoding is proved to be unsatisfiable, or when an
integer solution is found.

7 Computing the Abstract State Space
Putting the pieces together, we are now ready to explain how
the abstract state space is computed. Specifically, given an
NN policy π, a set of predicates P , and a safety property
ρ = (φ0, φU), we build the fragment of Θπ

P reachable from
the abstract start states S0|P = {sP ∈ SP | sP |= φ0}.
We do so using a forward search in abstract state space. The
main challenge here is how to effectively implement abstract
state expansion. Algorithm 1 shows pseudo-code.

The main loop of the procedure iteratively processes each
action label. For the ones selected by the policy (lines 2
and 3), it proceeds to the corresponding operators. If an op-
erator is applicable (lines 5 to 7), the enumerate states
procedure generates the successor predicate states s′P .

Observe that any predicate state may in principle qual-
ify for s′P – in contrast to explicit-state search, we do not
have a declarative model from which we could read off di-
rectly which states s′P may be reached in a single step from
sP . Hence enumerate states performs backtracking
search in the space of possible s′P . Branches in that search
are cut based on entailment information gleaned from simple
(small) SMT tests. Namely, first, we check in line 8 for each
predicate individually whether a truth value is entailed by
sP along with the operator o. We initialize s′P accordingly.
Second, truth value commitments for one predicate may en-
tail truth values for other predicates. We pre-compute such
relations for each predicate individually. During backtrack-
ing, we use this information to propagate truth values, akin

Algorithm 1: Abstract state expansion.
Input: sP ∈ SP

1 for each l ∈ L do
// selection tests:

2 if ¬IsSelectπR(sP , l) then continue
3 if ¬IsSelectπ(sP , l) then continue
4 for each o ∈ O with o = (g, l, u) do

// applicability tests:
5 if ¬isApp(sP , o) then continue
6 if ¬isAppπR(sP , o) then continue
7 if ¬isAppπ(sP , o) then continue

8 s′P ← entailment by(sP , o)
9 enumerate states(s′P)

10 Procedure enumerate states(s′P : P → {0, 1}):
11 if dom(s′P) = P then

// transition tests:
12 if ¬TSat(sP , o, s′P) then return
13 if ¬TSatπR(sP , o, s

′
P) then return

14 if ¬TSatπ(sP , o, s
′
P) then return

15 add (sP , l, s
′
P) to TπP

16 else
17 pick some p ∈ P \ dom(s′P)
18 let s′P(p) = 1 in
19 s′P ← s′P [entailment by(p, 1)]
20 enumerate states(s′P)

21 let s′P(p) = 0 in
22 s′P ← s′P [entailment by(p, 0)]
23 enumerate states(s′P)

to unit propagation, prior to the recursion (lines 19 and 22).
In the leaves of the search, we run satisfiability tests to check
whether or not a transition is possible (lines 12 to 14).

Throughout Algorithm 1, we apply the various tests from
Section 6 to reduce computational effort in SMT. All tests
except TSatπ(sP , o, s

′
P) are optional, yet may reduce work.

The algorithm is modular with respect to how the tests are
performed, e.g., whether an off-the-shelf SMT solver or our
branch & bound method is used for TSatπ(sP , o, s

′
P).

The set of abstract start states S0|P = {sP ∈ SP | sP |=
φ0} at the beginning of forward search is computed in a
manner analogous to the enumerate states procedure.
We always build the entire Θπ

P reachable from those states,
continuing even if we already reached an abstract unsafe
state. This is because reaching an unsafe state just means
that at least one start state sP ∈ S0|P is unsafe. We can still
prove other start states safe by continuing the construction.

8 Experiments Design
The setup of our experiments is complex. Our algorithm has
a large number of possible configurations; due to the recency
of research into neural action policy verification, there is no
established competition we can compare against; and there
is no established set of benchmarks. We now address these
points, before reporting our results in the next section.

R-test Exact test
Configuration (Alg. 1 line 13) (Alg. 1 line 14)
Base × Z3
Mar+Z3 X Z3
Mar+Z3(Mar) X Marabou→Z3
BnB(Mar) X B&B
Mar X ×

Table 1: Algorithm configurations evaluated. Base serves as
a baseline, not using any algorithmic enhancements.

8.1 Algorithm Configurations
We evaluate five variants of our Θπ

P construction method,
shown in Table 1. Base is a baseline version, constructing
the reachable fragment of Θπ

P in the most straightforward
fashion based on SMT tests. Mar+Z3 extends this by the
observation that continuous relaxation with Marabou can
be used to avoid costly SMT tests. Mar+Z3(Mar) in addi-
tion leverages the Marabou outcome to fix activation cases
in the Z3 queries. BnB(Mar) instead modifies Mar+Z3 by
using our branch-and-bound on top of Marabou. Finally,
Mar just drops the exact tests altogether, relying completely
on the continuous relaxation and thus computing an over-
approximation of abstract reachability.

The predicate abstraction base tests (Algorithm 1 lines 5
and 12) are enabled throughout as they never hurt. The se-
lection tests (lines 2 and 3) and applicability tests (lines 6
and 7) are disabled throughout. Our evaluation shows that
they can improve performance, and can also deteriorate it
when the benefit of the additional tests does not outweigh
the gain. For space reasons, these results are not discussed
in what follows. They are available in the TR.

8.2 Competing Approaches
To provide a comparison to alternative verification ideas, we
implemented two competing methods:4

• Explicit enumeration (EE). This constructs the concrete
start states s0 |= φ0 by querying Z3 in a binary search
over the state variable domains (we experimented with
several methods, and this one worked best). It then
runs the policy from every s0 in turn, enumerating non-
deterministic transition outcomes. We employ duplicate
checking across all these runs to avoid repeated work.

• Bounded model checking (BMC). This encodes bounded-
length unsafety into satisfiability queries, in a straight-
forward manner loosely inspired by Akintunde et al.
(2018; 2019). We incrementally build SMT queries ask-
ing whether Θπ contains a path of length L from φ0 to
φU . If the answer is negative, the SMT query is extended
by unrolling the transition function one step further. This
is repeated until either an unsafe path is found, or L ex-
ceeds a fixed upper bound Lmax .

BMC can only prove safety up to length bound Lmax ,
and our method is the only one parameterized by abstraction

4Other approaches, such as reachability analysis using star sets
(Tran et al. 2019) or encoding abstract reachability into SMT
(Cavada et al. 2014), would be interesting to try as well but are
challenging to realize in our setting and thus beyond scope.

predicates, so the comparison across approaches needs to be
handled with care. Nevertheless though, EE cannot handle
the state explosion, and BMC cannot handle large L as the
SMT query contains one copy of the NN for every step.

8.3 Benchmarks
The benchmarks required for policy verification include not
only planning tasks, but also trained policies for those. We
trained policies for a collection of domains from the lit-
erature, adapted to include unsafety conditions and non-
deterministic actions. Details are available in the TR. In what
follows, we give a short summary.

Planning domains. We experimented with variants of the
Racetrack, Blocksworld, and SlidingTiles domains, as well
as a simple transportation domain we will refer to as Trans-
port. We encoded all these domains in the JANI format.

In Racetrack, we use the Barto-small map (Barto,
Bradtke, and Singh 1995). Our safety property has 1000 ran-
domly chosen start states, and a state is unsafe if the car
has crashed into a wall. We use deterministic actions (no
“slippery road”) because otherwise an unsafe state is always
reachable (namely when all actions fail).

In Blocksworld, actions moving a block b may non-
deterministically fail, and when this happens the cost of
moving b (represented by an additional state variable) is in-
cremented. The start condition imposes a partial order on
the blocks in the initial stacks. A state is unsafe if the num-
ber of blocks on the table exceeds a fixed limit. We consider
instances with 6 and 8 blocks.

For SlidingTiles, we use an 8-puzzle instance. Like in
Blocksworld, actions may fail, and if they do then the cost
of moving the respective tile is incremented. The start condi-
tion imposes a partial order on the tile positions, and unsafe
states are specified in terms of a set of unsafe tile positions.

In Transport, a truck must deliver packages on a straight-
line road to the other side of a bridge, and an unsafe state
occurs if the truck is too heavily loaded while crossing the
bridge. The start condition restricts the truck and packages
to be on the “non-goal” side of the bridge.

Policy training often had trouble dealing with large num-
bers of actions (inapplicable actions were often selected).
Hence, in all domains, we leveraged the possibility (men-
tioned in Section 2 and available in JANI) to express state-
dependent effects in terms of sets of operators sharing the
same action label. For example, our actions in SlidingTiles
are simply “left, right, up, down”, avoiding the enumeration
of tile/position combinations at the level of actions.

Trained policies. For every considered domain instance,
we used deep Q-learning (Mnih et al. 2015) to train three
feed-forward NN policies of different sizes. The number of
hidden layers is fixed to 2 for each policy, the number of neu-
rons per layer is 16, 32, and 64 respectively. The rewards for
the training are positive on goal states and negative on unsafe
ones. In some cases, we used mild reward shaping (giving
positive rewards already for achieving individual goal facts)
to achieve more effective training.

In Blocksworld and SlidingTiles, we distinguish policies
that do vs. do not take move costs into account. While

the former is more natural, it sometimes makes verification
infeasible. Hence we show results for cost-aware policies
where feasible, and for cost-ignoring policies elsewhere.

The policies are mostly safe (as our verification results
show). The policies mostly select applicable actions, so that
the number of reachable states under non-determinism is too
large to enumerate (as our results for EE show).

Abstraction predicates used in our experiments. We do
not automate the selection of abstraction predicates yet, in-
stead providing these as input and scaling them as an impor-
tant algorithm parameter in our experiments.

We consider predicates of the form v ≥ c, comparing
a state variable v ∈ V to a threshold value c ∈ Dv . We
scale P by gradually adding predicates until, in the maxi-
mal predicate set, all variable values can be distinguished
(and hence the abstraction Θπ

P equals the policy-restricted
state space Θπ). We mildly adapt this scheme to each do-
main. In Racetrack, we refine all state variables simultane-
ously, adding more predicates for every v in each step. In
Blocksworld and SlidingTiles, we refine the move-cost vari-
ables last, which makes sense as these are least important to
safety. In Transport, we first completely refine the truck lo-
cation, then add predicates for the other variables (package
locations, truck load) individually, as verification becomes
very hard when adding the latter. For each v, the sequence
of predicates follows a binary search pattern, iteratively cut-
ting intervals between neighboring threshold values in half.

9 Experiments Results
We have implemented our approach on top of a C++ code
base for automata networks modeled in JANI (Budde et al.
2017). We use Marabou to solve the continuously-relaxed
NN-SAT tests and we use Z3 for all other SMT queries.
All experiments were run on machines with Intel Xenon E5-
2650 processors with a clock rate of 2.2 GHz, with time and
memory limits of 12 h and 4 GB respectively.

Our evaluation in what follows addresses four questions:
1. What are the sources of complexity in policy predicate

abstraction (PPA), compared to standard predicate ab-
straction (PA) ignoring the policy?

2. How do the PPA algorithm variants from Table 1 com-
pare? In particular, to what extent do our enhancements
improve performance?

3. Which safety properties does PPA manage to prove in our
benchmark collection?

4. How does PPA fare compared to the competing policy
verification approaches?

Figure 1 shows the data for all these discussions (data for
competing approaches is given below in Section 9.4).

9.1 Sources of Complexity
In PA, the dominating source of complexity is the state-
space explosion, which leads to (1) exponential growth of
the abstract state space as a function of |P|. When com-
puting reachability from a start condition φ0 as we do here
(as opposed to building the entire abstract state space), this
can be counter-balanced by (2) the gain in precision as |P|

Figure 1: (a) – (f): runtime for policy predicate abstraction variants (cf. Table 1) and standard predicate abstraction (PA). (g) –
(i): abstract state space size, number of abstract start states, and number of abstract start states proved safe (using BnB(Mar)).
x-axes range over abstraction predicate sets P and show % of maximal |P|. Timed-out runs are omitted from the plots.

grows, pruning spurious reachability. In PPA, we addition-
ally have (3) the new source of complexity in NN analysis,
i.e., complex SMT calls; and (4) the new gain in reachabil-
ity reduction from fixing the policy together with φ0.

Figure 1 nicely shows the interplay between these aspects.
Consider first Racetrack, plots (a) and (g). In (g), we see the
impact of (1) in the growth of the PA curve (note the loga-
rithmic y-scale), and we see the impact of (4) in the reduc-
tion of abstract state space size for large predicate sets. In
(a), focusing only on the most effective PPA variants Mar
and BnB(Mar) for now, we additionally see the effect of (3),
causing PPA to be more costly than PA up to mid-size pred-
icate sets; and then the effect of (4), causing PPA to be less
costly than PA for larger predicate sets. Note here that (4)
can outweigh (3) – the verification of neural action policies
can be more effective than classical verification!

Of course this observation is specific to our context, in
particular the small size of the neural networks involved.
But similar phenomena occur across our benchmarks. In
Blocksworld, plots (b) (c) (h), the observations are exactly as
above, except that now the reduction in abstract state space
size happens near the middle of the predicate-set-size scale
already; and that (2) kicks in for PA, leading to a temporary
improvement in PA runtime. The sweetspot in abstraction
complexity (0.4 in (b), 0.56 in (c)) is exactly that where all
non-cost-predicates have been added, i.e., where costs are
abstracted away but everything else is captured precisely.
The observations in SlidingTiles, plots (d) (e) (i), are iden-
tical except that there is no benefit of kind (2) for PA. In
Transport (f), PPA is exceedingly costly on small predicate
sets due to (3). Indeed, we found (3) to typically be more
problematic for small P , as the SMT queries are then done
for larger NN input regions. For larger P , this effect gradu-
ally diminishes, and the gap between PA and PPA closes as,
thanks to (4), PPA suffers much less from (1) than PA does.

9.2 PPA Algorithm Enhancements
Consider now the comparison across PPA variants as per
Table 1. The baseline Base clearly is hopeless. There are
only a few points in our benchmark space where it man-
ages to construct the abstract state space. Adding contin-
uous relaxation and Marabou in Mar+Z3 much improves
this, but still is quite ineffective. The activation-case fixing
in Mar+Z3(Mar) can yield substantial improvements (see
e.g. Racetrack in Figure 1 (a)). But the key to scalability
is to get rid of the generic SMT solver Z3 for queries in-
volving the NN, and instead rely on Marabou completely,
which still allows to compute the policy predicate abstrac-
tion exactly thanks to our branch-and-bound approach in
BnB(Mar). The latter is only mildly less effective than the
over-approximating variant Mar which uses continuous re-
laxation without branch-and-bound.

9.3 Safety Proved
Figure 1 (g) – (i) shows data on the number of abstract start
states proved safe. In Racetrack, nothing is proved safe un-
til all predicates are added and hence the abstraction is not
abstract anymore. In Blocksworld however, all abstract start
states – and hence the overall policy behavior – are proved

Lmin
U tmin

U Lmax
checked

Benchmark \ NN 16|32|64 16|32|64 16|32|64
Racetrack 3|3|3 36.9|40.1|316.5 12|11|7
6 Blocks (cost-awa) - - 6|5|4
8 Blocks (cost-ign) - - 5|5|4
8-puzzle (cost-ign) 2| - | - 72.8| - | - 7|3|0
8-puzzle (cost-awa) - - 3|3|0
Transport 1|1| - 57.0|20548.0| - 2|1|0

Table 2: Results for BMC: length Lmin
U of shortest un-

safe path is one is found; runtime tmin
U to find that path

in seconds; maximal path length Lmax
checked checked at time-

out; distinguishing cost-aware policies (cost-awa) and cost-
ignoring policies (cost-ign) where applicable.

safe once all non-cost-predicates are in. In SlidingTiles, this
is the case for 4839 of 4900 abstract start states, many of
which are proved safe already with smaller predicate sets.

9.4 Competing Approaches
Let us finally discuss the competing approaches, explicit
enumeration (EE) and bounded model-checking (BMC).
Data for these is not included in Figure 1 as they achieve
very little on our benchmarks.

EE easily verifies the policies in the Racetrack task (less
than a second for each policy), as the state space there is
small. However, EE exhausts our 4GB memory limit on all
other problem instances.

Table 2 shows the data for BMC. This approach is effec-
tive in finding short unsafe paths if these exist. Yet it is use-
less otherwise. As the Lmax

checked data shows, except in Race-
track where the state space is small, BMC is unable to reach
substantial path lengths.5

10 Conclusion
The verification of neural network behavior becomes more
and more important. We have introduced policy predicate
abstraction as a new method in the so-far scant arsenal to
address such verification, and we have shown that it can
be feasible and can outperform other methods. Interestingly,
thanks to the reduced reachability when fixing both a start
condition and a policy, it can even be more effective than
standard predicate abstraction ignoring the policy.

A next step has to be the automatic derivation of abstrac-
tion predicates, canonically via counter example guided ab-
straction refinement (e.g. (Clarke et al. 2000)), which will
need to be extended to distinguish states based on NN behav-
ior. There are many opportunities to speed up our approach:
the use of other NN analysis approaches; adversarial attacks
to prove satisfiability of TSatπ(sP , o, s

′
P); lazy abstraction

refining the predicate set locally; and parallelization of SMT
test variants and the entire abstract state-space construction.
It may be interesting to look at possible connections to XAIP
(see (Chakraborti et al. 2019) for an overview).

5To assess this in the cases where a short unsafe path exists, we
keep running BMC after that happens.

Acknowledgments
This work was funded by DFG Grant 389792660 as part of
TRR 248 – CPEC (https://perspicuous-computing.science).

References
Akintunde, M.; Lomuscio, A.; Maganti, L.; and Pirovano, E.
2018. Reachability Analysis for Neural Agent-Environment
Systems. In KR.
Akintunde, M. E.; Kevorchian, A.; Lomuscio, A.; and
Pirovano, E. 2019. Verification of RNN-Based Neural
Agent-Environment Systems. In AAAI.
Ball, T.; Majumdar, R.; Millstein, T. D.; and Rajamani, S. K.
2001. Automatic Predicate Abstraction of C Programs. In
Prog. Lang. Design and Implementation (PLDI).
Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
1994. Satisfiability modulo theories. In Handbook of Satis-
fiability, 825–885.
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning
to Act Using Real-Time Dynamic Programming. AI, 72(1-
2): 81–138.
Budde, C. E.; Dehnert, C.; Hahn, E. M.; Hartmanns, A.;
Junges, S.; and Turrini, A. 2017. JANI: Quantitative Model
and Tool Interaction. In TACAS.
Cavada, R.; Cimatti, A.; Dorigatti, M.; Griggio, A.; Mariotti,
A.; Micheli, A.; Mover, S.; Roveri, M.; and Tonetta, S. 2014.
The nuXmv Symbolic Model Checker. In CAV.
Chakraborti, T.; Kulkarni, A.; Sreedharan, S.; Smith, D. E.;
and Kambhampati, S. 2019. Explicability? Legibility? Pre-
dictability? Transparency? Privacy? Security? The Emerg-
ing Landscape of Interpretable Agent Behavior. In ICAPS.
Cimatti, A.; Dubrovin, J.; Junttila, T. A.; and Roveri, M.
2009. Structure-aware computation of predicate abstraction.
In Formal Methods in Computer-Aided Design (FMCAD).
Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-Guided Abstraction Refinement. In
CAV.
de Moura, L.; and Bjørner, N. 2008. Z3: An Efficient SMT
Solver. In TACAS.
Dutta, S.; Chen, X.; and Sankaranarayanan, S. 2019. Reach-
ability analysis for neural feedback systems using regres-
sive polynomial rule inference. In Intl Conf Hybrid Systems:
Computation and Control (HSCC).
Edelkamp, S. 2001. Planning with Pattern Databases. In
ECP.
Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In ICAPS.
Gehr, T.; Mirman, M.; Drachsler-Cohen, D.; Tsankov, P.;
Chaudhuri, S.; and Vechev, M. T. 2018. AI2: Safety and
Robustness Certification of Neural Networks with Abstract
Interpretation. In Security and Privacy (SP).
Graf, S.; and Saı̈di, H. 1997. Construction of Abstract State
Graphs with PVS. In CAV.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Policies
Using Deep Neural Networks. In ICAPS.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & Shrink Abstraction: A Method for Generat-
ing Lower Bounds in Factored State Spaces. JACM, 61(3):
16:1–16:63.
Henzinger, T. A.; Jhala, R.; Majumdar, R.; and McMillan,
K. L. 2004. Abstractions from proofs. In Principles of Pro-
gramming Languages (POPL).
Huang, S.; Fan, J.; Li, W.; Chen, X.; and Zhu, Q. 2019.
ReachNN: Reachability analysis of neural-network con-
trolled systems. ACM Trans. Emb. Comp. Sys., 18: 1–22.
Huang, X.; Kwiatkowska, M.; Wang, S.; and Wu, M. 2017.
Safety Verification of Deep Neural Networks. In CAV.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
Deep Reactive Policies for Probabilistic Planning Problems.
In ICAPS.
Ivanov, R.; Carpenter, T. J.; Weimer, J.; Alur, R.; Pappas,
G. J.; and Lee, I. 2021. Verifying the Safety of Autonomous
Systems with Neural Network Controllers. ACM Trans.
Emb. Comp. Sys., 20: 7:1–7:26.
Katz, G.; Barrett, C. W.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks. In CAV.
Katz, G.; Huang, D. A.; Ibeling, D.; Julian, K.; Lazarus,
C.; Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljic, A.; Dill,
D. L.; Kochenderfer, M.; and Barrett, C. 2019. The Marabou
Framework for Verification and Analysis of Deep Neural
Networks. In CAV.
Li, J.; Liu, J.; Yang, P.; Chen, L.; Huang, X.; and Zhang, L.
2019. Analyzing deep neural networks with symbolic prop-
agation: Towards higher precision and faster verification. In
Static Analysis (SAS).
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature, 518: 529–533.
Mohammadi, K.; Karimi, A.; Barthe, G.; and Valera, I.
2020. Scaling Guarantees for Nearest Counterfactual Ex-
planations. CoRR, abs/2010.04965.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
JAIR, 62: 535–577.
Sun, X.; Khedr, H.; and Shoukry, Y. 2019. Formal Ver-
ification of Neural Network Controlled Autonomous Sys-
tems. In Intl Conf Hybrid Systems: Computation and Con-
trol (HSCC).
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. JAIR, 68:
1–68.
Tran, H.; Cai, F.; Lopez, D. M.; Musau, P.; Johnson, T. T.;
and Koutsoukos, X. D. 2019. Safety Verification of Cyber-
Physical Systems with Reinforcement Learning Control.
ACM Trans. Embed. Comput. Syst., 18(5s): 105:1–105:22.
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018. Formal Security Analysis of Neural Networks using
Symbolic Intervals. In USENIX Security Symposium.

