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Abstract

It has previously been observed that the verification of safety
properties in deterministic model-checking frameworks can
be compiled into classical planning. A similar connection
exists between goal probability analysis on either side, yet
that connection has not been explored. We fill that gap with
a translation from Jani, an input language for quantitative
model checkers including the Modest Toolset, into PPDDL.
Our experiments motivate further cross-fertilization between
both research areas, specifically the exchange of algorithms.
Our study also initiates the creation of new benchmarks for
goal probability analysis.

Introduction

Previous works have explored connections between qual-
itative model-checking and classical planning (Edelkamp
2003). A similar connection exists for probabilistic models.
Here, we introduce a compilation from Jani (Budde et al.
2017), an input language for quantitative model-checkers,
into PPDDL (Younes et al. 2005). We complement the com-
pilation by an empirical comparison of methods used in
model-checking — variants of value iteration (VI) — with the
heuristic search algorithms developed by the AI community.

Tools from probabilistic model-checking have become
very popular in the robotics and motion planning com-
munities due to their support of expressive formal model-
ing languages, e. g., (Johnson and Kress-Gazit 2011; Lac-
erda, Parker, and Hawes 2015). Recent works in decision-
theoretic planning started to use temporal logics to encode
history-dependent reward functions (Camacho et al. 2017;
Brafman, Giacomo, and Patrizi 2018). Also they intro-
duced compilations back to standard formalisms, allowing
to use well-established planning algorithms for Markov de-
cision processes (MDP). Teichteil-Konigsbuch (2012) has
presented an overarching framework connecting decision-
theoretic planning with formalisms from model-checking.
The result is a very general class of problems, which how-
ever falls out of scope of existing algorithms. Despite those
works, a direct connection between models and algorithms
in probabilistic model-checking and that in probabilistic
planning has so far not been explored. We start to close that
gap through our compilation and accompanied experiments.
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Jani is a powerful language that can express models of
distributed and concurrent systems in the form of networks
of automata decorated with variables, clocks and probabili-
ties. A large spectrum of case studies exists. In full general-
ity, Jani models are networks of stochastic timed automata.
But the core formalism are MDPs, as in PPDDL probabilis-
tic planning. We consider a relevant fragment of Jani that
allows for structure-preserving translation into PPDDL.

We focus on the verification of safety properties, which
translates in PPDDL to goal probability analysis. In this
class of MDPs, heuristic search algorithms like HDP (Bonet
and Geffner 2003a) cannot be run as-is, but require an outer
loop of iterations known as the FRET framework: find, re-
vise, eliminate traps (Kolobov et al. 2011). Traps are sets of
states that are closed under probabilistic branching in the
subgraph of the state space induced by the current value
function approximation v. While FRET as per Kolobov et
al. considers in this subgraph all actions that are optimal
according to v, Steinmetz et al. (2016) devised a variant
which considers only the actions chosen by the greedy pol-
icy m. We will refer to these FRET variants as FRET-v and
FRET-m respectively. I-Dual is a recently introduced heuris-
tic search algorithm which does not require the FRET outer
loop (Trevizan, Teichteil-Konigsbuch, and Thiébaux 2017).
In essence, this algorithm interleaves linear program (LP)
evaluations with state space exploration. The LPs solved
are encodings of goal probability MDPs (Altman 1999), re-
stricted to the part of the state space explored so far. By con-
sidering in the exploration step only states touched by the
last LP solution, one can often find a solution of the MDP
while considering only a small fraction of the state space.

In our experiments, we compare PRISM (Kwiatkowska,
Norman, and Parker 2011), the Modest Toolset (Hartmanns
and Hermanns 2014), and Fast Downward (Helmert 2006)
based on two landmark problems in quantitative model-
checking: the dining cryptographers protocol (DCP) and
the randomized consensus shared coin protocol (RCSCP). It
turns out that FRET-7 excels in DCP, being surpassed only
by PRISM’s symbolic engine. In RCSCP heuristic search
is inferior to VI. Nevertheless, with the help of a heuristic
identifying 0 goal probability states, FD’s VI achieves bet-
ter scaling. Beyond this case study, our research motivates
further cross-fertilization, pertaining to the exchange of al-
gorithms. Our study also initiates the creation of new bench-



marks for goal probability analysis.

Background

Probabilistic PDDL (PPDDL) and FD. PPDDL extends
PDDL with the possibility to define probabilistic action ef-
fects, i.e., a probability distribution over multiple possi-
ble outcomes. Fast Downward (FD) is a wide-spread code
base in classical planning. It has been extended by Stein-
metz et al. (2016) for goal probability analysis. That ex-
tension encompasses topological value iteration (TVI) (Dai
et al. 2011), along with several heuristic search algorithms
of which here we consider HDP along with FRET-v and
FRET-7. We have extended their code by an implementation
of the I-Dual algorithm (Trevizan, Teichteil-Konigsbuch,
and Thiébaux 2017). There are no inherently probabilistic
heuristic functions in FD yet. As suggested by Bonet and
Geffner (2005), we use the all-outcomes determinization
with classical-planning heuristic functions. In our context,
this comes down to goal probability estimate O for detected
dead-ends, and estimate 1 elsewhere. We use h™* (Bonet
and Geffner 2001) which provides strong dead-end detection
capabilities at a comparatively small computational cost.

The Modest Toolset (MT) and PRISM. Probably the
most widespread probabilistic model checker is PRISM
(Kwiatkowska, Norman, and Parker 2011). MT’s core MDP-
algorithms are known to be competitive to PRISM (Hahn
and Hartmanns 2016). Both support the analysis of hybrid,
real-time, distributed and stochastic systems. PRISM offers
multiple model-checking engines, including variants of VI
based on an explicit state space representation as well as a
symbolic variant. In a nutshell, the symbolic version rep-
resents the current value function estimation and the tran-
sition probabilities as multi-terminal binary decision dia-
grams (MTBDD). This data structure has builtin support of
arithmetic operations, allowing to directly express value up-
dates as MTBDD operations. Furthermore, PRISM option-
ally identifies states with goal probability O, respectively 1
in a preprocessing step, which can then be filtered out inside
VI. MT provides several components to solve various forms
of quantitative model-checking problems. For our MDP set-
ting, we consider one such component, called Mcsta. Mcsta
provides MT’s variants of value iteration, featuring a pre-
processing step similar to PRISM. An external-memory VI
(EVI) variant caters for MDPs whose state space is too large
to fit into main memory (Hartmanns and Hermanns 2015).

Jani. Jani is an overarching language conceived to foster
verification tool interoperation and comparability. It allows
to model a rich variety of quantitative automata networks
with variable decorations. Properties to be checked are tem-
poral formulas based on computation tree logic (CTL).

Each automaton has locations connected by directed
edges. The edges may be taken with a given probability pro-
vided the edge’s guard is satisfied. Then an effect may mod-
ify the variable values, and a new location is occupied.

Jani allows variables of various types (e.g. int and bool).
They can be restricted to a finite range. Expressions over

"variables": [
{"name":"res", "type": "bool"},
"name":"coinl", "type": {"kind":"bounded",
"base":"int", "lower—bound":0, "upper—bound":2}}, ...],
"restrict—initial": {"exp": {"op":"™",
"left": {"op":"",
"left": {...},
"right": {"op":'=', "left":"coinl", "right":0} },
"right™: {"op™:'=', "left":"res", "right":false} } },
"automata": |
{ "name":"aut1",
"locations": [ {"name":"loc0"}, {"name":"loc1"} ],
"initial—location": ["loc0"],
"edges": [ { "location":"loc0",
"guard": { "exp": {"op":"=", "left":"coinl", "right":0} },
"destinations": [
{ "probability": {"exp":0.5}, "location":"loc1",
"assignments": [ { "ref":"coinl", "value":1 } ] },
{ "probability": {"exp":0.5}, "location":"loc1",
"assignments": [ { "ref":"coinl", "value":2 } | } 1}1},

{ "name":"aut3",

"locations": [ {"name":"loc0"}, {"name":"loc1"} ],
"initial—location": ["loc0"],

"edges": [ { "location":"loc0",

nonAn

"guard": { "exp": {"op":"",

"left": {"op":"i", "left":"res", "right":false},
HrightH: {Hopn:nzn’
"eft" { nopn:n_‘_n7 "eft":"coinl n’ nrightn:ncoinzu } ,

"right":3}}},
"destinations": [
{ "probability": {"exp":1}, "location":"loc1",
"assignments": [ { "ref":"res", "value":true } | }]1}]}]

Figure 1: A Jani specification example.

these variables support many standard arithmetic operations,
as well as conjunction and disjunction. The possible initial
variable values are mostly specified via a restrict-initial ex-
pression but can also be given directly when declaring a new
variable.

A Jani file lists the occurring constants (objects), and the
variable definitions as well as the restrict-initial block. In
addition, a list of automata along with their locations and
edges is provided.

An example snippet of Jani is given in Figure 1. It spec-
ifies a Boolean variable res with initial value false and a
bounded integer variable coin/ with initial value 0. Two au-
tomata are depicted. The first automaton autl consists of two
locations locO and locl. From its initial location loc0O, one
edge can be taken provided that the variable coin/ has value
0, as expressed by the guard. The edge has two potential out-
comes, each weighted by a probability. Both outcomes lead
to the same destination, loc!, but they reassign the variable
coinl to different values. The automaton aut3 also consists
of two locations locO and locl. aut3 contains one edge, start-
ing from loc0, and requiring that res is set to false and that
the sum of both coin variables is 3. The edge moves the au-
tomaton location deterministically to loc/ and changes the
value of res to true.



Compilation from Jani to PPDDL

We outline the main design decisions in our compilation.
The source code of our compiler, along with all Jani and
corresponding PPDDL benchmarks, is available online.

Fragment of Jani considered. To match PPDDL plan-
ning, we consider probabilistic safety properties, i.e., reach-
ability queries of the form ¢ goal (eventually goal) where
the maximum probability is sought. We do not consider tem-
poral goals, as our design rationale in this work is to stick to
a Jani fragment that allows for a largely structure-preserving
translation into PPDDL. Hence, we avoid compiling tem-
poral formulas into propositional goals (Edelkamp 2006;
Baier, Bacchus, and Mcllraith 2009), and can focus on the
translation of Jani’s automata networks into PDDL.

We consider the finite-state model-checking fragment of
Jani, where the definition of each integer variable specifies
a finite range, i.e., a lower bound and an upper bound on
the variable’s values. Moreover, we consider only restrict-
initial blocks specifying exactly one value for each variable.
One can in principle encode, in PPDDL, different possible
initial states through actions applied at the start. However,
Jani specifies the set of possible initial states in terms of a
set of constraints. The naive approach would enumerate all
solutions to that constraint set. To combine the results for
multiple initial states, Jani adopted the filter functionality of
Prism (Kwiatkowska, Norman, and Parker 2011). In a nut-
shell, along the property to be checked, the filter expression
defines a set of states for which the property should be veri-
fied as well as an operator to combine the individual results
(e.g., min, max). As our focus lies on planning for max-
imal goal probability, we only consider filter expressions
over the initial state, calculating the maximal probability to
reach states satisfying the property. The aforementioned re-
strictions are not limiting in the sense that we still cover most
existing Jani models.

A more limiting restriction we make regards synchro-
nization, where we only consider shared-variable synchro-
nization, via guards referring to variables written on by
other automata. Jani also supports handshake synchroniza-
tion over multiple automata. This can, in principle, be real-
ized in PPDDL by adding additional small protocols, sim-
ilarly to Edelkamp’s (2003) approach. But restricting fo-
cus on shared-variable synchronization allows a much more
direct, more structure-preserving, compilation, and is still
practically relevant. Unfortunately, many Jani benchmarks
make use of handshake synchronization, hence restricting
the benchmark set in the empirical evaluation.

Predicates, Types, Objects. Variable types in Jani di-
rectly translate into (P)PDDL types, with an additional type
loc for automata locations. The values associated with a
type in Jani are encoded as PDDL objects of that type.
Jani variables are also encoded as PDDL objects, variable-
value assignments are represented by the PDDL predicate
(value var val). We list all Jani constants, variables and

1http://fai.cs .uni-saarland.de/downloads/jani-ppddl.zip

locations as PDDL constants, so we can use them in ac-
tion descriptions. Current automata locations are encoded
through an (at_X loc) predicate for each automaton X. The
goal is encoded through an additional PPDDL Boolean vari-
able goal_condition. This auxiliary variable is introduced
as part of the compilation into PPDDL only. Changes to the
Jani input model are not required.

We handle finite-range arithmetics in PDDL via finite
enumeration of arithmetic-operation outcomes, similarly as
in previous works encoding finite-range integer variables
into PDDL, e.g., (Nakhost, Hoffmann, and Miiller 2012).
To do so, we determine from the bounds specified in Jani’s
variable definitions, the minimal L and maximal number U
required to safely represent the domains of all variables and
all arithmetic operations used in the Jani model. The num-
bers within the interval [L, U] are then represented by PDDL
objects nL,...,nU.

Arithmetic operations are hard-coded into the initial state,
using additional predicates, and enumerating e.g. all triples
x, y, and z = x * y within the precomputed range, via
the list of corresponding static ground facts of the form
(multiply x y z). The variables and automata of the Jani
snippet in Figure 1 are translated into PDDL types, con-
stants, and predicates as follows:

(:types loc int bool)
(:constants
autl_locO autl_loc1 aut3_locO aut3_locl — loc
goal_condition res true false — bool
coinl nO nl n2 n3 n4 — int)
(:predicates
(value 7x ?v — bool)
(value ?7x ?v — int)
(at_autl ?1 — loc)
(at_aut3 ?1 — loc)
(sum ?x 7y 7z — int))

To compactly encode nested expressions, we split these
into the recursive application of arithmetic operations. The
outcome of each operation is stored in an auxiliary PDDL
object. For example, the outcome value z of the expres-
sion (z1 + x2) * y is encoded through the conjunction of
(add z1 x5 2") with (multiply 2’ y 2).

Actions. Jani edge descriptions translate into PPDDL ac-
tions. The action parameters are chosen to represent vari-
ables affected by the edge’s guards or assignments. In par-
ticular, this pertains to numeric variables whose value may
change: the respective values before and after the action ap-
plication become parameters constrained by the precondi-
tion to match the necessary value computation. For exam-
ple, an edge guard z = (x1 + x3) * y is encoded into pa-
rameters ?x1, 7x2, 7y, 72’, 72, along with the preconditions
(add 721 T4 ?72') and (multiply 72" Ty ?z).

Preconditions and effects can now be directly com-
piled from Jani guards and assignments. In addition, a
precondition and effect of the form (at-X start) and
(at_X destination) encodes the automaton location before
and after the action application. For example, the edge of
aut3 from Figure 1 is translated into the following PPDDL
action:



(:action aut3_locO_to_loc1
:parameters (?v1 ?v2 — int)
:precondition (and (at_aut3 aut3_loc0) (value res false)
(value coinl ?v1) (value coin2 ?v2) (sum ?v1 ?v2 n3))
:effect (and (not (at_aut3 aut3_loc0)) (at_aut3 aut3_locl)
(not (value res false)) (value res true)))

Jani permits disjunctive edge guards, which we com-
pile away using standard techniques for DNF transforma-
tion (Gazen and Knoblock 1997), followed by splitting the
action into one copy per disjunct. This means, the guard is
first translated into DNF and then one action per clause is
created in PPDDL having this clause as precondition. All
other components of the action stay the same.

The compilation of effects is the only place where we re-
quire the modeling power of probabilistic PDDL, to encode
probabilistic edge outcomes. The automaton aut! from Fig-
ure 1 results in the following PPDDL fragment:

(:action autl_locO_to_loc1 _or_loc1
:parameters ()
:precondition (and (at_autl autl_loc0) (value coinl n0))
:effect (probabilistic
0.5 (and (not (at_autl autl_loc0)) (at_autl autl_locl)
(not (value coinl n0)) (value coinl nl))
0.5 (and (not (at_autl autl_loc0)) (at_autl autl_locl)
(not (value coinl n0)) (value coinl n2))))

In Jani, edges that may alter bounded integer variables to
values outside their domains are considered a modeling flaw.
Assuming a properly designed Jani model as input, the trans-
lation of edge guards into action preconditions is hence al-
ready sufficient to ensure that variable values remain within
their specified bounds.

Initial State and Goal. In Jani, the model initialization is
spread over the restrict-initial expression, the definition of
constants and variables, and for each automaton its initial-
location. These fragments can directly be translated into the
init part of PPDDL (along with arithmetic operations as out-
lined above). For the example in Figure 1, we obtain
(:init

(value goal_condition false)

(value res false) (value coinl nQ)

(at_autl autl_locO) (at_aut3 aut3_loc0)

(sum n0 n0 nO) (sum nO nl n1) (sum n0 n2 n2) ...)

We translate the property to be checked into a goal,
through an action whose precondition is the property expres-
sion, and whose effect is (value goal_condition true). The
latter ground fact becomes the PPDDL goal condition.

As a simple example, consider the property ¢res, i.e., that
res is eventually set to true. The Jani snippet encoding this
property looks as follows:

"o non

"properties": [ {"name":"eventually_res", "exp":{
"op":"filter",
"fun":"max",
"values":{
"op":"Pmax", "exp":{ "op":"U", "left":true, "right":"res" } },
"states": { "op":"initial" } }}]

In PPDDL this property is translated into the following ac-
tion:

(:action achieve_goal_condition
:parameters ()
:precondition (and (value goal_condition false) (value res true))
:effect (and (not (value goal_condition false))
(value goal_condition true)))

In general, properties expressed in Jani might again con-
tain disjunctions and arbitrary algebraic operations. In the
translation into PPDDL, we follow the lines of the trans-
lation of edge guards into PPDDL action preconditions,
transforming the property into DNF, creating one action per
clause, and introducing auxiliary action parameters repre-
senting current variable assignments and intermediate re-
sults if necessary.

Compilation Size. Obviously, the size of our compiled
PPDDL encoding relates linearly to that of the input Jani
model, except for (a) our encoding of finite-range arithmetic
operations, and (b) DNF transformation of edge guards/ac-
tion preconditions. Both can be expected to be uncritical in
practice. Regarding (a), our encoding is exponential in the
arity of arithmetic operations, which is harmless as that ar-
ity typically is 2. Regarding (b), the exponential blow-up in
DNF transformation would be relevant only on highly com-
plex transition guards.

That said, a potentially problematic aspect is the size of
the grounded encoding resulting from our PPDDL, as the
number of ground actions is exponential in the number of
action parameters required to capture all variable values rel-
evant to the action. Any one action may contain, in princi-
ple, arbitrarily many arithmetic expressions. Again though,
in practice, Jani edges — individual steps in the execution
of a concurrent system — involve few arithmetic operations.
Note also that the parameter-value combinations for ground
actions are constrained by the static predicates giving the se-
mantics of the arithmetic operations. Planning systems like
FD exploit this property to not even generate obviously un-
reachable ground actions in the first place.

We provide detailed compilation size, and grounded en-
coding size, results as part of our experiments.

Experiments

All experiments were conducted on an Intel Xeon E5-2660
machine with time (memory) cut-offs of 1h (6GB). We used
Cplex as LP solver. We compare runtime and search space
statistics of various configurations of FD, MT, and PRISM:

* We ran FD using TVI, [-Dual, FRET-v and FRET-7 with
LRTDP (Bonet and Geffner 2003b) and HDP (Bonet and
Geffner 2003a), all with and without h™¥*,

e For MT, we ran VI and EVI with and without the prepro-
cessing option.

» For PRISM, we ran both explicit (Exp) and symbolic en-
gines (Sym) with and without the preprocessing step. Ad-
ditionally, we ran PRISM’s hybrid engine (Hyb) which
combines the explicit and symbolic approach by storing
the value function approximation in a table with one en-
try for each state, and the MDP’s transition function as an



MTBDD. The intention is to benefit both from faster nu-
merical operations on flat data structures as well as a more
compact, symbolic, representation of the state space.

PRISM does not support Jani directly, but there exist
automatic tools translating Jani to PRISM’s input lan-
guage (Hahn et al. 2014). Unfortunately, we encountered
several technical complications during this translation, forc-
ing us to fall back on manually translated models. All bench-
mark files are available online.?

We have also run the original I-Dual implementation (Tre-
vizan, Teichteil-Konigsbuch, and Thiébaux 2017) based on
mGPT (Bonet and Geffner 2005). mGPT-IDual turned out
to be consistently slower than FD-IDual due to inefficien-
cies in mGPT’s grounding procedure. We will only report
results for the FD version.

Most Jani models make use of handshake synchroniza-
tion, which is currently not supported by our translation, lim-
iting the selection of domains. We consider two case studies,
which belong to the most popular benchmarks in probabilis-
tic model-checking. We introduce the case studies, and dis-
cuss the respective results.

Dining Cryptographers Protocol (DCP). In DCP
(Chaum 1988) n > 3 cryptographers want to check if the
NSA is paying for their dinner while respecting each others
privacy, i.e., without advertising who has paid exactly. For
that, everyone throws a coin, the outcomes being encoded as
0 and 1. Then each cryptographer C; looks at the outcome
o and the outcome oy of his left-hand neighbor. If C;
does not pay for dinner, then C; announces o & oy to
the table. If C; does pay for dinner, then C; announces
0@ on. The intended guarantee is that the xor over all
announced values is 0 if the NSA paid, and is 1 if one of
the cryptographers paid. What we wish to check is that the
protocol is correct. This is encoded as reaching a target
condition with probability 1.

A specific property of this domain is the absence of 0
goal-probability states. This particularly qualifies the use of
contingent planners. As contingent planners do not need to
reason about probabilities, hence avoiding costly numeri-
cal operations, they may handle instances more efficiently
than fully-fledged probabilistic planners. Thus, we also pro-
vide PDDL versions of the compiled PPDDL instances, re-
placing probabilistic effects by non-deterministic ones. We
include the state-of-the-art contingent planner PRP (Muise,
Mcllraith, and Beck 2012) in the results below.

Consider first Figure 2 (a), which compares the differ-
ent FD configurations. Note that, due to the aforementioned
structure of this domain, h™** merely constitutes an addi-
tional overhead here. In all FD configurations but I-Dual,
this overhead is reflected in runtime across all instances and
grows exponentially in n. In FD-IDual, the overhead of A™#*
is overshadowed by the runtime spent on LP evaluations.
Having to solve increasingly large LPs, renders FD-IDual
overall uncompetitive — despite offering small advantages
in search space size compared to TVI, as indicated by Fig-
ure 2 (d). Both LRTDP and HDP perform identical in this

2http://fai.cs .uni-saarland.de/downloads/jani-ppddl.zip

domain. FD-FRET-7 benefits from the ability of the under-
lying heuristic search algorithm to find a solution while vis-
iting only a small fraction of the state space. The resulting
reduction in the number of visited states grows exponentially
in n. Since in this domain every (reachable) state has goal
probability 1, FRET-v, in contrast, always has to consider
the entire state space in the trap removal procedure. Hence,
the similar performance of FD-FRET-v and FD-TVL.

Consider next Figure 2 (b), comparing the different MT
and PRISM configurations. With the exception of PRISM-
Hyb, the preprocessing option (referred to by the “-Pre”
suffix) of MT and PRISM did not help anywhere. Clearly,
PRISM-Exp is not competitive at all, scaling only to n=>5,
and running out of memory afterwards. PRISM-Hyb per-
forms similarly to MT-VI, both scaling to n=10 and then
running out of memory. The additional overhead induced
by MT-EVI compared to MT-VI shows in runtime, but its
smaller memory demand improves scaling to n=11. Be-
ing able to compactly represent extremely large numbers of
states turns PRISM’s symbolic approaches to the best con-
figurations in this comparison. As the goal probability is 1
in this domain, PRISM-Hyb-Pre and PRISM-Sym-Pre solve
all instances already in the preprocessing step. By storing
the value function in a symbolic data structure, PRISM-Sym
achieves the same performance without executing the pre-
processing step.

Consider finally Figure 2 (c). FD-TVI outperforms MT-
VI, presumably due to more efficient internal data struc-
tures. Of the configurations operating on flat data struc-
tures, FD-FRET-7 clearly stands out. It solves instances
up to n=17, while the next best (non-symbolic) VI con-
figuration only scales to n=11. Interestingly, the limiting
factor in FD-FRET-7 is not the number of visited states,
but lies in the grounding process. Figure 2 (e) illuminates
this with compilation-size data. For the models themselves,
i.e. Jani vs. PPDDL, the difference is small. But at the
grounded level, where FD enumerates action parameter in-
stantiations, matters are different. While no operation equiv-
alent to grounding is needed within the MT or PRISM, in
FD the number of ground actions increases steeply in n.

PRP shows a very volatile performance footprint. Surpris-
ingly, it cannot beat the shown FRET-7 configuration even
in a single instance. The clear winner in this case study is
PRISM-Sym. Solving the instances up to n=26 makes it
far beyond the reach of all other non-BDD-based configu-
rations.

Randomized Consensus Shared Coin Protocol (RCSCP).
In this protocol (Aspnes and Herlihy 1990) n tourists wish
to reach consensus of which place to visit next. In a nutshell,
each tourist keeps tossing a coin; depending on the outcome
of this toss, a global counter is either incremented or decre-
mented; when the counter is within a certain desired range,
the tourist stops. What we want to check is the probability
that all tourists stopped at the same counter value. In differ-
ence to the DCP, that probability is < 1.

Figure 3 shows the performance results. Let’s again turn
our attention to the FD configurations first, Figure 3 (a).
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number of visited states; (e) compilation size measures.
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Figure 3: Empirical results in RCSCP, as a function of the number n of tourists. (a) — (c) runtime in CPU seconds; (d) number
of visited states; (e) compilation size measures.



Contrary to DCP, h™** helps in all FD configurations. For
the heuristic search algorithms, runtime is reduced slightly,
but the runtime overhead of A™* is still visible in TVI. Due
to the reduction in the number of states visited, FD-TVI-
h™* is able to scale up to n=7, one step further than FD-
TVI. Similarly to DCP, FD-IDual again suffers from having
to solve many LPs. The FRET configurations are not com-
petitive at all in this model. Both HDP and LRTDP show
a slow convergence behavior, requiring significantly more
value updates than, e.g., TVI. While HDP is able to reach
a fixpoint for the instances up to n = 5, LRTDP does not
terminate even in the smallest instance before the time limit.
In contrast to DCP, neither one of the heuristic search algo-
rithms provides any reduction in number of visited states.

Consider Figure 3 (b). As before, the preprocessing op-
tion of both PRISM and MT has no considerable effect on
performance. PRISM’s symbolic approaches are not able to
compactly represent the state space / the value function. Nu-
merical operations on the symbolic value function represen-
tation in PRISM-Sym are however more expensive, which
is reflected in runtime. PRISM-Hyb can evade this over-
head through its flat value function representation, but it
is still beaten by PRISM-Exp in terms of runtime. Similar
to DCP, MT’s VI implementation outperforms PRISM-Exp.
MT-EVT highly depends on a good state-partitioning func-
tion organizing external-memory access. In RCSCP it is not
possible to provide such a function, preventing the use of
MT-EVL

In the cross-comparison, Figure 3 (c), FD’s VI implemen-
tation is again more efficient than MT-VI. This still holds
when taking into account the additional Ah™** evaluations.
FD-TVI-Rh™**’s scaling to n=7 makes it to the overall best
configuration in this case study.

Consider finally Figure 3 (e). In difference to DCP, the
Jani models are much smaller than the PPDDL ones. This is
due to the size of the initial state, which needs to encode sev-
eral arithmetic operations. In terms of the number of ground
actions though, RCSCP is harmless.

Conclusion and Future Work

We have established a new connection between probabilis-
tic model-checking and probabilistic planning. The empiri-
cal results show advantages for techniques from both areas,
depending as always on the domain. To foster compilabil-
ity of model-checking models into probabilistic planning,
support for numeric state variables, and for more general
goals, would be desirable. Further directions suggested by
our experiments include the development of hybrid methods
between grounding and lifted methods in planning, combin-
ing the benefits of both sides. Porting probabilistic heuristic
search algorithms to model-checking tools directly, would
give an opportunity to tackle all the syntactic elements that
cannot be easily compiled. Moreover, this would allow to
profit from techniques developed in this context already, no-
tably the wealth of abstraction techniques that can be used
to obtain better goal probability bounds.
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