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Abstract
It has previously been observed that the verification of safety
properties in deterministic model-checking frameworks can
be compiled into classical planning. A similar connection
exists between goal probability analysis on either side, yet
that connection has not been explored. We fill that gap with
a translation from Jani, an input language for quantitative
model checkers including the Modest Toolset, into PPDDL.
Our experiments motivate further cross-fertilization between
both research areas, specifically the exchange of algorithms.
Our study also initiates the creation of new benchmarks for
goal probability analysis.

Introduction
Previous works have explored connections between qual-
itative model-checking and classical planning (Edelkamp
2003). A similar connection exists for probabilistic models.
Here, we introduce a compilation from Jani (Budde et al.
2017), an input language for quantitative model-checkers,
into PPDDL (Younes et al. 2005). We complement the com-
pilation by an empirical comparison of methods used in
model-checking – variants of value iteration (VI) – with the
heuristic search algorithms developed by the AI community.

Tools from probabilistic model-checking have become
very popular in the robotics and motion planning com-
munities due to their support of expressive formal model-
ing languages, e. g., (Johnson and Kress-Gazit 2011; Lac-
erda, Parker, and Hawes 2015). Recent works in decision-
theoretic planning started to use temporal logics to encode
history-dependent reward functions (Camacho et al. 2017;
Brafman, Giacomo, and Patrizi 2018). Also they intro-
duced compilations back to standard formalisms, allowing
to use well-established planning algorithms for Markov de-
cision processes (MDP). Teichteil-Königsbuch (2012) has
presented an overarching framework connecting decision-
theoretic planning with formalisms from model-checking.
The result is a very general class of problems, which how-
ever falls out of scope of existing algorithms. Despite those
works, a direct connection between models and algorithms
in probabilistic model-checking and that in probabilistic
planning has so far not been explored. We start to close that
gap through our compilation and accompanied experiments.
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Jani is a powerful language that can express models of
distributed and concurrent systems in the form of networks
of automata decorated with variables, clocks and probabili-
ties. A large spectrum of case studies exists. In full general-
ity, Jani models are networks of stochastic timed automata.
But the core formalism are MDPs, as in PPDDL probabilis-
tic planning. We consider a relevant fragment of Jani that
allows for structure-preserving translation into PPDDL.

We focus on the verification of safety properties, which
translates in PPDDL to goal probability analysis. In this
class of MDPs, heuristic search algorithms like HDP (Bonet
and Geffner 2003) cannot be run as-is, but require an outer
loop of iterations known as the FRET framework: find, re-
vise, eliminate traps (Kolobov et al. 2011). Traps are sets of
states that are closed under probabilistic branching in the
subgraph of the state space induced by the current value
function approximation v. While FRET as per Kolobov et
al. considers in this subgraph all actions that are optimal
according to v, Steinmetz et al. (2016) devised a variant
which considers only the actions chosen by the greedy pol-
icy π. We will refer to these FRET variants as FRET-v and
FRET-π respectively. I-Dual is a recently introduced heuris-
tic search algorithm which does not require the FRET outer
loop (Trevizan, Teichteil-Königsbuch, and Thiébaux 2017).
In essence, this algorithm interleaves linear program (LP)
evaluations with state space exploration. The LPs solved
are encodings of goal probability MDPs (Altman 1999), re-
stricted to the part of the state space explored so far. By con-
sidering in the exploration step only states touched by the
last LP solution, one can often find a solution of the MDP
while considering only a small fraction of the state space.

In our experiments, we compare PRISM (Kwiatkowska,
Norman, and Parker 2011), the Modest Toolset (Hartmanns
and Hermanns 2014), and Fast Downward (Helmert 2006)
based on two landmark problems in quantitative model-
checking: the dining cryptographers protocol (DCP) and
the randomized consensus shared coin protocol (RCSCP). It
turns out that FRET-π excels in DCP, being surpassed only
by PRISM’s symbolic engine. In RCSCP heuristic search
is inferior to VI. Nevertheless, with the help of a heuristic
identifying 0 goal probability states, FD’s VI achieves bet-
ter scaling. Beyond this case study, our research motivates
further cross-fertilization, pertaining to the exchange of al-
gorithms. Our study also initiates the creation of new bench-



marks for goal probability analysis. A TR provides more de-
tails on the compilation and the experiments (Klauck et al.
2018).

Background
Probabilistic PDDL (PPDDL) and FD. PPDDL extends
PDDL with the possibility to define probabilistic action ef-
fects, i.e., a probability distribution over multiple possi-
ble outcomes. Fast Downward (FD) is a wide-spread code
base in classical planning. It has been extended by Stein-
metz et al. (2016) for goal probability analysis. That ex-
tension encompasses topological value iteration (TVI) (Dai
et al. 2011), along with several heuristic search algorithms
of which here we consider HDP along with FRET-v and
FRET-π. We have extended their code by an implementation
of the I-Dual algorithm (Trevizan, Teichteil-Königsbuch,
and Thiébaux 2017). There are no inherently probabilistic
heuristic functions in FD yet. As suggested by Bonet and
Geffner (2005), we use the all-outcomes determinization
with classical-planning heuristic functions. In our context,
this comes down to goal probability estimate 0 for detected
dead-ends, and estimate 1 elsewhere. We use hmax (Bonet
and Geffner 2001) which provides strong dead-end detection
capabilities at a comparatively small computational cost.
The Modest Toolset (MT) and PRISM. Probably the
most widespread probabilistic model checker is PRISM
(Kwiatkowska, Norman, and Parker 2011). MT’s core MDP-
algorithms are known to be competitive to PRISM (Hahn
and Hartmanns 2016). Both support the analysis of hybrid,
real-time, distributed and stochastic systems. PRISM offers
multiple model-checking engines, including variants of VI
based on an explicit state space representation as well as a
symbolic variant. In a nutshell, the symbolic version rep-
resents the current value function estimation and the tran-
sition probabilities as multi-terminal binary decision dia-
grams (MTBDD). This data structure has builtin support of
arithmetic operations, allowing to directly express value up-
dates as MTBDD operations. Furthermore, PRISM option-
ally identifies states with goal probability 0, respectively 1
in a preprocessing step, which can then be filtered out inside
VI. MT provides several components to solve various forms
of quantitative model-checking problems. For our MDP set-
ting, we consider one such component, called Mcsta. Mcsta
provides MT’s variants of value iteration, featuring a pre-
processing step similar to PRISM. An external-memory VI
(EVI) variant caters for MDPs whose state space is too large
to fit into main memory (Hartmanns and Hermanns 2015).
Jani. Jani is an overarching language conceived to foster
verification tool interoperation and comparability. It allows
to model a rich variety of quantitative automata networks
with variable decorations. Properties to be checked are tem-
poral formulas based on computation tree logic (CTL).

Each automaton has locations connected by directed
edges. The edges may be taken with a given probability pro-
vided the edge’s guard is satisfied. Then an effect may mod-
ify the variable values, and a new location is occupied.

Jani allows variables of various types (e.g. int and bool).
They can be restricted to a finite range. Expressions over

''automata'': [ {''name'':''aut1'',
''locations'': [ {''name'':''loc0''}, {''name'':''loc1''} ],
''initial−location'': [''loc0''],
''edges'': [ { ''location'':''loc0'',

''guard'': { ''exp'': {''op'':''='', ''left'':''coin1'', ''right'':0} },
''destinations'': [
{ ''probability'': {''exp'':0.5}, ''location'':''loc1'',

''assignments'': [ { ''ref'':''coin1'', ''value'':1 } ] },
{ ''probability'': {''exp'':0.5}, ''location'':''loc0'',

''assignments'': [ { ''ref'':''coin1'', ''value'':0 } ] } ]}]}]
Figure 1: A Jani specification example.

these variables support many standard arithmetic operations,
as well as conjunction and disjunction. The possible initial
variable values are mostly specified via a restrict-initial ex-
pression but can also be given directly when declaring a new
variable.

A Jani file lists the occurring constants (objects), and the
variable definitions as well as the restrict-initial block. In
addition, a list of automata along with their locations and
edges is provided.

An example snippet of Jani is given in Figure 1. It spec-
ifies an automaton called aut1, with two locations loc0 and
loc1. From the initial location loc0, there are two edges that
can be taken provided the variable coin1 has value 0, as ex-
pressed by the guard. In this case, the edges lead to different
destinations, each weighted by a probability and involving
an assignment changing the value of variable coin1.

Compilation from Jani to PPDDL
We outline the main design decisions in our compilation.
The source code of our compiler, along with all Jani and
corresponding PPDDL benchmarks, is available online.1

Fragment of Jani considered. To match PPDDL planning,
we consider probabilistic safety properties, i.e., reachabil-
ity queries of the form ♦ goal (eventually goal ) where the
maximum probability is sought. We do not consider tempo-
ral goals, as our design rationale in this work is to stick to a
Jani fragment that allows for a largely structure-preserving
translation into PPDDL. Hence, we avoid compiling tem-
poral formulas into propositional goals (Edelkamp 2006;
Baier, Bacchus, and McIlraith 2009), and can focus on the
translation of Jani’s automata networks into PDDL.

We consider the finite-state model-checking fragment of
Jani, where the definition of each integer variable specifies
a finite range. Moreover, as we cannot, in PPDDL, com-
pactly handle sets of possible initial states, we consider only
restrict-initial blocks specifying exactly one value for each
variable. The latter two restrictions are not limiting in the
sense that we still cover most existing Jani models.

A more limiting restriction we make regards synchro-
nization, where we only consider shared-variable synchro-
nization, via guards referring to variables written on by
other automata. Jani also supports handshake synchroniza-
tion over multiple automata. This can, in principle, be real-
ized in PPDDL by adding additional small protocols, sim-
ilarly to Edelkamp’s (2003) approach. But restricting fo-
cus on shared-variable synchronization allows a much more
direct, more structure-preserving, compilation, and is still

1
http://fai.cs.uni-saarland.de/downloads/jani-ppddl.zip



practically relevant. Unfortunately, many Jani benchmarks
make use of handshake synchronization, hence restricting
the benchmark set in the empirical evaluation.
Predicates, Types, Objects. Variable types in Jani directly
translate into (P)PDDL types, with an additional type loc for
automata locations. The values associated with a type in Jani
are encoded as PDDL objects of that type. Jani variables are
also encoded as PDDL objects, variable-value assignments
are represented by the PDDL predicate (value var val). We
list all Jani constants, variables and locations as PDDL con-
stants, so we can use them in action descriptions. Current
automata locations are encoded through an (at X loc) pred-
icate for each automaton X. The goal is encoded through an
additional PPDDL Boolean variable goal condition.

We handle finite-range arithmetics in PDDL via finite
enumeration of arithmetic-operation outcomes, similarly as
in previous works encoding finite-range integer variables
into PDDL, e.g., (Nakhost, Hoffmann, and Müller 2012).
Namely, we define one PDDL type int [lower] [upper] for
each variable range, with corresponding constants n0, n1,
. . . , nk representing the values within the range.

Arithmetic operations are then hard-coded into the ini-
tial state, enumerating e.g. all triples x, y, and z = x ∗ y
within a variable’s range, via the list of corresponding static
ground facts of the form (multiply x y z). To compactly
encode nested expressions, we split these into the recursive
application of arithmetic operations. The outcome of each
operation is stored in an auxiliary PDDL object. For exam-
ple, the outcome value z of the expression (x1 + x2) ∗ y
is encoded through the conjunction of (add x1 x2 z′) with
(multiply z′ y z).
Actions. Jani edge descriptions translate into PPDDL ac-
tions. The action parameters are chosen to represent vari-
ables affected by the edge’s guards or assignments. In par-
ticular, this pertains to numeric variables whose value may
change: the respective values before and after the action ap-
plication become parameters constrained by the precondi-
tion to match the necessary value computation. For exam-
ple, an edge guard z = (x1 + x2) ∗ y is encoded into pa-
rameters ?x1, ?x2, ?y, ?z′, ?z, along with the preconditions
(add ?x1 ?x2 ?z

′) and (multiply ?z′ ?y ?z).
Preconditions and effects can now be directly com-

piled from Jani guards and assignments. In addition, a
precondition and effect of the form (at X start) and
(at X destination) encodes the automaton location be-
fore and after the action application. Jani permits disjunctive
edge guards, which we compile away using standard tech-
niques for DNF transformation (Gazen and Knoblock 1997),
followed by splitting the action into one copy per disjunct.

The compilation of effects is the only place where we re-
quire the modeling power of probabilistic PDDL, to encode
probabilistic edge outcomes. For example, the Jani model
from Figure 1 results in the following PPDDL fragment:
(:action aut1 loc0 loc1or0
:parameters ()
:precondition (and (at aut1 loc0) (value coin1 n0))
:effect (probabilistic

0.5 (and (at aut1 loc1) (not (value coin1 n0)) (value coin1 n1))
0.5 (and)))

Initial State and Goal. In Jani, the model initialization is
spread over the restrict-initial expression, the definition of
constants and variables, and for each automaton its initial-
location. These fragments can directly be translated into the
init part of PPDDL (along with arithmetic operations as out-
lined above).

We translate the property to be checked into a goal,
through an action whose precondition is the property expres-
sion, and whose effect is (value goal condition true). The
latter ground fact becomes the PPDDL goal condition.
Compilation Size. Obviously, the size of our compiled
PPDDL encoding relates linearly to that of the input Jani
model, except for (a) our encoding of finite-range arithmetic
operations, and (b) DNF transformation of edge guards/ac-
tion preconditions. Both can be expected to be uncritical in
practice. Regarding (a), our encoding is exponential in the
arity of arithmetic operations, which is harmless as that ar-
ity typically is 2. Regarding (b), the exponential blow-up in
DNF transformation would be relevant only on highly com-
plex transition guards.

That said, a potentially problematic aspect is the size of
the grounded encoding resulting from our PPDDL, as the
number of ground actions is exponential in the number of
action parameters required to capture all variable values rel-
evant to the action. Any one action may contain, in princi-
ple, arbitrarily many arithmetic expressions. Again though,
in practice, Jani edges – individual steps in the execution
of a concurrent system – involve few arithmetic operations.
Note also that the parameter-value combinations for ground
actions are constrained by the static predicates giving the se-
mantics of the arithmetic operations. Planning systems like
FD exploit this property to not even generate obviously un-
reachable ground actions in the first place.

Experiments
All experiments were conducted on an Intel Xeon E5-2660
machine with time (memory) cut-offs of 1h (6GB). We used
Cplex as LP solver. In what follows we give a short sum-
mary of the results. More details are available in an online
TR (Klauck et al. 2018). We compare runtime and search
space statistics of various configurations of FD, MT, and
PRISM. We ran FD using TVI, I-Dual, FRET-v and FRET-π
with HDP, all with and without hmax. For MT, we ran VI and
EVI with and without the preprocessing option. For PRISM,
we ran both explicit (Exp) and symbolic engines (Sym) with
and without the preprocessing step. The preprocessing step
of MT and PRISM turned out to be detrimental, we will keep
it disabled throughout. We will not report results for PRISM-
Exp, which was consistently outperformed by MT-VI.

Most Jani models make use of handshake synchroniza-
tion, which is currently not supported by our translation, lim-
iting the selection of domains. We consider two case studies,
which belong to the most popular benchmarks in probabilis-
tic model-checking. All results are shown in Figure 2. We
introduce the case studies, and discuss the respective results.
Dining Cryptographers Protocol (DCP). In DCP (Chaum
1988) n ≥ 3 cryptographers want to check if the NSA is
paying for their dinner while respecting each others privacy,
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Figure 2: Empirical results on our case studies, as a function of the number n of automata: (a) runtime in seconds (triangles) and
number of visited states (circles) in DCP; (b) compilation size measures in both protocols; (c) runtime/visited states in RCSCP.
In (a) and (c), the left y-axis shows runtime in seconds while the right y-axis shows the number of states visited.

i.e., without advertising who has paid exactly. For that, ev-
eryone throws a coin, the outcomes being encoded as 0 and
1. Then each cryptographer Ci looks at the outcome o and
the outcome oN of his left-hand neighbor. If Ci does not
pay for dinner, then Ci announces o ⊕ oN to the table. If
Ci does pay for dinner, then Ci announces o⊕ oN . The in-
tended guarantee is that the xor over all announced values is
0 if the NSA paid, and is 1 if one of the cryptographers paid.
What we wish to check is that the protocol is correct. This is
encoded as reaching a target condition with probability 1.

A specific property of this domain is the absence of 0
goal-probability states. In such cases, hmax merely consti-
tutes an additional overhead. In larger DCP instances this
overhead was significant. In the following, we disabled hmax

in all FD configurations. On the other hand, this property
particularly qualifies the use of contingent planners. We ran
the state-of-the-art contingent planner PRP (Muise, McIl-
raith, and Beck 2012), but which was outperformed by FD-
FRET-π. Detailed results are available in the TR.

Consider Figure 2(a) from top to bottom. Having to solve
increasingly large LPs, renders FD-IDual uncompetitive –
despite offering small advantages in search space size. The
additional overhead induced by MT-EVI compared to MT-
VI shows in runtime, but its smaller memory demand im-
proves scaling to n=11. FD-TVI is significantly faster than
MT-VI, presumably due to more efficient internal data struc-
tures. It scales up to n=11, and similarly to MT’s VI ver-
sions, runs out of memory afterwards. FD-FRET-π bene-
fits from the ability of the underlying heuristic search algo-
rithm HDP to find a solution while visiting only a small frac-
tion of the state space. The resulting reduction in the num-
ber of visited states grows exponentially with n. In FRET-
v, not shown in the figure, that benefit is lost in trap re-
moval. Interestingly, the most limiting factor in FD-FRET-π
lies in the grounding process. Figure 2(b) illuminates this
with compilation-size data. For the models themselves, i.e.
Jani vs. PPDDL, the difference is small. But at the grounded
level, where FD enumerates action parameter instantiations,
matters are different. The number of ground actions in-
creases steeply in n. The clear winner in this case study
is PRISM-Sym, which is able to compactly represent ex-
tremely large numbers of states. Additionally to benefits in
memory usage, this representation leads to tremendous run-
time improvements, boosting scalability up to n=26.

Randomized Consensus Shared Coin Protocol (RCSCP).
In this protocol (Aspnes and Herlihy 1990) n tourists wish
to reach consensus of which place to visit next. In a nutshell,
each tourist keeps tossing a coin; depending on the outcome
of this toss, a global counter is either incremented or decre-
mented; when the counter is within a certain desired range,
the tourist stops. What we want to check is the probability
that all tourists stopped at the same counter value. In differ-
ence to the DCP, that probability is < 1.

Figure 2(c) shows the performance results. FD-IDual
again suffers from having to solve many LPs. Contrary to
DCP, HDP does not provide any reduction in search space
size. Moreover, it requires significantly more value updates
until convergence than, e.g., TVI, rendering the respective
FRET configurations uncompetitive. PRISM-Sym cannot
compactly represent the state space, while numerical oper-
ations on the symbolic data structures are more expensive.
In RCSCP it is not possible to give a good state-partitioning
function organizing MT-EVI’s external-memory access. FD-
TVI is again more efficient than MT-VI. Although the
heuristic evaluations of FD-TVI-hmax negatively affect run-
time, compared to FD-TVI, the number of visited states can
be reduced considerably. This allows to scale to n=7, turn-
ing FD-TVI-hmax here to the overall best configuration. Con-
sider finally the part of Figure 2(b) pertaining to RCSCP. In
difference to DCP, the Jani models are much smaller than the
PPDDL ones. This is due to the size of the initial state, which
needs to encode several arithmetic operations. In terms of
the number of ground actions though, RCSCP is harmless.

Conclusion and Future Work
We have established a new connection between probabilis-
tic model-checking and probabilistic planning. The empiri-
cal results show advantages for techniques from both areas,
depending as always on the domain. To foster compilabil-
ity of model-checking models into probabilistic planning,
support for numeric state variables, and for more general
goals, would be desirable. Further directions suggested by
our experiments include the development of hybrid methods
between grounding and lifted methods in planning, combin-
ing the benefits of both sides. Porting probabilistic heuristic
search algorithms to model-checking tools directly, would
give an opportunity to tackle all the syntactic elements that



cannot be easily compiled. Moreover, this would allow to
profit from techniques developed in this context already, no-
tably the wealth of abstraction techniques that can be used
to obtain better goal probability bounds.
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