On the Relation between Star-Topology Decoupling and Petri Net Unfolding

Daniel Gnad and Jörg Hoffmann
Saarland University
Saarland Informatics Campus
Saarbrücken, Germany
{gnad,hoffmann}@cs.uni-saarland.de

Abstract
Petri net unfolding expands concurrent sub-threads of a transition system separately. In AI Planning, star-topology decoupling (STD) finds a partitioning of state variables into components whose dependencies take a star shape, and expands leaf-component state spaces separately. Thus both techniques rely on the separate expansion of state-space composites. How do they relate? We show that, provided compatible search orders, STD state space size dominates that of unfolding if every component contains a single state variable, and unfolding dominates STD in the absence of prevail conditions (non-deleted action preconditions). In all other cases, exponential state space size advantages are possible on either side. Thus the sources of exponential advantages of STD are exactly a) state space size in the presence of prevail conditions (our results), and b) decidability of reachability in time linear in state space size vs. NP-hard for unfolding (known results).

Introduction
Petri net unfolding is a well-known partial-order reduction method (e.g. McMillan (1992), Esparza, Römer, and Vogler (2002), Baldan et al. (2012)). It maintains concurrent threads separately. Instead of building the forward state space and trying to prune permutative parts as in other methods (e.g. Valmari (1989), Godefroid and Wolper (1991), Wehrle et al. (2013), Wehrle and Helmert (2014)), the state variables are not multiplied with each other in the first place. The unfolding process incrementally adds transitions to an acyclic graph, when the transition’s input “places” (precondition facts) can be reached jointly. A new output place is then added for each effect. The outcome structure is an acyclic Petri net, a complete prefix, that preserves reachability exactly relative to the input Petri net.

In classical planning, transition systems are described by finite-domain state variables, where actions have conjunctive preconditions and effects over these. This can be translated into Petri nets (Hickmott et al. 2007; Bonet et al. 2008). Each place in an unfolding then corresponds to a state-variable value, and the complete prefix is an acyclic fact-action dependency structure that captures reachability.

Star-topology decoupling (STD) (Gnad and Hoffmann 2018) finds a partitioning of the state variables into components, where all cross-component dependencies involve a center component \(C \), so that the other components \(L \) can be viewed as leaves. The search explores action sequences affecting the center. At each search node, the reachable leaf states are expanded for each leaf \(L \in L \) individually.

Unfolding and STD are related. Consider a singleton-component topology, where each component contains a single state variable. The component states then are exactly the places in the unfolding, and, like unfolding, STD expands these separately. So how do the techniques relate exactly?

A significant known separation is the complexity of deciding whether a conjunctive condition is reachable. Given an unfolding prefix, this test is NP-complete (McMillan 1992) as the transition histories supporting two places may be in conflict. In contrast, given a decoupled state space prefix, the test can be done in time linear in prefix size: thanks to the star-topology organization, there are no conflicts. But what about the sizes of the fully expanded prefixes, i.e., the respective complete representation of reachability?

Gnad and Hoffmann (2018) have shown that the STD state space can be exponentially smaller in the presence of prevail conditions (non-deleted preconditions, whose treatment in Petri nets leads to blow-ups); and that the complete unfolding prefix can be exponentially smaller in the presence of non-singleton components. Here, we show corresponding dominance results: without prevail conditions, unfolding size dominates STD size; with only singleton components, STD size dominates unfolding size. Both hold subject to compatible search orders, that prefer expansions on leaves over ones on the center whenever possible, and that are identical on the ordering of center-action sequences. For incompatible search orders, exponential advantages are possible in either direction. Overall, we obtain a complete classification along the three dimensions of prevail conditions (yes/no), non-singleton components (yes/no), and incompatible search orderings (yes/no).

Background
We provide an overview suited to understand our results at a high level. More technical details and notations, as needed for the full proofs, are given in the appendix.

We use finite-domain state variables (Bäckström and Nebel 1995; Helmert 2006). A planning task is a tuple \(\Pi = (V, A, I, G) \). Here, \(V \) is a set of variables, each associated
The resulting marking is \(M \). Petri nets Planning tasks can be encoded in Petri-Net Unfolding places \(\langle \) precondition places as input to transitions, and effects as precondition \(\rangle \) of partial assignments to \(V \), called precondition and effect of \(a \).

For a partial assignment \(p, \var{p} \) is the subset of variables on which \(p \) is defined. For \(V \subseteq \var{p} \), \(p[V] \) denotes the assignment to \(V \) made by \(p \). We say that \(p \) satisfies a condition \(q \), \(p \models q \), if \(\var{q} \subseteq \var{p} \), and \(p[v] = q[v] \) for all \(v \in \var{q} \). An action \(a \) is applicable in a (partial) state \(s \) if \(s \models \pre{a} \cap \var{a} \). If so, the outcome of applying \(a \) in \(s \) is denoted \(s[a] \), where \(s[a][v] = \eff{a}[v] \) for \(v \in \pre{\eff{a}} \cap \var{\eff{a}} \), and \(s[a][v] = s[v] \) elsewhere.

For convenience in the encoding as Petri nets, we assume that there are no effect-only variables, \(v \in \pre{\eff{a}} \setminus \var{\eff{a}} \). This is WLOG as such variables can be compiled away with a linear size increase (Pommerening and Helmer 2015). What will be important, however, are prevail conditions, \(v \in \pre{\eff{a}} \setminus \var{\eff{a}} \).

For illustration, we use a simple logistics example that highlights some key differences between STD and unfolding. \(\mathcal{V} = \{ t, p_1, \ldots, p_n \} \) where \(t \) encodes the position of a truck on a map with two locations \(l, r \), and each \(p_i \) encodes the position of a package. We have \(\mathcal{D}_l = \{ l, r \} \) and \(\mathcal{D}_p = \{ l, r, T \} \) where \(T \) stands for being in the truck. In \(\mathcal{L} \), all variables have value \(l \). Actions drive, e.g., \(\text{drR} \) with precondition \(\{ (t, l) \} \) and effect \(\{ (t, r) \} \); or load a package, e.g., \(\text{lop}_L \) with precondition \(\{ (t, l) \} \) and effect \(\{ (p_1, l) \} \); or unload a package accordingly. Note that load and unload actions have a precedent condition on the truck.

Petri-Net Unfolding

Planning tasks can be encoded in Petri nets \(\Sigma = (\mathcal{P}, \mathcal{L}, \mathcal{F}, M_0) \), which are digraphs whose nodes are the places \(\mathcal{P} \) and transitions \(\mathcal{L} \) of \(\Sigma \). When encoding a planning task \(\Pi \) (Hickmott et al. 2007; Bonet et al. 2008), the places \(\mathcal{P} \) correspond to the facts of \(\Pi \), and the transitions \(t \in \mathcal{L} \) correspond to the actions \(a \in A \). The flow relation \(\mathcal{F} \) connects precondition places as input to transitions, and effects as their outcome, e.g., \((p, t) \in \mathcal{F} \) means that \(t \) has precondition \(p \). A state \(s \in \Pi \) (a set of facts) becomes a marking \(M \) in \(\Sigma \) (a set of places). \(M_0 \) is the initial marking. A transition \(t \) can fire (i.e., is applicable) in a marking \(M \) if \(\pre{t} \subseteq M \). The resulting marking is \(M' = (M \setminus \pre{t}) \cup \eff{t} \).
We consider the following three dimensions:

\[
\begin{align*}
\text{center}(I^F) &= t & S^C(I^F) &= \{(p_i = l) \xrightarrow{\text{lop}_L} (p_i = T), \ldots\} \\
\downarrow \text{dr-it} \\
\text{center}(s^F) &= r & S^C(s^F) &= \{(p_i = l), (p_i = T) \xrightarrow{\text{lop}_R} (p_i = r), \ldots\} \\
\downarrow \text{dr-L} \\
\text{center}(t^F) &= l & S^C(t^F) &= \{(p_i = l), (p_i = T), (p_i = r), \ldots\}
\end{align*}
\]

Figure 2: The complete decoupled state space of our example. One decoupled state per row. Center states and transitions highlighted in blue. Transition within leaf state-sets illustrate how new leaf states are reached.

The leaf actions A^L are those which affect an $L \in L$. A decoupled state s^F is a pair $s^F = (\text{center}(s^F), S^C(s^F))$ of center state $\text{center}(s^F)$ and set of leaf states $S^C(s^F)$. We say that s^F satisfies a condition p, denoted $s^F \models p$, if $\text{center}(s^F) \models p \ | C$ and for every $L \in L$ there exists an $s^L \in S^C(\text{center}(s^F))$ such that $s^L \models p[L]$.

The decoupled initial state I^F has center $\text{center}(I^F) = I[C]$. For each leaf L, first $I[L]$ is included into $S^C(I^F)$; then the reachable leaf states are added into $S^C(I^F)$, i.e., those s^L reachable from $I[L]$ via leaf actions $a \in A^L \setminus A^C$ whose center precondition is satisfied by center(I^F), i.e., $I[C] = \text{pre}(a)[C]$. In our example, see Figure 2, we first have the initial state facts $(p_i = l)$. The leaf states $(p_i = T)$ are then reached via lop_L actions.

Applying a center action $a \in A^C$ to a decoupled state s^F generates a successor t^F as follows. First, center$(t^F) = \text{center}(s^F)[a]$ and $S^C(t^F) = \{s^L \ | s^L \in S^C(s^F) \land s^L \models \text{pre}(a)[L]\}$. Then, $S^C(t^F)$ is augmented by those leaf states reachable via leaf actions whose center precondition is satisfied by center(t^F). In our example, applying $a = drR$ to I^F, all $s^L \in S^C(I^F)$ satisfy $\text{pre}(a)[L]$ (which is empty), and additionally the leaf states $(p_i = r)$ become reachable.

The decoupled state space Θ^F_Π incrementally expands center actions as described. Like for unfolding, we encode the expansion order in an ordering relation \ll, here an order over center-action paths, where each step considers the minimal possible expansion. An outcome state t^F is pruned (is a cut-off) if its hypercube $[t^F]$ – the set of states formed from center(t^F) and leaf states in $S^C(t^F)$ – is contained in the union of $[s^F]$ for the previously generated decoupled states s^F. Checking whether this is the case is co-NP-complete (Gnad and Hoffmann 2018). A cheap sufficient criterion is based on testing $[t^F] \subseteq [s^F]$ against individual previous s^F. For all but one of the results we prove here (Theorem 5), that criterion is sufficient.

We define the size of Θ^F_Π as the number of facts $|\Theta^F_\Pi| := \sum_{s^F \in \Theta^F_\Pi} (|C| + \sum_{s^L \in S^C(s^F)} |s^F|)$, where we denote the number of decoupled states in Θ^F_Π by $\# \Theta^F_\Pi$.

Results Overview

We consider the following three dimensions:

(i) Presence or absence of prevail conditions.

(ii) Presence or absence of multi-variable components.

(iii) Compatibility, or lack thereof, of the search orders \ll.

Dimension (i) concerns the planning tasks Π. We denote the class of Π without prevail conditions by “-P”, and the class of all (arbitrary) Π, not making that restriction, by “+P”. For dimension (ii), we denote by -M the restriction where the factorization F may not contain multi-variable components, and by +M the class of all F not imposing this limitation.

Regarding dimension (iii), note that we are not interested in heuristic search here; the target is to build a complete representation of reachability (the decoupled state space in STD, a complete prefix in unfolding). Still, the order of expansions can significantly impact representation size, potentially incurring or avoiding exponential blow-ups as we shall see. We capture this in terms of the search orders \ll. We say that a pair of search orders (\ll_1, \ll_2) for unfolding respectively STD is compatible if $(O1) \ll_1$ always orders new leaf events before new center events, and $(O2) \ll_2$ agree on center paths, i.e., denoting by $Q[C]$ the restriction of a configuration Q to center events, $Q_1|C \ll_2 Q_2|C$ iff $\pi^C(Q_1) \ll_2 \pi^C(Q_2)$ for all valid sequencings of the partially ordered $Q_1|C$ and $Q_2|C$ into center paths $\pi^C(Q_1)$ and $\pi^C(Q_2)$. In other words, the only degree of freedom in \ll_2, over \ll_2, is the relative ordering of leaf events. We denote that restriction by -O, and the unrestricted case by +O. Note that (O1) mimics the factor-state generation order in STD, where after adding a center action, all reachable leaf states are added prior to considering the next center action.

Figure 3 gives an overview of the hierarchy of sub-classes induced by dimensions (i) – (iii), and the associated reachability representation size results. In this hierarchy, exponential separations are inherited upwards, to more permissive classes, as separating example families get preserved; while domination properties are inherited downwards, to more restricted classes, as the required prerequisites are preserved.

The next section shows our separation theorems. We show that for the class +P-M-O there exist planning task families where STD results in exponentially smaller reachability representations. We show that, within -P+M-O, unfolding size can be exponentially smaller. For incompatible orders -P-M+O, we show separations in both directions.

Afterwards, we show our domination theorems. Within +P-M-O, the number of decoupled states is always at most as large as the unfoldings, $\# \Theta^F_\Pi \leq |Unf^{\Pi}|$. On the other hand, within -P+M-O, the unfolding is at most as large as the decoupled state space, $|Unf^{\Pi}| \leq |\Theta^F_\Pi|$. As $\# \Theta^F_\Pi$ and $|\Theta^F_\Pi|$ are polynomially related given -M, with downward inheritance in particular we get that, in the most restricted class -P-M-O, STD size and unfolding size are polynomially related.
Separation Theorems
We show exponential separations between STD and unfolding. The planning task families Πⁿ in the following theorems have size linear in n.

Theorem 1 There exists a family of tasks Πⁿ in +P, with factorings in -M and search orders in -O, where |ΘΠⁿ| is polynomial in n while |UnfΠⁿ| is exponential in n.

Our running example is such a family Πⁿ. There are only 3 decoupled states, independently of n; the number of factor states is linear in n. The number of conditions in the unfolding is exponential in n, because all possible combinations of, e.g., lop, L actions are enumerated in the initial state.

The so-called place-replication method in Petri nets encodes prevail conditions differently, with copies of the prevail places (Baldan et al. 2012). In our example, though, this incurs the same blow-up. Contextual Petri nets (Baldan et al. 2012) have built-in support for prevail conditions (“read arcs”), yet contextual unfoldings must keep track of “event histories” which again incur the same blow-up.

Theorem 2 There exists a family of tasks Πⁿ in -P, with factorings in +M and search orders in -O, where |ΘΠⁿ| is polynomial in n while |UnfΠⁿ| is polynomial in n.

Such example families can be constructed through permutability (concurrency, in Petri net parlance) within factors. For example, scaling the number of trucks in logistics, if all truck variables are in the center, then STD enumerates all possible interleavings of truck drives. Unfolding expands the trucks separately, avoiding that blow-up.

Theorem 3 There exists a family of tasks Πⁿ in -P, with factorings in -M and search orders in +O, where |ΘΠⁿ| is polynomial in n while |UnfΠⁿ| is exponential in n.

Theorem 4 There exists a family of tasks Πⁿ in -P, with factorings in -M and search orders in +O, where |ΘΠⁿ| is exponential in n while |UnfΠⁿ| is polynomial in n.

For both theorems, we construct example families and search orders where one technique enters a part of the search space that is exponential in n, while the other technique takes a “short-cut”, entering a part of the search space that allows to capture complete reachability with polynomial representation size. For Theorem 3, the task family is constructed so that the unfolding search has a detrimental priority to expand center actions − even though leaf actions could be expanded, violating (O1) − missing the “short-cut” offered by leaf actions after a single center action has been applied. For Theorem 4, vice versa, complying with (O1) may lead to an exponential disadvantage, due to generating the leaf preconditions of center actions causing a blow-up.

Domination Theorems
We now show domination results between the size of the decoupled state space and that of the unfolding.

Intuitively, in singleton-component factorings, there is no concurrency within factors, so unfolding can only exploit the concurrency inherent in the factorizing. Formally:

Theorem 5 For Π in +P, factorings in -M, and search orders in -O, with hypercube pruning |ΘΠ| ≤ |UnfΠ| ≤ |ΘΠ|.

The proof consists of Lemmas 2 and 3 in the appendix. Lemma 2 considers non-pruned/non-cut versions of STD and unfolding, i.e., the infinite structures that arise without pruning. It shows that the action and factor-state occurrences in ΘΠ can be injectively mapped to corresponding events and conditions in UnfΠ. This is because, in singleton-component factorings, factor states are singleton facts (variable/value pairs), corresponding exactly to the places and conditions in the Petri net formulation. Whenever an action occurrence in ΘΠ generates new factor states, a corresponding event in UnfΠ generates corresponding conditions.

Lemma 3 shows that, if s| is not pruned by hypercube pruning in ΘΠ, then it contains a non-cut-off event in UnfΠ. Namely, say action occurrence a in s| generates a state not contained in any previous hypercube, and say a is mapped to e as per Lemma 2. Then e is not a cut-off: with compatibility of ≤, the only additional conditions generated in UnfΠ are duplicates of prevalent conditions, and the only additional events are duplicates of actions consuming these conditions.

Our next result is perhaps more surprising. The exponential advantage of STD disappears without prevail conditions:

Theorem 6 For Π in -P, factorings in +M, and search orders in -O, |UnfΠ| ≤ |ΘΠ|.

The proof (in the appendix) consists of two parts. The first part considers the non-pruned versions of STD and unfolding, and shows that the factor-state occurrences in ΘΠ can be surjectively mapped to corresponding factor co-sets in UnfΠ: jointly reachable conditions over the variables of a factor. During the construction of UnfΠ and ΘΠ, for every new event e in UnfΠ, every new factor co-set supported by e is matched by corresponding new factor states in ΘΠ. The crucial part of the argument is that, in the absence of prevail conditions, all new conditions b generated by e correspond to a factor-state change in the planning task, matched by the generation of a new factor state in ΘΠ.

The second part of the proof observes that, for any event e, corresponding new factor state occurrences p in ΘΠ map to factor co-sets including the new conditions added by e. The factor co-sets mapped to are different for every event. Further, at any point in the construction, with compatibility of ≤, the current ΘΠ prefix cannot represent states not represented in the UnfΠ prefix. Thus, if e is a non-cut-off event, at least one decoupled state s| containing the new factor-state occurrences p is not pruned by hypercube pruning.

Corollary 1 For Π in -P, factorings in -M, and search orders in -O, with hypercube pruning |ΘΠ| ≤ |UnfΠ| ≤ |ΘΠ|.

Conclusion
Our results completely characterize the possibility of exponential size differences, or lack thereof, between STD and unfolding as a function of three major dimensions. A major question for the future is whether, guided by these results, the strengths of STD could be combined with those of unfolding. One could use unfolding inside the STD factors, which should dominate both algorithms in search space
size, at the expense of worst-case exponential reachability tests within factors. Other thinkable combinations include special-case handling of prevail conditions, for star-shape dependencies, within unfolding techniques.

Appendix: Technical Background Details

We spell out the concepts previously only outlined, and we give additional notations as needed in our proofs.

Petri-Net Unfolding

Our definitions loosely follow Bonet et al. (2014). A net N is a tuple $N = (P, T, F)$, where P and T are sets of places and transitions. $F \subseteq (P \times T) \cup (T \times P)$ is the flow relation. For $z \in P \cup T$, we denote $\text{pre}(z) := \{ y \mid (y, z) \in F \}$ and $\text{eff}(z) := \{ y \mid (z, y) \in F \}$. For $Z \subseteq P \cup T$, we denote $\text{pre}(Z) := \bigcup_{z \in Z} \text{pre}(z)$ and $\text{eff}(Z) := \bigcup_{z \in Z} \text{eff}(z)$. A set of places $M \subseteq P$ is called a marking. A Petri net $\Sigma = \langle N, M_0 \rangle$ is a pair of a net $N = (P, T, F)$ and initial marking $M_0 \subseteq P$. By \preceq, we denote the reflexive transitive closure of the flow relation F. Two nodes $y, y' \in P \cup T$ are in conflict, denoted $y \not\preceq y'$, if there exist distinct $t, t' \in T$ s.t. $\text{pre}(t) \cap \text{pre}(t') \neq \emptyset$, $t \preceq y$, and $t' \preceq y'$. Two nodes $y, y' \in P \cup T$ are concurrent, denoted $y \parallel y'$, if neither $y \not\preceq y'$ nor $y' \not\preceq y$.

The unfolding procedure builds a branching process, which is an occurrence net labeled with the places and transitions in Σ. An occurrence net $ON = (B, E, G)$ is a net where B and E are called conditions and events, corresponding to places and transitions in a net. Occurrence nets have the following properties: they are acyclic, i.e., \preceq is a partial order; for every $b \in B: |\text{pre}(b)| \leq 1$; for every $b \in B \cup E$, $-(y\#y)$ and there are finitely many y s.t. $y \preceq y$ where \preceq is the transitive closure of G. \preceq is called the causality relation, and an event f with $f \preceq e$ is called a causal predecessor of e. $\text{Min}(ON)$ is the set of \preceq-minimal elements of $B \cup E$. A branching process Δ of a Petri net Σ is a pair $\Delta = \langle ON, \phi \rangle$ of an occurrence net ON and a homomorphism $\phi : B \cup E \to P \cup T$ specifying the labels.

A set of conditions D is called a co-set if for all $d \neq d' \in D : d \parallel d'$. A set of events $C \subseteq E$ is causally closed if for every $e \in C$, $f \preceq e$ implies $f \in C$. A configuration C is a finite set of events that is causally closed and free of conflicts (i.e., $f, f \in C : -(e \# f)$). By $[e] := \{ f \mid f \preceq e \}$ we denote the local configuration of an event $e \in E$. For a configuration C, $\text{Mark}(C) := \phi(\text{Min}(ON) \cup \text{eff}(C)) \setminus \text{pre}(C)$ is a reachable marking of Σ. Intuitively, a configuration corresponds to a partially ordered plan.

An event e is a cut-off if there exists a configuration C in Δ such that $\text{Mark}(C) = Mark([e])$. An event $e \in E$ labeled with a transition t is a possible extension of a configuration C in Δ if $C \cup \{ e \}$ is a configuration, and there exists a co-set D in Δ such that no event in $\text{pre}(D)$ is a cut-off, $|D| = |\text{pre}(t)|$, $\phi(D) = \text{pre}(t)$, and Δ contains no event e' with $\text{pre}(e') = D$ where $\phi(e') = t$. We then say that t fires in C.

The unfolding process for Σ incrementally builds a branching process called a complete prefix, denoted Unf_{Σ}. The process starts from $\text{Min}(ON)$, and adds possible extensions while ones exist. The extensions e are added according to an order \ll over their local configurations $[e]$. In each step, the \ll-minimal event e is considered. If e is not a cut-off, then new instances of $\text{eff}(\phi(e))$ are added to Unf_{Σ}. Upon termination, all reachable markings of Σ are represented in a configuration of Unf_{Σ} (McMillan 1992).

If \ll is a well-founded order and satisfies certain conditions (see Def. 3 in Bonet et al. 2014), then the number of non-cut-off events in Unf_{Σ} is upper-bounded by the number of reachable markings in Σ. We will consider such \ll throughout. We define the size of Unf_{Σ} as $|\text{Unf}_{\Sigma}| := |B|$.

A planning task $\Pi = \langle V, A, I, G \rangle$ can be encoded as a Petri net $\Sigma(\Pi) = \langle (P, T, F), M_0 \rangle$. Facts are encoded as places. Actions a are encoded as transitions t with $\text{pre}(t) = \preceq(a)$ and $\text{eff}(t) = \text{eff}(a)$, adding redundant effects $\text{eff}(a)[v] := \text{pre}[v]$ for prevalent conditions. We assume this encoding throughout, and refer to its unfolding as the unfolding of Π, denoted Unf_{Π}. We identify facts with places, actions with transitions, and (partial) states with markings.

Star-Topology Decoupling (STD)

Given a planning task Π, a variable partitioning F is a star factoring if $|F| > 1$ and there exists $C \in F$ such that, for every action a where $\text{vars}(\text{eff}(a)) \cap C = \emptyset$, there exists $F \in F$ with $\text{vars}(\text{eff}(a)) \subseteq F$ and $\text{vars}(\text{pre}(a)) \subseteq F \cup C$.

The set of actions affecting a leaf $L \in L := F \setminus \{ C \}$ is denoted A^L, the set of all leaf actions is denoted A. We refer to sequences $\pi^F = (a^1, \ldots, a^n)$ of center actions $a^i \in A^C$ as center paths, and sequences $\pi^L = (a^1_L, \ldots, a^n_L)$ of leaf actions $a^i_L \in A^L$ as leaf paths. The set of states of a leaf L is denoted S^L, the set of all leaf states is denoted S^L.

A decoupled state space given Π and F is a labeled transition system $\Theta^F_{\Pi} = \langle S^F_{\Pi}, A^F_{\Pi}, T^F_{\Pi}, I^F_{\Pi} \rangle$, built by starting from I^F and incrementally adding non-pruned transitions and outcome states τ^F. S^F_{Π} is the set of decoupled states. The center actions $a^C \in A^C$ label the transitions T^F. We have $(\tau^C, a^C, t^F) \in T^F$ iff $t^F \in S^F_{\Pi}$, $\tau^C = \text{pre}(a^C)$, and $S^F_{\Pi}[a^C] = t^F$. Here, the outcome $S^F_{\Pi}[a^C]$ of applying a^C to τ^C is defined by $\text{center}(t^F) := \text{center}(S^F_{\Pi}[a^C])$ and $S^C(t^F) := \bigcup_{i=0}^{\infty} S^C(t^F_i)$, where $S^C(t^F_0) := \{ s^C \mid s^C \in S^C(e) \}$. $\exists L \in L, s^L \in S^C(t^F_i) \cap L \ni s^L = \text{pre}(a^C)[L]$. $S^C(t^F_i+1) := \{ s^C \mid s^C[L] \in L \} \cap S^L \ni \text{center}(t^F_i) := \text{pre}(a^C)[L]$. The initial decoupled state t^F is defined similarly by $\text{center}(I^F) := I[C]$ and $S^C(I^F) := \bigcup_{i=0}^{\infty} S^C(t^F_i)$, where $S^C(I^F_0) := \{ I[L] \mid L \in L \}$. The center path on which a decoupled state s^F is reached from I^F in Θ^F_{Π} is denoted $\pi^F(s^F)$.

Essentially, state transitions in Θ^F_{Π} advance the center state by a^C, and advance the set of reached leaf states using those leaf actions enabled by the new center state. This corresponds to an unfolding (sub-)process over factor states that adds one center event and iteratively adds all leaf events enabled by that center event.

Appendix: Proofs

We give the full proofs of our theorems, covering first the separation results then the domination results.
Separation Theorems

Theorem 1 There exists a family of tasks Π^n in +P, with factorings in -M and search orders in -O, where $|\Theta_{\Pi^n}|$ is polynomial in n while $|\text{Unf}_{\Pi^n}|$ is exponential in n.

Proof: One family as claimed is our illustrative running example, $\Pi^n = (V^n, A^n, I^n, O^n, C^n)$ defined as follows, $V^n = \{t_1, t_2, \ldots, t_n\}$ where $D(t_i) = \{l, r\}$ and $D(p_i) = \{l, r\}$. The initial state is $I^n = \{t_i = t, p_i = l, \ldots, p_n = l\}$. The goal does not matter here. The actions are $A^n = \{\text{drive}(x, y) \mid (x, y) \in \{(l, r), (r, l)\}\}$ where $\text{pre}(\text{drive}(x, y)) = \{t = x\}$, $\text{eff}(\text{drive}(x, y)) = \{t = y\}$, $\text{pre}(\text{load}(z, i)) = \{t = z, p_i = z\}$, $\text{eff}(\text{load}(z, i)) = \{p_i = T\}$, and $\text{pre}(\text{unload}(z, i)) = \{t = z, p_i = T\}$, $\text{eff}(\text{unload}(z, i)) = \{p_i = z\}$.

Assume the factoring F with center $C = \{t\}$ and leaves $L = \{\{p_1\}, \ldots, \{p_n\}\}$. The number of decoupled states is $|\Theta_{\Pi^n}| = 3$, as illustrated in Figure 2: After applying $\text{drive}(l, r)$ and $\text{drive}(r, l)$, all leaf states are reached. Θ_{Π^n} contains $|\Theta_{\Pi^n}| = 3 + 2n + 3n + 3n = 8n + 3$ factor states.

The size of the unfolding prefix $|\text{Unf}_{\Pi^n}|$, however, is exponential in n. Any load(l, i) event that fires in the initial state consumes an instance of the condition (t = l), and produces a new instance of that condition. As the consumed instance can be any instance produced beforehand, the number of instances in the Petri net doubles in each step.

Theorem 2 There exists a family of tasks Π^n in -P, with factorings in +M and search orders in -O, where $|\Theta_{\Pi^n}|$ is exponential in n while $|\text{Unf}_{\Pi^n}|$ is polynomial in n.

We prove the following stronger claim:

Lemma 1 There exists a family of tasks Π^n in -P, with factorings in +M and search orders in -O, where $|\Theta_{\Pi^n}|$ is exponential in n for every family of star factorings F^n, while $|\text{Unf}_{\Pi^n}|$ is polynomial in n.

Proof: Consider $\Pi^n = (V^n, A^n, I^n, O^n, C^n)$ as follows. $V^n = \{v_1, \ldots, v_n\}$, where $D(v_i) = \{0, 1, 2\}$ for $1 \leq i \leq n$. The initial state is $I^n = \{v_1 = 0, \ldots, v_n = 0\}$. The actions are $A^n = \{a_{i,j}^1, a_{i,j}^2 \mid 1 \leq i, j \leq n\}$ where $\text{pre}(a_{i,j}^1) = \{v_i = 0, \ldots, v_n = 0\}$ and $\text{eff}(a_{i,j}^1) = \{v_1 = 1, \ldots, v_n = 1\}$; $\text{pre}(a_{i,j}^2) = \{v_i = 1\}$ and $\text{eff}(a_{i,j}^2) = \{v_i = 2, v_j = 2\}$.

The unfolding prefix Unf_{Π^n} has size $|\text{Unf}_{\Pi^n}| = 3n$, with a single condition b for every reachable fact. $|\Theta_{\Pi^n}|$ is exponential in n as claimed. Observe that the $a_{i,j}^2$ actions have an unreachable precondition, yet their presence means that, in any star factoring, there can be at most one leaf: if there were two leaves F_1 and F_2 containing v_i and v_j, respectively, then the action $a_{i,j}^2$ would incur a direct dependency across F_1 and F_2, in contradiction. Thus, for any family $F^n = \{C^n, L^n\}$ of star factorings (where L^n may not be present for some values of n), $\max\{|C^n|, |L^n|\} \in \Omega(n)$. So $|\Theta_{\Pi^n}|$ is exponential in n since it has to enumerate all applications of $a_{i,j}^2$ actions for a linear number of variables v_i.

Theorem 3 There exists a family of tasks Π^n in -P, with factorings in -M and search orders in +O, where $|\Theta_{\Pi^n}|$ is polynomial in n while $|\text{Unf}_{\Pi^n}|$ is exponential in n.

Proof: We construct a task family $\Pi^n = (V^n, A^n, I^n, O^n, C^n)$ as follows. The variables are $V^n = \{c_1, l_1, \ldots, l_n\}$, where $D(c) = \{0, 1\}$ and $D(l_i) = \{0, 1, 2\}$. The initial state is $I^n = \{c = 0, l_1 = 0, \ldots, l_n = 0\}$. The actions are $A^n = \{a_{01}^{01}, a_{10}^{01}, a_{01}^{10}, a_{20}^{20}, a_{21}^{21} \mid 1 \leq i \leq n\}$. The action preconditions and effects are: $\text{pre}(a_{01}^{01}) = \{c = 0, l_1 = 0, \ldots, l_n = 0\}$ and $\text{eff}(a_{01}^{01}) = \{c = 1, l_1 = 2, \ldots, l_n = 2\}$; $\text{pre}(a_{10}^{01}) = \{c = 1\}$ and $\text{eff}(a_{10}^{01}) = \{c = 0\}$; $\text{pre}(a_{01}^{10}) = \{c = 0, l_1 = 0\}$ and $\text{eff}(a_{01}^{10}) = \{c = 1, l_1 = 1\}$; $\text{pre}(a_{20}^{20}) = \{l_i = 2\}$ and $\text{eff}(a_{20}^{20}) = \{l_i = 0\}$; $\text{pre}(a_{21}^{21}) = \{l_i = 2\}$ and $\text{eff}(a_{21}^{21}) = \{l_i = 1\}$.

Assume the factoring F with center $C = \{c\}$ and leaves $L = \{\{l_1\}, \ldots, \{l_n\}\}$. After applying a_{01}^{01}, exploration of the leaf actions a_{20}^{20} and a_{21}^{21} reaches all variable values and thus a compact representation of reachableability. We construct the search orders so that STD finds this compact representation, but unfolding does not.

We postpone configurations containing leaf events until no more center-only configurations are available (thus violating constraint (O1) of compatible orders); and we constrain the order on center actions to start with the sequence a_{01}^{01}, a_{10}^{01}. Precisely: if C_i contains an event e labeled by $\phi(e) = a \in A^C \setminus A^L$, but C does not contain such an event, then $C \ll C_i$; denoting $C_1 = \{a_{01}^{01}\}$ and $C_2 = \{a_{01}^{01}, a_{10}^{01}\}$, we set $C_1 \ll C_2 \ll C < \text{Unf}_{\Pi^n} \setminus \{C_1, C_2\}$. Inside these constraints, \ll can be arbitrary.

With this search order, STD first generates $s^F = I^n[0]_{a_{01}^{01}}$, where application of the leaf actions a_{20}^{20} and a_{21}^{21} reaches all values of the leaf variables. Then STD generates $t^F = s^F[0]_{a_{10}^{01}}$. After that, the process stops: s^F covers everything with center state $c = 1$, t^F covers everything with center state $c = 0$. The decoupled state space has $|\Theta_{\Pi^n}| = 3$ states, and thus polynomial size.

The unfolding prefix Unf_{Π^n}, however, has size exponential in n. The unfolding starts with the center events a_{01}^{01} and a_{10}^{01}. Thereafter, given \ll, it prefers to explore the center events a_{01}^{01} rather than the leaf events a_{20}^{20}. The unfolding thus has to set each leaf variable separately to 1, using a_{01}^{01}. Every step a_{01}^{01} sets c to 1, and must be followed by a_{10}^{01} setting c back to 0. In doing so, a_{01}^{01} consumes an instance of the condition $c = 0$, and a_{10}^{01} generates a new instance of that condition. As the consumed instance can be any instance produced beforehand, the number of instances in the Petri net doubles in each step.

Theorem 4 There exists a family of tasks Π^n in -P, with factorings in -M and search orders in +O, where $|\Theta_{\Pi^n}|$ is exponential in n while $|\text{Unf}_{\Pi^n}|$ is polynomial in n.

Proof: We adapt the task Π^n used in the proof of Theorem 3. We add a new variable l with domain $\{0, 1\}$ and initial value 0. We include a new action a_{01}^{01} with precondition $\{l = 0\}$ and effect $\{l = 1\}$. We add the fact $l = 1$ into the preconditions of all actions a_{01}^{01}, and we add $l = 0$ into the
effects of these actions. In this modified task, to enter the ex-

p----
co-set \(Q \), there is at least one \(s^F \) where \(\pi^C(s^F) \) extends \(\{Q^C\} \), and (c) for every such \(s^F \) and every \(F \), there is \(p[F] \) in \(s^F \) where \(g(p[F]) \supseteq Q[F] \).

We prove (\(^* \)) by structural induction over an incremental construction of \(\Theta^F_{II} \) alongside the construction of Unif\(_{II} \). \(D \) and \(U \) denote the current prefix of \(\Theta^F_{II} \) and Unif\(_{II} \) respectively, during the construction.

The induction base case is simple: \(U \) is then the set \(\text{Min}(ON) \) of \(\prec \)-minimal elements of \(B \cup E \). This contains exactly one condition \(b \) for every state variable \(v \), with \(\phi(b) = I[v] \). The factor co-sets \(P[F] \) here match exactly the factor states \(I[F] \) for \(F \in \mathcal{F} \). We construct \(D \) as the non-expanded initial decoupled state \(I^0 \). Defining \(g(I[F]) := P[F] \), we obviously get (a) – (c).

For the inductive case, say that \(U' \) results from \(U \) by adding event \(e \). We denote \(a := \phi(e) \). By IH, we have a mapping \(g \) from \(D \) to \(U \) satisfying (\(^* \)). We show how to extend \(D \) and \(g \) to suitable \(D' \) and \(g' \) respectively.

We construct \(D' \) by, for every \(s^F \) where \(\pi^C(s^F) \) extends \(\{\text{pre}(e)\}^C \), extending \(s^F \) with \(a \), as follows. If \(a \) is a leaf action, then (i) we apply \(a \) to every factor state \(p \) in \(s^F \) where \(p \models \text{pre}(a) \). If \(a \) is a center action and \(s^F \models \text{pre}(a) \), then we apply \(a \) to \(s^F \), resulting in a new successor \(t^F \).

In the latter, (ii) we add the updated center state; (iii) for every leaf factor \(L \) affected by \(a \), and for every \(s^L \in S^L \cap S^C(s^F) \) where \(s^L \models \text{pre}(a)[L] \), we add \(s^L \) updated with \(\text{eff}(a)[L] \); (iv) for every (leaf) factor \(L \) not affected by \(a \), we add to \(t^F \) occurrences of actions \(a^L \in A^L \setminus A^C \) reaching all of \(S^L \cap S^C(s^F) \). The latter is possible because, without prevail conditions, no such \(a^L \) has preconditions on the center.

Observe that this construction of \(D \) builds several decoupled states in a parallel manner, in the difference to the actual construction of (pruned) \(\Theta^F_{II} \) during search. However, the construction of \(D \) complies with the unfolding search order.

Regarding the construction of \(g' \): For (i) – (iii), let \(g'(P[F]) \) be a new factor state occurrence added to \(D' \) by an occurrence \(a \) of \(a \), and let \(g(P[F]) \) be the factor state occurrence that \(a \) is applied to. By IH, \(P[F] := g(p[F]) \) is a factor co-set and \(P[F] \supseteq \text{pre}(a)[F] \). Let \(P'[F] := (P[F] \setminus \text{pre}(a)[F]) \cup \text{eff}(a)[F] \). Then \(P'[F] \) is a co-set in \(U' \). We get \(g'(P'[F]) := P'[F] \). For (iv), i.e., a factor state occurrence \(g'[L] \) of \(P'[L] \in S^L \cap S^C(s^F) \) added to \(D' \), we define \(g'(g'[L]) := g([L]), \) where \(g[L] \) is \(g'[L] \)'s occurrence in \(s^F \).

We next show that \(g' \) has the desired properties (\(^* \)) on \(D' \) and \(U' \). Obviously, (a) is given by construction.

To see that \(g' \) is surjective, note that any new factor co-set \(P'[F] \) in \(U' \) must result from a factor co-set \(P[F] \) in \(U \) through \(P'[F] := (P[F] \setminus \text{pre}(a)[F]) \cup \text{eff}(a)[F] \). If \(\text{eff}(a)[F] \neq \emptyset \), then \(\text{pre}(a)[F] \neq \emptyset \), and thus \(P[F] \supseteq \text{pre}(a)[F] \). Then \(Q := P[F] \cup \text{pre}(a)[F] \). Then \(Q \) is a co-set in \(U \) as otherwise \(P'[F] \) could not be a co-set in \(U' \). By IH (b), there is at least one \(s^F \) in \(D \) where \(\pi^C(s^F) \) extends \(\{Q^C\} \). By IH (c), for every \(F \) there is \(p[F] \) in \(s^F \) where \(g(p[F]) \supseteq Q[F] \), which implies with IH (a) that \(g(p[F]) = P[F] \).

As \(Q \supseteq \text{pre}(a) \), we have that \(\pi^C(s^F) \) extends \(\text{pre}(a)^C \). Thus \(s^F \) has been extended with \(a = \phi(e) \). If \(a \) is a leaf action, then, because there are no prevail conditions and thus no Petri net outputs of \(e \) on the center, \(F \) must be the respec-
Acknowledgments
Daniel Gnad was supported by the German Research Foundation (DFG), under grant HO 2169/6-1, “Star-Topology Decoupled State Space Search”. Jörg Hoffmann’s research group has received support by DFG grant 389792660 as part of TRR 248 (see perspicuous-computing.science).

References