
Revisiting Goal Probability Analysis in Probabilistic Planning
Technical Report

Marcel Steinmetz and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{steinmetz,hoffmann}@cs.uni-saarland.de

Olivier Buffet
INRIA / Université de Lorraine

Nancy, France
olivier.buffet@loria.fr

Abstract

Maximizing goal probability is an important objective in pro-
babilistic planning, yet algorithms for its optimal solution are
severely underexplored. There is scant evidence of what the
empirical state of the art actually is. Focusing on heuristic
search, we close this gap with a comprehensive empirical
analysis of known and adapted algorithms. We explore both,
the general case where there may be 0-reward cycles, and the
practically relevant special case of acyclic planning, like plan-
ning with a limited action-cost budget. We consider three dif-
ferent algorithmic objectives. We design suitable termination
criteria, search algorithm variants, dead-end pruning methods
using classical planning heuristics, and node selection strate-
gies. Our evaluation on more than 1000 benchmark instances
from the IPPC, resource-constrained planning, and simulated
penetration testing reveals the behavior of heuristic search,
and exhibits several improvements to the state of the art.

1 Introduction
Goal probability maximization in MDPs is important in
planning scenarios ranging from critical decision-making
(e. g. maximizing the probability to survive) to security tests
(analyzing the chances that an attacker may compromise a
valuable asset), and generally in problems with unavoidable
dead-ends (e. g. (Kolobov et al. 2011; Kolobov, Mausam,
and Weld 2012; Teichteil-Königsbuch 2012)). The objec-
tive partly underlies the International Probabilistic Planning
Competition (IPPC) (Younes et al. 2005; Bryce and Buffet
2008; Coles et al. 2012), when planners are evaluated by
how often they reach the goal in online policy execution.

We consider here the optimal offline setting, i. e., com-
puting the exact maximum goal probability. We refer to this
objective as MaxProb. While MaxProb certainly is relevant,
there has been little work towards developing solvers. Opti-
mal MDP heuristic search (Barto, Bradtke, and Singh 1995;
Hansen and Zilberstein 2001; Bonet and Geffner 2003;
McMahan, Likhachev, and Gordon 2005; Smith and Sim-
mons 2006; Bonet and Geffner 2006) has been successful in
expected-cost minimization, but suffers from a lack of ad-
missible heuristic estimators of goal probability. The best
known possibility is to detect dead-ends and set their esti-
mate to 0, using the trivial estimate 1 elsewhere. Another

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

major obstacle are complications arising from 0-reward cy-
cles. As pointed out by Kolobov et al. (2011), MaxProb is
equivalent to a non-discounted reward maximization prob-
lem, not fitting the stochastic shortest path (SSP) framework
(Bertsekas 1995) because non-goal cycles receive 0 reward
and thus improper policies do not accumulate reward −∞.

Kolobov et al. propose FRET (find, revise, eliminate
traps), which admits heuristic search, but necessitates sev-
eral iterations of complete searches, in between which FRET
eliminates 0-reward cycles (traps). Hou et al. (2014) con-
sider several variants of topological VI (Dai et al. 2011),
solving MaxProb but necessitating to build the entire reach-
able state space. Kolobov et al. (2012) and Teichteil (2012)
consider objectives asking for the cheapest policy among
those maximizing goal probability, also requiring FRET or
VI. Other works addressing goal probability maximization
(e. g. (Teichteil-Königsbuch, Kuter, and Infantes 2010; Ca-
macho, Muise, and McIlraith 2016)) do not aim at guaran-
teeing optimality. In summary, heuristic search for MaxProb
is challenging, and has only been addressed by Kolobov et
al. (2011).

Kolobov et al.’s experiments run only one configuration
of search (LRTDP (Bonet and Geffner 2003)), with one
possibility for dead-end detection (SixthSense (Kolobov,
Mausam, and Weld 2010)), on a single domain (Exploding-
Blocks). This outperforms VI, but the dead-end detection is
not used in VI so it is unclear to what extent this is due to the
actual heuristic search, rather than the state pruning itself.

Given this: (i) What is actually the empirical state of the
art in heuristic search for MaxProb? Are there other known
algorithms, or variants thereof, that work better? (ii) What
about simpler special cases, and weaker objectives, that are
still practically relevant but that may be easier to solve?

Question (ii) is interesting because such special cases
and weaker objectives do indeed exist. A practically rel-
evant special case is probabilistic planning with acyclic
state spaces. This applies, e. g., to IPPC TriangleTireworld.
More importantly, planning with a limited action-cost bud-
get, limited-budget planning, is acyclic when action costs
are non-0, strictly decreasing the remaining budget. Fur-
thermore, simulated penetration testing (pentesting), as per
Hoffmann (2015), is acyclic. The MDP there models a net-
work intrusion from the point of view of an attacker, which is
acyclic because each exploit can be attempted at most once.

In acyclic problems, there are no 0-reward cycles so we are
facing an SSP problem and the need for FRET disappears.

Regarding weaker objectives, in addition to MaxProb, it
is relevant to ask whether the maximum goal probability ex-
ceeds a given threshold θ, or to require computing the max-
imum goal probability up to a given accuracy δ. We refer
to these objectives as AtLeastProb and ApproxProb respec-
tively. For example, in pentesting AtLeastProb naturally as-
sesses the level of network security: Can an attacker reach
a target host (e. g. a customer data server) with probability
greater than a given security margin (e. g. 0.01)?

Both AtLeastProb and ApproxProb allow early termi-
nation based on maintaining a lower (pessimistic) bound
V L in addition to the upper (admissible/optimistic) bound
V U . This is especially promising in AtLeastProb where we
can terminate if the lower bound already is good enough
(V L ≥ θ) or if the upper bound already proves infeasibil-
ity (V U < θ). Good anytime behavior, on either or both
bounds, translates into early termination.

To answer our research questions (i) and (ii), we design
an algorithm space characterized by (a) search algorithm,
(b) dead-end pruning method, and (c) node selection strat-
egy. For (a), we design variants of AO∗ (Nilsson 1971)and
LRTDP (Bonet and Geffner 2003) maintaining upper and
lower bounds for early termination, and we design a variant
of FRET better suited to problems with uninformative initial
upper bounds. We furthermore design a new probabilistic-
state-space reduction method, via determinized bisimula-
tion. For (b), we employ classical-planning heuristic func-
tions, a connection not made before and which is especially
promising in limited-budget planning where we can prune
against the remaining budget.1 For (c), we design a compre-
hensive arsenal of simple strategies biasing node selection
to foster early termination.

Our techniques are implemented in FD (Helmert 2006).
We explore their behavior on a benchmark suite including
domains from the IPPC, resource-constrained planning, and
pentesting, comprising 1089 instances in total. Amongst
other things, we observe: substantial benefits of heuristic
search, even with trivial initial estimates (+9% total cover-
age), more so with initial estimates based on dead-end detec-
tion (+12%); substantial benefits of early termination (e. g.
for AtleastProb +8% with θ = 0.2 and +7% with θ = 0.9);
and dramatic benefits of our FRET variant (+32%). Our
state-space reduction method yields an optimal MaxProb
solver that scales just as well in TriangleTireworld as the
sub-optimal solver Prob-PRP (Muise, McIlraith, and Beck
2012; Camacho, Muise, and McIlraith 2016) – yet not only
for the standard version where the goal can be achieved with
certainty, but also for the limited-budget version where that
is not so.

The paper is organized as follows. Section 2 describes
our model syntax and semantics, for goal probability anal-
ysis with and without an action-cost budget limit. Sec-
tion 3 specifies our variants of VI, AO∗, LRTDP, and FRET.
Section 4 describes our probabilistic-state-space reduction

1On the side, we discover that Domshlak and Mirkis’ (2015)
landmarks compilation is, per se, equivalent to such pruning.

method, Section 5 describes the dead-end pruning methods,
Section 6 describes the node selection strategies. Section 7
summarizes our experiments, and we conclude in Section 8.
The main text omits some technical details, which we give
Appendix A.

2 MDP Models
We consider a probabilistic extension of STRIPS, in two
variants, with respectively without a limited action-cost bud-
get. We specify first the unlimited-budget version. Planning
tasks are tuples Π = (F,A, I,G) consisting of a finite set F
of facts, a finite set A of actions, an initial state I ⊆ F , and
a goal G ⊆ F . Each a ∈ A is a pair (pre(a), O(a)) where
pre(a) ⊆ F is the precondition, and O(a) is the finite set
of outcomes o, each being a tuple (p(o), add(o), del(o)) of
outcome probability p(o), add list add(o) ⊆ F , and delete
list del(o) ⊆ F . We require that

∑
o∈O(a) p(o) = 1.

The state space of a task Π is a probabilistic transition
system (S, P, I, S>). Here, S is the set of states, each s ∈ S
associated with its set F (s) of true facts. The initial state I
is that of Π, the set of goal states S> ⊆ S contains those
s where G ⊆ F (s). The transition probability function
P : S×A×S 7→ [0, 1] is defined as follows. Action a is ap-
plicable to state s if s 6∈ S> (goal states are absorbing) and
pre(a) ⊆ F (s). By sJoK we denote the result of outcome o
in s, i. e., F (sJoK) = (F (s) ∪ add(o)) \ del(o). P (s, a, t)
is p(o) if a is applicable to s and t = sJoK,2 and is 0 other-
wise (there is no transition). Absorbing states are those with
no outgoing transitions (no applicable actions). The set of
non-goal absorbing states – lost states – is denoted S⊥.

For limited-budget planning, we extend the above as fol-
lows. A limited-budget task is a tuple Π = (F,A, I,G, b),
as above but now with a budget b ∈ R+

0 , and each outcome
o being associated with a cost c(o) ∈ R+

0 . In addition to
their true facts F (s), states s are also associated with their
remaining budget b(s) ∈ R. States with negative remain-
ing budget b(s) < 0 are legal and may occur, but are lost,
s ∈ S⊥, because: the goal states s ∈ S> are those where
G ⊆ F (s) and b(s) ≥ 0; the actions a applicable to s are
those where pre(a) ⊆ F (s) and at least one outcome fits
within the remaining budget, i. e., there exists o ∈ O(a) so
that c(o) ≤ b(s). In the outcome states sJoK, the outcome’s
cost is deduced from the budget, i. e., b(sJoK) = b(s)− c(o).

Note here that, if c(o) > 0 for all o, then the state space is
acyclic because every transition strictly reduces the remain-
ing budget. The state space is infinite due to the continuous
state variable b(s). The reachable part (which our algorithms
consider) is finite. Note further that the remaining budget is
local to each state. If some states in a policy violate the bud-
get, other parts of the policy (even other outcomes of the
same action) can still continue trying to reach the goal. This
differs from constrained MDPs (Altman 1999), where the
budget bound is applied globally to the expected cost of the
policy.

2We assume here that each o ∈ O(a) leads to a different out-
come state. This is just to simplify notation (our implementation
does not make this assumption).

Limited-budget planning has been explored in a determin-
istic oversubscription setting, the objective being to maxi-
mize the reward from achieved (soft) goals subject to the
budget (Domshlak and Mirkis 2015). A classical-planning
variant would relate to resource-constrained planning (e. g.
(Haslum and Geffner 2001; Nakhost, Hoffmann, and Müller
2012; Coles et al. 2013)) with a single consumed resource.
Our probabilistic variant here has been previously consid-
ered only by Hou et al. (2014). Prior work on probabilis-
tic planning with resources (e. g. (Marecki and Tambe 2008;
Meuleau et al. 2009; Coles 2012)) has often assumed lim-
ited budgets and non-0 consumption, but has dealt with
uncertain-continuous resource consumption, in contrast to
the discrete and fixed budget consumed by action costs.

Though relatively restricted, arguably limited-budget
probabilistic planning is quite natural. Decision making is
often constrained by a finite budget, and non-0 costs are of-
ten reasonable to assume. For example, any problem asking
to achieve a goal within a given number of steps falls into
this category.

A policy is a partial function π : S\(S>∪S⊥) 7→ A∪{∗},
mapping each non-absorbing state s within its domain either
to an action applicable in s, or to the don’t care symbol ∗.
The latter will be used (only) by policies that already achieve
sufficient goal probability elsewhere, so do not need to elab-
orate on how to act on s and its descendants. That is, we
still require closed policies, and use ∗ to explicitly indicate
special cases where actions may be chosen arbitrarily. For-
mally, π(s) = ∗ extends the domain of π by picking, for
every t 6∈ S> ∪ S⊥ reachable from s and where π(t) is
undefined, an arbitrary action a applicable in t and setting
π(t) := a. A policy π is closed for state s if, for every state
t 6∈ S> ∪ S⊥ reachable from s under π, π(t) is defined; π is
closed if it is closed for the initial state I . A policy is proper
if, from every state s on which π is defined, π eventually
reaches an absorbing state with probability 1.

Following Kolobov et al. (2011), we formulate goal prob-
ability as maximal non-discounted expected reward where
reaching the goal gives reward 1 and all other rewards are 0.
The value V π(s) of a policy π closed for state s then is:

V π(s) =

{
1 s ∈ S>
0 s ∈ S⊥∑
t P (s, π(s), t)V π(t) otherwise

The value of state s is V ∗(s) = maxπ:π closed for s V
π(s). We

don’t need to exclude improper π from this maximization as,
in difference to Kolobov et al.’s Generalized SSP problems,
there are no negative rewards.

For acyclic state spaces, we are facing an SSP problem
(every run ends in an absorbing state in a finite number of
steps). For cyclic state spaces, the Bellman update opera-
tor may have multiple sub-optimal fixed points, and updates
from an optimistic (upper-bound) initialization are not guar-
anteed to converge to the optimum. One can either use a
pessimistic initialization, or Kolobov et al.’s FRET method.

We consider three different objectives (algorithmic prob-
lems) for goal probability analysis:
MaxProb: Find an optimal policy, i. e., a closed π s.t.
V π(I) = V ∗(I).

AtLeastProb: Find a policy guaranteeing a user-defined
goal probability threshold θ ∈ [0, 1], i. e., a closed π s.t.
V π(I) ≥ θ. (Or prove that such π does not exist.)

ApproxProb: Find a policy optimal up to a user-defined
goal probability accuracy δ ∈ [0, 1], i. e., a closed π s.t.
V ∗(I)− V π(I) ≤ δ.

We next examine search algorithms, pruning methods, and
node selection strategies, to solve these problems.

3 Search Algorithms
We use value iteration (VI) as a baseline, and we design vari-
ants of AO∗ and LRTDP. We furthermore design a variant of
FRET better suited to problems with uninformative initial
upper bounds. We consider the algorithms in this order.

3.1 VI
For VI, we make one forward pass building the reachable
state space (actually its pruned subset, see Section 5). We
initialize the value function as 0 everywhere. For acyclic
cases, we then perform a single backward pass of Bellman
updates, starting at absorbing states and updating children
before parents. For the general case, we assume a parame-
ter ε and run topological VI (Dai et al. 2011): We find the
strongly connected components (SCC) of the state space,
and handle each SCC individually, children SCCs before
parent SCCs. VI on an SCC stops when every state is ε-
consistent, i. e. when its Bellman residual is at most ε.

Dai et al. (2011) also introduce focused topological VI,
which eliminates sub-optimal actions in a pre-process to ob-
tain smaller SCCs. While this can be much more runtime-
effective, it still requires to build the entire state space. In
our experiments, runtime/memory exhaustion during this
process, i. e., during building the state space, was the only
reason for VI failures. So we do not consider focused topo-
logical VI here.

3.2 AO∗

For AO∗, we restrict ourselves to the acyclic case, where the
overhead for repeated value iteration fixed points, inherent in
LAO∗ (Hansen and Zilberstein 2001), disappears. Figure 1
shows pseudo-code. The algorithm incrementally constructs
a subgraph Θ of the state space. The handling of duplicates
is simple, identifying search nodes with states, as the state
space is acyclic. For the same reason, simple backward up-
dating suffices to maintain the value function.

Adopting ideas from prior work (e. g. (McMahan,
Likhachev, and Gordon 2005; Little, Aberdeen, and
Thiébaux 2005; Smith and Simmons 2006)), we maintain
two value functions, namely both an upper bound V U and
a lower bound V L on goal probability. Both are initialized
trivially, for lack of heuristic estimators of goal probability
(dead-end detection, as a simple but non-trivial V U initial-
ization, will be discussed in the next section). Nevertheless,
both bounds can be useful for search. To refute an action,
it often suffices to reduce V U for just one of its outcomes.
Hence, even for trivial initialization, V U may allow to disre-
gard parts of the search space, in the usual way of admissible
heuristic functions. As we shall see, this kind of behavior

procedure GoalProb-AO∗

initialize Θ to consist only of I; Initialize(I)
loop do

if [MaxProb: V L(I) = 1]
[AtLeastProb:V L(I) ≥ θ]
[ApproxProb: V L(I) ≥ 1− δ or V U (I)− V L(I) ≤ δ] then
return πL endif /* early termination (positive) */

if [AtLeastProb: V U (I) < θ] then
return “impossible” endif /* early termination (negative) */

if ex. leaf state s 6∈ S> ∪ S⊥ in Θ reachable using πU then
select such a state s

else return πU endif /* regular termination */
for all a and t where P (s, a, t) > 0 do

if t not already contained in Θ then
insert t as child of s into Θ; Initialize(t)

else insert s as a new parent of t into Θ
endif

endfor
BackwardsUpdate(s)

endloop
procedure Initialize(s):

V U (s) :=

{
0 s ∈ S⊥
1 otherwise

V L(s) :=

{
1 s ∈ S>
0 otherwise

if s 6∈ S> ∪ S⊥ then πL(s) := ∗ endif

Figure 1: AO* search for MaxProb, AtLeastProb, and Ap-
proxProb (as indicated), on acyclic state spaces. πU is the
current greedy policy on V U , πL is the current greedy pol-
icy on V L. The BackwardsUpdate(s) procedure updates all
of V U , πU , V L, πL. As states may have several parents in
Θ, we first make a backwards sweep to collect the sub-graph
Θ|s ending in s (to update V U and πU , the greedy sub-graph
on V U suffices). Then we update Θ|s in reverse topological
order.

occurs frequently. Furthermore, there are various possibili-
ties for early termination. The lower bound enables positive
early termination when we can already guarantee sufficient
goal probability, namely 1 (MaxProb), θ (AtLeastProb), or
1−δ (ApproxProb). The upper bound enables negative early
termination in AtLeastProb, when V U < θ. In ApproxProb,
clearly we can terminate when V U (I)− V L(I) ≤ δ.3

Regarding correctness: Trivially, V U (s) and V L(s) in-
deed are upper respectively lower bounds on the goal proba-
bility of the states s in Θ, at any point in time. Furthermore,
πL is always a closed policy, because it applies the don’t
care symbol ∗ at the non-absorbing leaf states in Θ (note
also that ∗ is applied only on those states). Its goal prob-
ability V π

L

(s) is at least the lower-bound goal probability,
V π

L

(s) ≥ V L(s), because V L(s) is monotonic.

3Observe that the V L = 1 (MaxProb) and V L(I) ≥ 1 − δ
(ApproxProb) criteria are redundant when maintaining an upper
bound, i. e., for heuristic search: If V L(I) ≥ 1 − δ, then trivially
also V U (I) − V L(I) ≤ δ. If V L(I) = 1, then there is a search
branch achieving the goal with certainty, so V U (I) = 1 there as
well and search terminates regularly. In configurations not main-
taining V U , however, these criteria can be very useful to reduce
search.

procedure GoalProb-LRTDP
Θ := {I}; Initialize(I)
loop do

[early termination criteria exactly as in GoalProb-AO∗]
if I is not labeled as solved then

LRTDP-Trial(I)
else return πU endif /* regular termination */

endloop
procedure LRTDP-Trial(s):
P := empty stack
while s is not labeled as solved do

push s onto P
if s ∈ S> ∪ S⊥ then break endif
[cyclic: if s is ε-consistent then break endif]
for all a and t where P (s, a, t) > 0 do

if t 6∈ Θ then Initialize(t) endif
endfor
update V U (s), πU (s), V L(s), πL(s)
s := sample t according to P (s, πU (s), t)

endwhile
while P not empty do

pop s from P
[acyclic: if ¬ CheckSolved(s, 0) then break endif]
[cyclic: if ¬ CheckSolved(s, ε) then break endif]

endwhile
Figure 2: LRTDP for MaxProb, AtLeastProb, and Approx-
Prob, on acyclic or general (cyclic) state spaces. πU is the
current greedy policy on V U , πL is the current greedy policy
on V L. The CheckSolved(s, ε) procedure is exactly as spec-
ified by Bonet and Geffner (2003). It visits states t reach-
able from s using πU , initializing t if not previously visited,
stopping at t if not ε-consistent. It then performs updates
bottom-up, labeling t as solved iff all its descendants are ε-
consistent. Our only change is to update V L and πL along
with V U and πU .
3.3 LRTDP
For LRTDP, we consider the general case, including cyclic
state spaces. Figure 2 shows pseudo-code. The main change
consists in maintaining a lower bound in addition to the up-
per (optimistic) bound maintained by the original algorithm,
and testing the exact same early termination criteria as in
GoalProb-AO∗. The latter is valid because, as before, V U (s)
and V L(s) are upper and lower bounds, and πL is always a
closed policy. Note that this is true even in the general/cyclic
case, i. e., if early termination applies then we can terminate
the overall FRET process.

The only other change we make is an additional stopping
criterion for trials in the cyclic case, namely if the current
state s is ε-consistent. Kolobov et al. (2011) use this criterion
to keep trials from getting trapped in 0-reward (non-goal) cy-
cles. The criterion preserves the property that, upon regular
termination, all states reachable using πU are ε-consistent. 4

In the cyclic case, the V U fixed point found by LRTDP
may be sub-optimal, so we have to use FRET. In the acyclic
case, we use ε = 0, and a single call to LRTDP suffices.

We will usually omit the “GoalProb-” in algorithm names.

4The updates during trials are, in difference to the original
LRTDP formulation, not related to a trial-stopping guarantee in
goal probability maximization. They just turn out to consistently
yield (small) advantages empirically, so we keep them in here.

Keep in mind though that our variants of AO∗ and LRTDP
differ from the standard versions, in particular in early ter-
mination which depends on the objective MaxProb, AtLeast-
Prob, ApproxProb. To study early termination capabilities,
for X ∈ {AO∗, LRTDP} we will consider variants X|U and
X|L, maintaining only V U respectively only V L. Early ter-
mination criteria involving the non-maintained bound are
disabled. For X|U, this leaves just the negative criterion
V U (I) < θ in AtLeastProb; X|L still has positive crite-
ria. We write X|LU to make explicit that both bounds are
used. For AO∗|L, all non-absorbing leaf states in Θ are open
(rather than only those reachable using πU), and in case of
regular termination we return πL. We do not consider a vari-
ant LRTDP|L as LRTDP without an upper bound does not
make sense.

3.4 FRET
As previously hinted, Kolobov et al.’s (2011) FRET per-
forms an iteration of complete searches. Within each itera-
tion, LRTDP or some other heuristic search algorithm finds a
fixed-point upper bound V U (more precisely, an ε-consistent
V U). In between iterations, FRET runs a trap elimination
step, which finds traps – non-goal strongly connected com-
ponents – in the greedy-policy graph with respect to V U , and
forces the next search iteration to not include these traps.

More precisely, FRET terminates if the greedy-policy
graph does not contain a trap and otherwise removes every
trap T in that graph by collapsing T ’s states into a single
state sT . The incoming transitions of sT are those incoming
to any state of the trap, and whose outgoing transitions are
those transitions of trap states exiting the trap. This trans-
formation obviously prevents T from occuring again in later
iterations. It does not affect V ∗ as by definition the trap
states have identical V ∗ values. As there is only a finite
number of possible traps in the state space, FRET eventu-
ally finds a V U whose greedy-policy graph does not contain
any traps. From that graph, a V U -greedy policy is extracted,
which does not contain traps and hence is proper. In this
way, FRET guarantees convergence to optimality. (This is
the correctness argument given by Kolobov in his disserta-
tion (Kolobov 2013).)

Now, in Kolobov et al.’s formulation, trap elimination
considers the graph induced by all actions greedy with re-
spect to V U . We will refer to this design as FRET-V U .
Our alternative design, FRET-πU , instead considers only the
graph induced by the actions πU actually selected into the
current greedy policy. It is easy to see that this alternative
method is still correct. The arguments above remain intact
exactly as stated, the only difference being that we termi-
nate based on whether the current V U -greedy policy πU is
proper.

FRET-V U potentially eliminates more traps in each iter-
ation, and may hence require less iterations. Yet each trap
elimination step may be much more costly. In particular,
in goal probability analysis, V U often is 1 almost every-
where in the first step, and the graph considered by FRET-
V U is almost the entire reachable state space. As we shall
see, FRET-πU clearly outperforms FRET-V U on the stan-
dard benchmarks.

4 State-Space Reduction via Determinized
Bisimulation

Bisimulation is a known method to reduce state space
size in MDPs/probabilistic planning (e. g. (Dean and Gi-
van 1997)). The idea essentially is to group equivalent
sets of states together as block states, and then solve the
smaller MDP over these block states. Here, we observe that
this approach can be fruitfully combined with state-of-the-
art classical planning techniques, namely merge-and-shrink
heuristics (Helmert et al. 2014), which allow to effectively
compute a bisimulation over the determinized state space.
Determinized-bisimilar states are bisimilar in the probabilis-
tic state space as well, so this identifies a practical special
case of probabilistic bisimulation given a factored (STRIPS-
like) problem specification.

Let us spell this out in a little more detail. Given a task Π
(with or without budget limit), a probabilistic bisimulation
for Π is a partitioning P = {B1, . . . , Bn} of Π’s state set
S so that, for every Bi, Bj ∈ P , every action a, and every
s, t ∈ Bi, the following two properties are satisfied (Dean
and Givan 1997):

(i) a is applicable in s iff a is applicable in t; and
(ii) if a is applicable in s and t, then∑

o∈O(a),sJoK∈Bj

p(o) =
∑

o∈O(a),tJoK∈Bj

p(o)

Dean and Givan (1997) show that an optimal solution to the
bisimulation of an MDP induces an optimal solution to the
MDP itself. In other words, it suffices to work at the level of
the block states Bi.

Now, denote by Πdet the all-outcomes determinization of
Π(e. g. (Yoon, Fern, and Givan 2007; Little and Thiebaux
2007)), with a separate action adeto for every a and o ∈ O(a),
inheriting a’s precondition and o’s adds, deletes, and cost.
A determinized bisimulation for Π is a partitioning P =
{B1, . . . , Bn} of Π’s state set S so that, for every Bi, Bj ∈
P , every determinized action adeto , and every s, t ∈ Bi,
the following two properties are satisfied (Milner 1990;
Helmert et al. 2014):
(a) adeto is applicable in s iff adeto is applicable in t; and
(b) if adeto is applicable in s and t, then sJadeto K ∈ Bj iff

tJadeto K ∈ Bj .
It is easy to see that such {B1, . . . , Bn} also is a probabilis-
tic bisimulation for Π. Since an action adeto is applicable in a
state s iff the corresponding action a of the original MDP is
applicable in s, (a) directly implies (i). From (b), we know
that for every action a applicable to s, t, and for each out-
come o ∈ O(a), we have sJadeto K ∈ Bj iff tJadeto K ∈ Bj .
This obviously implies (ii); it is more restrictive than needed
as it insists on the subset of outcomes being the same on both
sides, rather than only their summed-up probability being the
same.

To compute a determinized bisimulation for Π, one can
use merge-and-shrink with the widely employed shrinking
strategies based on bisimulation. As we shall see in the ex-
periments, this often still incurs a prohibitive overhead, but

also often is feasible and leads to substantial state space size
reductions. In some cases, it results in tremendous perfor-
mance improvements.

5 Dead-End Pruning
Dead-ends are states swhere V ∗(s) = 0. One can treat such
s exactly like lost states S⊥ (except for setting πL(s) :=
∗). Apart from this pruning itself, for the heuristic search
algorithms this provides a non-trivial initialization of V U ,
typically leading to additional search reductions.

Kolobov et al. (2011) employ SixthSense (Kolobov,
Mausam, and Weld 2010), which learns dead-end detec-
tion rules by generalizing from information obtained us-
ing a classical planner. Here we instead exploit the power
of classical-planning heuristic functions, readily available
in our FD implementation framework. This works espe-
cially well in limited-budget planning, where we can use
lower bounds on determinized remaining cost to detect states
with insufficient remaining budget. Note that this is nat-
ural and effective using admissible remaining-cost estima-
tors, yet would be impractical using an actual planner (which
would need to be optimal and thus prohibitively slow). For
the general case, we can use any heuristic function able
to detect dead-ends (returning ∞), which applies to most
known heuristics. Indeed, merge-and-shrink heuristics have
recently been shown to be extremely competitive dead-end
detectors (Hoffmann, Kissmann, and Torralba 2014).

To make this concrete, consider a state s in a task Π, and
denote as before by Πdet the all-outcomes determinization
of Π. Let h be a classical-planning heuristic function. If
h guarantees to return ∞ only on unsolvable states, and
h(s) = ∞ on Πdet , then there exists no sequence of ac-
tion outcomes achieving the goal from s, so V ∗(s) = 0. If
Π is a limited-budget task, h is admissible, and b(s) < h(s),
then we cannot achieve the goal from s within the budget,
and thus also V ∗(s) = 0.

We experiment with state-of-the-art heuristic functions,
namely (a) an admissible landmark heuristic as per Karpas
and Domshlak (2009), (b) LM-cut (Helmert and Domsh-
lak 2009), (c) several variants of merge-and-shrink heuris-
tics, and (d) hmax (Bonet and Geffner 2001) as a simple
and canonical option. (a) turned out to perform consistently
worse than (b), so we will report only on (b) – (d).

For limited-budget planning, we also considered to adopt
the problem reformulation by Domshlak and Mirkis (2015)
for oversubscription planning, which reduces the budget b
using landmarks and in exchange allows to traverse yet non-
used landmarks at a reduced cost during search. Somewhat
surprisingly, however, pruning states whose reduced budget
is < 0 is equivalent to the much simpler method pruning
states whose heuristic (a) exceeds the remaining budget. The
added value of Domshlak and Mirkis’ reformulation thus
lies, not in its pruning per se, but in its compilation into
a planning language and the resulting combinability with
other heuristics.

We give full details in Appendix A. To get an intuition
why Domshlak and Mirkis’ reformulation is, per se, equiv-
alent to (a), assume for simplicity that L is a set of dis-
joint disjunctive action landmarks for the initial state, and

assume that actions have unit costs. Say we prune s if its
reduced budget, b′(s), is < 0. The reduced initial budget
is b′ := b − |L|. The reduced costs allow to apply mem-
ber actions of yet non-used landmarks at 0 cost, where the
non-used landmarks for a given search path are those l ∈ L
not touched by the path. Consider now some state s reached
on path ~a. Denote the non-used landmarks by L′. The cost
saved on ~a thanks to the reformulation is exactly that of the
used landmarks, |L\L′|. Hence b′(s) = b′−(|~a|−|L\L′|) =
(b − |L|) − |~a| + |L \ L′| = b − |~a| − |L′|. So s is pruned
in the reformulation, b′(s) < 0, iff b− |~a| < |L′|. The latter
condition, however, is exactly the pruning condition using
the simple method (a) instead.

6 Node Selection Strategies
In both GoalProb-AO∗ and GoalProb-LRTDP, good anytime
behavior on V L and/or V U may translate into early termi-
nation. We explore the potential of fostering this via (1)
biasing the tie-breaking in the selection of “best” actions πU
greedy with respect to V U , and (2) biasing the outcome-state
sampling during trials (LRTDP), respectively the choice of
expanded leaf states (AO∗). To be precise regarding the lat-
ter: As usual, we maintain “state open” flags in AO∗, true
if a state has open descendants within the πU policy graph.
We select the leaf state to expand by going forward from I
using πU , and if an action has more than one open outcome
state t, we select a t best according to the bias.

We experimented with a variety of strategies. In what fol-
lows, where a strategy specifies one of (1) or (2) only, the
other setting is as in the default strategy. That strategy cor-
responds to the standard use of AO∗ and LRTDP. We use
arbitrary tie-breaking for (1), but in a fixed manner, chang-
ing πU (s) only if some other action becomes strictly better
in s, as suggested by Bonet and Geffner for LRTDP (2003).
There is no bias on outcome states in AO∗ (an open outcome
state is selected arbitrarily), and the bias in LRTDP is by out-
come probability. We also tried this most-prob-outcome bias
strategy in AO∗, where the most likely open outcome state
is selected.

The h-bias strategy prefers states with smaller h value,
where the heuristic h is the same one used for dead-end
pruning.5 Precisely, for action selection tie-breaking (1),
from those actions a maximizing the optimistic expected
goal probability

∑
t P (s, a, t)V U (t), we select an a mini-

mizing the expected heuristic value
∑
t P (s, a, t)h(t). The

outcome-state bias (2) is obtained by renormalizing the
weighed probabilities 1

h(t) ∗ P (s, a, t), so we prefer high
probability outcomes with small h value.

Inspired by BRTDP (McMahan, Likhachev, and Gor-
don 2005), we experiment with a gap-bias strategy, biasing

5We also experimented with a strategy using merge-and-shrink
with determinized action costs set to the negated logarithm of
outcome probability (compare e. g. (Jimenez, Coles, and Smith
2006)). This is compelling in theory because, then, a perfect
bisimulation-based heuristic as per Nissim et al. (2011) corre-
sponds to the exact goal probability of the best outcome sequence
from a state. Unfortunately, as we show in the next section, com-
puting such a merge-and-shrink heuristic is often infeasible.

search towards states with large V U − V L gaps. Precisely,
for (1) we break ties in favor of actions a maximizing the
expected gap

∑
t P (s, a, t)[V U (t)− V L(t)], and for (2) we

renormalize the weighed probabilities [V U (t) − V L(t)] ∗
P (s, a, t).

Inspired by common methods in classical planning, e. g.
(Hoffmann and Nebel 2001; Helmert 2006; Richter and
Helmert 2009), we experiment with a preferred actions strat-
egy, which in (1) prefers to set πU (s) to an action a partici-
pating in a delete-relaxed determinized plan for s, if such a
maximizing

∑
t P (s, a, t)V U (t) exists.

AO∗|L is a special case, as we do not maintain an upper
bound and thus there is no selection (1) of actions πU greedy
with respect to V U . We apply node selection strategies for
(2) directly to the set of (all) leaf states in the current search
graph Θ. The default strategy is depth-first, the rationale
being to try to reach absorbing states quickly. The h-bias
strategy selects a deepest leaf with minimal h value, the pre-
ferred actions strategy selects a deepest open leaf reachable
using only preferred actions. We furthermore experiment
with a breadth-first strategy, just for comparison.

7 Experiments
We implemented all the algorithms in Fast Downward (FD)
(Helmert 2006), and ran experiments on an extensive suite
of benchmarks. In what follows, we first say a few words on
our implementation, and describe the benchmarks. We then
summarize our experiments on acyclic benchmarks (where
FRET is not needed), then the ones for cyclic benchmarks
(where FRET is needed).

7.1 Experiments Setup
Implementation As our model pertains to goal-directed
MDPs with a limited number of (explicitly listed) outcomes
per action, naturally we use PPDDL (Younes et al. 2005),
rather than RDDL (Sanner 2010; Coles et al. 2012), as the
surface-level language. FD’s pre-processes were extended
to handle PPDDL, and we added support for specifying a
budget limit.

Naturally, given the FD implementation framework in
contrast to previous works on optimal probabilistic planning,
we implemented all algorithms from scratch. For FRET, we
closely followed the original implementation, up to details
not specified by Kolobov et al. (2011), based on personal
communication with Andrey Kolobov. (Kolobov’s original
source code is not available anymore, which also plays a role
in our state-of-the-art comparison, see next.)

Given the scant prior work on optimal goal probability
analysis, as explained in the introduction, the state of the art
is represented by topological VI, by LRTDP|U with dead-
end pruning on acyclic problems, and by FRET-V U using
LRTDP|U with dead-end pruning on cyclic problems. All
these configurations are particular points in the space of con-
figurations we explore, so the comparison to the state of the
art is part of our comparison across configurations. The
only thing missing here is the particular form of dead-end
pruning, which was SixthSense in the only prior work, by
Kolobov et al. (2011), using such pruning. As SixthSense

is a complex method and advanced dead-end pruning via
heuristic functions is readily available in our framework, we
did not re-implement SixthSense. Our discussion of cyclic
problems in Section 7.3 includes a detailed comparison of
our results with those by Kolobov et al., on IPPC Explod-
ingBlocks which is the only domain considered by Kolobov
et al.

Benchmark Suite Our aim being to comprehensively ex-
plore the relevant problem space, we designed a broad
suite of benchmarks, 1089 instances in total, based on do-
mains from the IPPC, resource-constrained planning, and
pentesting. From the IPPC, we selected those PDDL do-
mains in STRIPS format, or with moderate non-STRIPS
constructs easily compilable into STRIPS. This resulted in
10 domains from IPPC’04 – IPPC’08; we selected the most
recent benchmark suite for each of these. For resource-
constrained planning, we adopted the NoMystery, Rovers,
and TPP benchmarks by Nakhost et al. (2012), more pre-
cisely those suites with a single consumed resource (fuel,
energy, money), which correspond to limited-budget plan-
ning.6 We created probabilistic versions by adding uncer-
tainty about the underlying road map, akin to the Canadian
Traveler scenario, each road segment being present with a
given probability (this is encoded through a separate, prob-
abilistic, action attempting a segment for the first time). For
simplicity, we set that probability to 0.8 throughout. For
pentesting, we modified the POMDP generator by Sarraute
et al. (2012), which itself is based on a test scenario used at
Core Security (http://www.coresecurity.com/). The
generator uses a network consisting of an exposed part, a
sensitive part, and a user part. It allows to scale the numbers
H of hosts and E of exploits. We modified the generator to
output PPDDL encodings of Hoffmann’s (2015) attack-asset
MDP pentesting models. Sarraute et al.’s POMDP model
and solver (SARSOP (Kurniawati, Hsu, and Lee 2008),
which does not guarantee optimality) scale to H = 6, E =
10.7 For our benchmarks, we fixed H = E for simplic-
ity (and to obtain a number of instances similar to the other
benchmark domains). We scaled the instances from 6 . . . 20
without budget limit, and from 10 . . . 24 with budget limit.

From each of the above benchmark task Π, except the
pentesting ones, we obtained several limited-budget bench-
marks, as follows. We set outcome costs to 1 where not
otherwise specified. We determined the minimum budget,
bmin, required to achieve non-0 goal probability. For the
resource-constrained benchmarks, bmin is determined by the
generator itself, as the minimum amount of resource re-
quired to reach the goal in the deterministic domain version.
For all other benchmarks, we ran FD with A∗ and LM-cut
on the all-outcomes determinization of Π. If this failed, we
skipped Π, otherwise we read bmin off the cost of the opti-

6To make the benchmarks feasible for optimal probabilistic
planning, we had to reduce their size parameters (number of lo-
cations etc). We scaled all parameters with the same number < 1,
chosen to get instances at the borderline of feasibility for VI.

7For modeling/solving the entire network, that is. With their
domain-dependent decomposition algorithm “4AL”, trading accu-
racy for performance, Sarraute et al. scale up much further.

mal plan and created several limited-budget tasks Π[C], dif-
fering in their constrainedness level C. Namely, following
Nakhost et al. (2012), we set the global budget b in Π[C] to
b := C ∗ bmin, so that C is the factor by which the available
budget exceeds the minimum needed (to be able to reach the
goal at all). We let C range in {1.0, 1.2, . . . , 2.0}.

For AtleastProb, we let θ range in {0.1, 0.2, . . . , 1.0}
(θ = 0 is pointless). For ApproxProb, we let δ range in
{0.0, 0.1, . . . , 0.9} (δ = 1 is pointless). On cyclic problems,
the convergence parameter ε was set to 0.00005 (the same
value as used by Kolobov et al. (2011)). All experiments
were run on a cluster of Intel E5-2660 machines running at
2.20 GHz, with time/memory cut-offs of 30 minutes/4 GB.

7.2 Acyclic Planning
We consider first acyclic planning. This pertains to all
budget-limited benchmarks, to pentesting with and without
budget limit, as well as to IPPC TriangleTireworld (moves
can be made in only one direction so the state space is
acyclic). We consider the 3 objectives MaxProb, AtLeast-
Prob, and ApproxProb. We run all 6 search algorithm vari-
ants, each with up to 5 node selection strategies as explained.
For dead-end pruning, we run LM-cut, as well as merge-
and-shrink (M&S) with the state-of-the-art shrinking strate-
gies based on bisimulation and an abstraction-size boundN ;
we show data for N = ∞ and N = 100k (we also tried
N ∈ {10k, 50k, 200k} which resulted in similar behavior).
We also run variants without dead-end pruning. We use the
deterministic-bisimulation (BS) reduced state space only for
VI, as the cases where the state space reduction succeeds are
easily solved by that simplest search algorithm. Given BS,
we do not require any dead-end pruning because all dead-
ends are already removed from the reduced state space.

Overall, this yields 217 different possible algorithm con-
figurations. We do not actually test all these configurations,
however, as not all of them are interesting. We instead or-
ganize our experiment in terms of three parts (1)–(3), each
focusing on a particular issue of interest. Consider Table 1,
which gives an overview of the configurations considered in
each experiment. The design of the experiments is as fol-
lows:
(1) We first evaluate different search algorithms and dead-

end pruning methods on MaxProb, fixing the node se-
lection strategy to default.
We omit here AO∗|LU and LRTDP|LU, because, as ex-
plained earlier, for MaxProb heuristic search, maintain-
ing V L is redundant (early termination is dominated by
regular termination).
Using the default node selection strategy make sense
here because node selection strategies are relevant only
for anytime performance, i. e., early termination. This
plays a minor role in MaxProb, whose only early ter-
mination possibility is the exceptional case where the
initial state lower bound becomes V L(I) = 1.

(2) We next fix the best-performing dead-end pruning
method, and analyze search algorithm performance in
AtLeastProb and ApproxProb as a function of the pa-
rameter θ respectively δ.

Experiment Search Algorithm Pruning Node selection # Configs

(1) MaxProb search
& pruning

VI, AO∗|L, AO∗|U,
LRTDP|U, VI on BS

ALL (4) default 20

(2) AtLeastProb &
ApproxProb pa-
rameters

VI, AO∗|L, AO∗|U,
AO∗|LU, LRTDP|U,
LRTDP|LU, VI on BS

LM-cut default 14

(3) AtLeastProb
& ApproxProb
node selection

VI, AO∗|L, AO∗|U,
AO∗|LU, LRTDP|U,
LRTDP|LU, VI on BS

LM-cut
ALL (1, 4, 4,
5, 3, 4, and 1

respectively)
44

Table 1: Overview of algorithms tested on acyclic problems,
Section 7.2. Numbers in brackets give the number of options
where that number is not obvious. In (2) and (3), note that
the total number of configurations gets multiplied by 2 be-
cause AtLeastProb vs. ApproxProb result in different algo-
rithm configurations (using different termination criteria).

We again fix the node selection strategy to default here,
leaving their examination to experiment (3).

(3) We finally let the node selection strategies range, keep-
ing otherwise the setting of experiment (2).

We will conclude our discussion with an illustration of typi-
cal anytime behavior.

(1) Search Algorithms & Pruning Methods in MaxProb
Table 2 shows coverage data, i. e., the number of benchmark
tasks solved within the given time/memory limits.

VI AO∗|L AO∗|U LRTDP|U VI
– LM M&S – LM M&S – LM M&S – LM M&S on

Domain # N ∞ N ∞ N ∞ N ∞ BS

IPPC Benchmarks
TriaTire 10 4 4 4 4 4 4 4 4 10 10 10 10 10 10 10 10 10

IPPC Benchmarks with Budget Limit
Blocksw-b 66 24 28 24 24 24 28 24 24 24 28 24 24 24 28 24 24 24
Boxworl-b 18 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0
Drive-b 90 90 90 90 52 90 90 90 52 90 90 90 52 90 90 90 52 52
Elevator-b 90 71 82 72 33 70 82 72 33 65 77 67 33 79 86 79 33 33
ExpBloc-b 84 32 46 38 37 32 46 38 37 39 57 39 37 38 65 39 37 37
Random-b 60 27 33 35 33 27 33 35 33 35 44 36 33 36 44 36 33 33
RecTire-b 36 30 31 36 36 30 31 36 36 30 31 36 36 30 31 36 36 36
Tirewor-b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
TriaTire-b 60 45 52 52 52 45 52 52 52 46 55 55 55 47 57 57 57 60
Zenotra-b 36 15 16 16 18 15 16 16 18 14 16 16 17 15 17 16 17 17

Probabilistic Resource-Constrained Benchmarks with Budget Limit
NoMystery-b 60 11 37 43 44 11 36 42 43 12 39 47 47 12 41 50 50 51
Rovers-b 60 23 39 31 40 23 38 31 40 23 44 33 45 25 46 35 46 50
TPP-b 60 18 35 25 25 16 35 24 24 15 37 26 22 19 38 27 25 26

Pentesting Benchmarks
Pentest 15 9 9 9 8 9 9 9 8 9 9 9 8 9 9 9 8 8
Pentest-b 90 57 63 62 37 57 63 62 37 57 63 63 37 57 63 63 37 37∑

925 546 658 627 533 543 656 625 531 559 693 641 546 581 718 661 555 564

Table 2: Acyclic planning. MaxProb coverage (number of
tasks solved within time & memory limits). Best values in
boldface. Domains “-b” modified with budget limit. “#”:
number of instances. “–”: no pruning; else pruning, against
remaining budget on “-b” domains, based on h = ∞ on
other domains. “LM”: LM-cut; “M&S”: merge-and-shrink,
“N” size bound N = 100k, “∞” no size bound. “VI on
BS”: VI run on reduced (bisimulated) state space.

Of the pruning methods, LM-cut clearly stands out. For
every search algorithm, it yields the by far best overall cover-
age. M&S has substantial advantages only in RectangleTire-
world and NoMystery-b. Note that, forN =∞, overall cov-
erage is worse than for using no pruning at all. This is due

to the prohibitive overhead, in some domains, of computing
a bisimulation on the determinized state space. And, hav-
ing invested this effort, it pays off more to use the bisimula-
tion as a reduced MDP state space (“VI on BS”), rather than
only for dead-end pruning. An extreme example is Triangle-
Tireworld. Far beyond the standard benchmarks in Table 2
(triangle-side length 20), VI on BS scales to side length 74
in both the original domain and the limited-budget version.
For comparison, the hitherto best solver by far was Prob-
PRP (Camacho, Muise, and McIlraith 2016), which scales
to side length 70 on the original domain,8 and is optimal
only for goal probability 1, i. e., in the presence of strong
cyclic plans.

Of the search algorithms, AO∗|L is better than VI only in
case of early termination on V L = 1, when a full-certainty
policy is found before visiting the entire state space. This
happens very rarely here, and AO∗|L is dominated by VI
(this changes for AtLeastProb, Figures 4 (a) and 5 below).
All failures of VI are due to memory or runtime exhaustion
while building the reachable state space. LRTDP|U clearly
outperforms AO∗|U, presumably because it tends to find ab-
sorbing states more quickly.

To gauge the efficiency of heuristic search vs. blind search
on MaxProb, compare LRTDP|U vs. VI in Table 2. Contrary
to the intuition that a good initial goal probability estima-
tor is required for heuristic search to be useful, LRTDP|U is
clearly superior. Its advantage does grow with the quality
of the initialization; LM-cut yields the largest coverage in-
crease by far. However, even without dead-end pruning, i. e.,
with the trivial initialization of V U , LRTDP|U dominates VI
throughout, and improves coverage in 8 of the 16 domains.

101 102 103 104 105 106 107
101

102

103

104

105

106

107

101 102 103 104 105 106 107
101

102

103

104

105

106

107

(a) (b)
Figure 3: Acyclic planning. Number of states visited, for
VI (x) vs. LRTDP|U (y), with no pruning (a) respectively
LM-cut pruning (b).

Figure 3 sheds additional light on this by comparing the
respective search space sizes directly. The non-trivial ini-
tialization using LM-cut clearly helps. But even without it,
gains of around 1 order of magnitude occur frequently, and
larger gains (up to 3 orders of magnitude) occur in rare cases.
As previously hinted, these observations have not been made
in this clarity before: While Kolobov et al. (2011) also re-
port LRTDP to beat VI on MaxProb, they consider only a
single domain; they do not experiment with trivially initial-
ized V U ; and they do not use dead-end pruning in VI, so that

8We could not run the limited-budget domain as Prob-PRP does
not natively support a budget, and hard-coding the budget into
PPDDL resulted in encodings too large to pre-process.

VI AO∗|U LRTDP|U
– LM M&S – LM M&S – LM M&S

Domain # N ∞ N ∞ N ∞
IPPC Benchmarks

TriaTire 1 3.5 7.4 4.1 4.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0
1 0.1 0.3 1.0 1.0 0.2 0.5 1.0 1.0

IPPC Benchmarks with Budget Limit
Blocksw-b 18 0.1 0.6 2.5 2.3 1.8 0.8 3.0 2.8 0.2 0.6 2.3 2.4
Drive-b 20 0.0 0.2 6.9 14.0 0.1 0.2 8.0 15.4 0.0 0.2 7.1 14.2
ONLY-H 1 0.0 0.1 1.1 1.1 0.0 0.1 0.9 1.0
Elevator-b 12 0.1 0.1 1.8 4.1 0.0 0.0 2.2 4.5 0.0 0.0 1.8 4.1
ONLY-H 3 0.0 0.0 1.0 0.9 0.0 0.0 0.8 0.7
ExpBloc-b 18 6.0 1.0 15.5 7.5 1.6 0.0 16.0 8.0 0.8 0.1 14.2 7.1
NON-TRIVIAL 7 25.3 4.8 36.2 45.7 11.5 0.1 33.0 45.9 4.0 0.1 29.7 42.1
ONLY-H 3 29.3 0.1 40.9 40.4 21.4 0.1 30.7 34.9
Random-b 21 0.5 0.6 4.8 4.8 0.3 0.3 5.2 5.2 0.3 0.3 4.7 4.8
NON-TRIVIAL 4 13.9 10.1 39.2 43.2 3.0 0.9 44.4 49.9 1.4 0.8 36.3 43.2
ONLY-H 3 9.2 1.9 11.8 12.3 9.2 1.8 10.1 10.6
RecTire-b 18 9.0 19.4 1.2 1.2 73.6 20.2 1.3 1.3 43.1 17.6 1.3 1.3
NON-TRIVIAL 12 20.4 57.3 2.3 2.3 178.9 61.8 2.4 2.4 106.8 51.4 2.3 2.3
TriaTire-b 17 10.5 0.5 0.6 0.6 14.5 0.4 0.5 0.5 9.5 0.3 0.4 0.4
NON-TRIVIAL 6 27.7 5.9 3.2 3.3 31.3 2.4 2.1 2.0 14.7 2.0 1.7 1.6
ONLY-H 3 6.3 0.3 0.5 0.5 3.5 0.2 0.3 0.3
Zenotra-b 14 2.7 4.9 15.0 9.0 56.0 5.7 18.9 11.8 13.0 4.3 15.9 9.2
NON-TRIVIAL 10 5.6 16.5 27.0 13.5 163.4 19.3 37.2 18.7 25.3 13.6 30.1 14.5

Probabilistic Resource-Constrained Benchmarks with Budget Limit
NoMystery-b 11 15.6 0.4 0.3 0.3 242.6 0.4 0.3 0.3 27.8 0.4 0.3 0.3
ONLY-H 1 1623.4 8.9 0.6 0.6 158.8 7.8 0.5 0.4
Rovers-b 21 9.7 2.3 11.8 17.0 96.2 2.3 16.5 21.7 12.8 2.0 11.6 16.1
NON-TRIVIAL 13 20.9 12.9 20.2 33.7 236.6 12.0 33.3 45.1 24.9 9.7 19.5 30.3
ONLY-H 3 157.6 1.9 13.7 22.5 27.9 1.9 9.7 19.4
TPP-b 9 8.5 1.6 14.9 69.8 63.2 1.3 24.6 70.2 12.7 1.3 16.0 69.1
NON-TRIVIAL 5 22.4 5.7 18.5 76.2 203.5 4.5 37.3 78.2 31.3 4.2 20.1 76.3

Pentesting Benchmarks
Pentest 3 0.9 0.7 3.2 4.4 5.9 2.3 5.7 6.5 3.8 3.0 5.8 6.3
NON-TRIVIAL 1 2.7 2.0 6.5 17.2 23.0 8.1 20.6 23.8 15.0 10.4 16.6 24.4
Pentest-b 28 0.0 0.0 6.6 16.5 0.5 0.0 8.2 19.8 0.0 0.0 7.3 18.2
NON-TRIVIAL 5 3.2 2.2 10.1 92.7 16.0 4.5 15.0 108.9 8.5 5.2 15.2 107.6
ONLY-H 1 0.1 0.0 0.9 0.9 0.1 0.0 1.0 1.0

Table 3: Acyclic planning. MaxProb geometric mean run-
time (in CPU seconds). “#” gives the size of the instance
basis, namely those instances solved by all shown configu-
rations, skipping instances solved in under 1 second by all
configurations. “NON-TRIVIAL” uses only those instances
not solved by VI in < 1 second. “ONLY-H” uses those in-
stances commonly solved by AO∗|U and LRTDP|U but not
solved by VI. Rows with empty instance basis are skipped.

LRTDP already benefits from a smaller state space, and the
impact of heuristic search remains unclear.

Tables 3 and 4 complement the above with per-domain
mean runtime and visited-states data, across search algo-
rithms and heuristic functions. Data for AO∗|L is not shown
as its coverage is dominated by VI (cf. Table 2), and the
same goes for its runtime and search space. We include the
“NON-TRIVIAL” rows in the tables to show behavior on
the more interesting instances, where the averages are not
skewed by the many very small instances in most domains.
We include the “ONLY-H” rows to elucidate the behavior on
the most challenging instances beyond reach of VI.

A basic observation from this data is that the main ad-
vantage of heuristic search here lies in the ability to solve
larger instances than blind search (VI). On those instances
solved by VI, it is typically fast, often faster than heuris-
tic search and rarely outperformed significantly. This is de-
spite having larger search spaces, i. e., heuristic search does
visit less states but suffers from having to do more updates
on these (recall that VI here updates each visited state ex-
actly once). Significant runtime advantages over VI (in the
“NON-TRVIAL” rows) are obtained by heuristic search only
in ExplodingBlocks–b, Random–b, and TriangleTireworld–

VI AO∗|U LRTDP|U
– LM M&S – LM M&S – LM M&S

Domain # N ∞ N ∞ N ∞
IPPC Benchmarks

TriaTire 1 843.1 843.1 843.1 843.1 0.2 0.2 0.2 0.2 0.8 0.7 0.7 0.7
1 843.1 843.1 843.1 843.1 0.2 0.2 0.2 0.2 0.8 0.7 0.7 0.7
1 0.5 0.5 0.5 0.5 5.5 2.2 2.2 2.2

IPPC Benchmarks with Budget Limit
Blocksw-b 18 12.7 5.8 2.8 2.8 12.0 5.2 2.5 2.5 12.3 5.3 2.5 2.5
Drive-b 20 4.2 2.4 1.8 1.2 4.2 2.2 1.6 1.0 4.0 2.1 1.5 1.0
ONLY-H 1 2.3 1.3 0.8 0.8 2.2 1.2 0.7 0.7
Elevator-b 12 12.8 3.9 7.2 3.0 3.3 0.3 0.4 0.1 3.6 0.3 0.4 0.1
ONLY-H 3 1.5 0.2 0.1 0.1 1.6 0.2 0.1 0.1
ExpBloc-b 18 1.1K 41.9 92.1 33.2 112.2 1.2 12.2 0.8 117.8 1.4 12.5 1.2
NON-TRIVIAL 7 4.1K 213.2 859.9 179.0 603.1 3.6 133.6 2.6 588.0 4.0 106.8 3.2
ONLY-H 3 2.6K 1.5 17.2 1.1 3.1K 2.1 21.3 1.6
Random-b 21 4.5 1.7 1.7 1.7 1.9 0.8 0.8 0.8 2.0 0.8 0.8 0.8
NON-TRIVIAL 4 1.0K 130.0 127.4 127.4 42.6 6.4 6.4 6.4 43.7 6.4 6.4 6.4
ONLY-H 3 762.1 5.4 1.5 1.5 799.6 5.4 1.5 1.5
RecTire-b 18 50.6 5.6 1.5 1.5 49.8 5.1 1.2 1.2 50.4 5.1 1.3 1.3
NON-TRIVIAL 12 81.9 8.9 2.4 2.4 81.5 8.2 1.9 1.9 81.6 8.3 2.0 2.0
TriaTire-b 17 1.4K 6.4 6.4 6.4 898.6 3.0 3.0 3.0 896.2 2.9 2.9 2.9
NON-TRIVIAL 6 4.1K 229.4 229.4 229.4 1.8K 52.5 52.5 52.5 1.6K 44.5 44.5 44.5
ONLY-H 3 422.9 2.5 2.5 2.5 370.5 2.0 2.0 2.0
Zenotra-b 14 491.5 30.2 35.8 18.2 491.3 29.9 35.2 17.9 288.2 23.6 27.1 14.1
NON-TRIVIAL 10 967.4 104.4 164.6 64.0 967.1 102.9 161.1 62.3 478.1 75.3 114.9 45.8

Probabilistic Resource-Constrained Benchmarks with Budget Limit
NoMystery-b 11 2.8K 6.9 0.5 0.5 2.6K 6.6 0.4 0.4 2.6K 6.4 0.4 0.4
ONLY-H 1 12.4K 122.4 14.1 14.1 12.7K 122.3 16.4 16.4
Rovers-b 21 1.1K 51.8 91.5 22.6 702.9 36.1 58.6 12.4 873.7 38.5 70.8 14.3
NON-TRIVIAL 13 2.2K 290.1 512.6 137.6 1.1K 176.0 281.4 65.9 1.6K 190.0 366.2 76.3
ONLY-H 3 1.3K 34.0 55.2 24.1 2.0K 38.6 72.8 27.8
TPP-b 9 1.1K 49.6 265.4 10.9 660.9 33.0 183.3 5.7 897.2 38.5 220.7 7.6
NON-TRIVIAL 5 3.0K 178.7 894.6 36.6 1.5K 100.4 549.5 14.3 2.1K 120.1 701.9 21.5

Pentesting Benchmarks
Pentest 3 74.3 66.3 66.4 66.3 74.3 66.3 66.4 66.3 74.3 66.3 66.4 66.3
NON-TRIVIAL 1 194.3 173.4 173.8 173.4 194.3 173.4 173.8 173.4 194.3 173.4 173.8 173.4
Pentest-b 28 19.7 6.3 7.8 6.3 19.5 6.3 7.7 6.3 19.7 6.2 7.7 6.2
NON-TRIVIAL 5 238.1 165.1 169.2 165.1 237.2 165.1 169.0 165.1 238.1 165.1 169.1 165.1
ONLY-H 1 4.7 3.3 3.3 3.3 4.8 3.3 3.3 3.3

Table 4: Acyclic planning. MaxProb geometric mean search
space size (number of different states visited before termina-
tion) in multiples of 1000. Same setup and presentation as
in Table 3.

b. The search space reductions are much more pronounced.
In particular, even without dead-end detection i. e. with a
trivial initialization of the admissible bound, search spaces
are reduced in all domains except RectangleTireworld and
Pentest.

LRTDP|U dominates AO∗|U almost throughout. Note
that, even though the search space size of AO∗|U and
LRTDP|U almost always is similar, AO∗|U requires a lot
more time than LRTDP|U. This is because it performs more
updates. Across the non-trivial commonly solved instances
in the table, the geometric mean of the number of updates
done in AO∗|U is about 4 times higher than that in LRTDP|U.

Regarding the impact of dead-end pruning, the gains for
VI are typically moderate. The gains for heuristic search
are much more pronounced, thanks to the stronger heuris-
tic function initialization. Especially AO∗|U benefits a lot.
LRTDP|U benefits as well, but to a smaller extent, partly
because it is already more effective in the first place. Com-
paring across different dead-end pruning methods, although
M&S with N = ∞ clearly leads to the largest search space
reductions, the overhead of bisimulation computation out-
weighs the search space reduction in all but a few cases. In
terms of pruning power, M&S with N = 100k and the LM-
cut heuristic are overall about on par, though LM-cut has a
slight edge in terms of runtime.

(2) AtLeastProb and ApproxProb Parameter Analysis
We now turn to the weaker objectives, AtLeastProb and Ap-
proxProb. We fix LM-cut for the (almost always most ef-
fective) dead-end pruning. We examine the power of early
termination for different search algorithms and node selec-
tion strategies. This is best viewed as a function of the goal
probability threshold θ in AtLeastProb, and of the desired
goal probability accuracy δ in ApproxProb. VI forms a base-
line independent of θ. Consider Figure 4.

For AtLeastProb (Figure 4 (a)), in the interesting region
of benchmark instances not feasible for VI yet sometimes
feasible for the other search algorithms,one clear feature is
again the superiority of LRTDP over AO∗. There is now the
striking exception of AO∗|L, however, which for small val-
ues of θ approaches (and in one case, surpasses) the perfor-
mance of LRTDP. The depth-first expansion strategy is quite
effective for anytime behavior on V L and thus for termina-
tion via V L(I) ≥ θ. It is way more effective than the heuris-
tic search in AO∗|LU. As we shall see below (Figure 5), it
is often also more effective than LRTDP. In general, for all
algorithms, using V L is a clear advantage for small θ. For
larger θ, maintaining V L can become a burden, yet V U is
of advantage due to early termination on V U (I) < θ. Algo-
rithms using both bounds exhibit an easy-hard-easy pattern.

The spike at the left-hand side in Figure 4 (a), i. e., signif-
icantly worse performance for θ = 0.1 than for θ = 0.2, is
an outlier due to the Pentest domains (without them, AO∗|LU
and LRTDP|LU exhibit a strict easy-hard-easy pattern). In
contrast to typical probabilistic planning scenarios, in pen-
etration testing the goal probability – the chances of a suc-
cessful attack – are typically small, and indeed this is so in
our benchmarks. Searches using an upper bound quickly ob-
tain V U (I) < 0.2, terminating early based on V U (I) < θ
for θ = 0.2. But it takes a long time to obtain V U (I) < 0.1.

For ApproxProb (Figure 4 (b)), smaller values of δ con-
sistently result in worse performance. We see again the su-
periority of LRTDP over AO∗, with a similar though not as
pronounced exception for AO∗|L in δ regions allowing ag-
gressive early termination. We also see again the superiority
of algorithms using both bounds over those that don’t.

(3) Node Selection Strategies Figure 4 (c) examines the
effect of different node selection strategies in AtLeastProb
(the relative performance of node selection strategies is the
same in ApproxProb, so we do not include a separate figure
for that). For readability, we show only the most compet-
itive base algorithms, AO∗|L, AO∗|LU, and LRTDP|LU (as
well as the VI baseline). For LRTDP, we show only de-
fault node selection, which consistently works a little better
than the alternatives. For AO∗|L, we see that the depth-first
strategy is important (and way beyond breadth-first, which
does worse than VI). The h-bias strategy is generally on
par with depth-first. For AO∗|LU, the main observation is
that the most-prob-outcome bias is helpful, improving over
the default strategy except for high values of θ. The h-bias
consistently improves a bit on default AO∗. The gap-bias
and preferred actions strategies are not shown as they were
consistently slightly worse (apparently, the gap-bias leads to
a more breadth-first style behavior, while preferred actions

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

625

650

675

700

725

750

775

800

825

850

VI AO∗|L
LRTDP|U AO∗|U
LRTDP|LU AO∗|LU

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

625

650

675

700

725

750

775

800

825

850

VI AO∗|L
LRTDP|U AO∗|U
LRTDP|LU AO∗|LU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

625

650

675

700

725

750

775

800

825

850

LRTDP|LU(def) AO∗|L(DFS)

AO∗|L(BFS) AO∗|L(h)

AO∗|LU(def) AO∗|LU(o-prob)

AO∗|LU(h) VI

(a) (b) (c)
Figure 4: Acyclic planning. Total coverage for AtLeastProb as a function of θ in (a) and (c), for ApproxProb as a function of δ
in (b). Node selection varies in (c), default used in (a) and (b). All configurations use LM-cut dead-end pruning.

mainly cause runtime overhead).

0 50 100 150 200 250 300 350 400 450

0

0.2

0.4

0.6

0.8

1
LRTDP V U LRTDP V U LM-cut

LRTDP V L LRTDP V L LM-cut

AO∗|L AO∗|L LM-cut

0 50 100 150 200 250 300 350 400 450

0

0.2

0.4

0.6

0.8

1

LRTDP V U LRTDP V U LM-cut

LRTDP V L LRTDP V L LM-cut

AO∗|L AO∗|L LM-cut

(a) (b)
Figure 5: Acyclic planning. Anytime behavior in LRTDP|LU
(V U and V L) and AO∗|L (V L only), as a function of run-
time. Elevators instance 11, without pruning and with LM-
cut pruning, for constrainedness level C = 1.4 (a) respec-
tively C = 1.8 (b).

An Illustration of Typical Anytime Behavior To con-
clude our discussion of acyclic planning, Figure 5 exempli-
fies typical anytime behavior, i. e., the development of the
V L(I) and V U (I) bounds on the initial state value, as a
function of runtime, for LRTDP|LU and AO∗|L (using de-
fault node selection because the alternatives are not benefi-
cial for these algorithms). The benefit of LM-cut pruning
is evident. Observe that AO∗|L is way more effective than
LRTDP in quickly improving the lower bound. Indeed, the
runs shown here find an optimal policy very quickly. Across
the benchmarks solved by both AO∗|L and LRTDP, omitting
those where both took < 1 second, in 56% of cases AO∗|L
finds an optimal policy faster than LRTDP. On (geometric)
average, AO∗|L takes 66% of the time taken by LRTDP for
this purpose. On the downside, unless V ∗(I) ≥ θ, AO∗|L
must explore the entire state space. Its runs in Figure 5 ex-
haust memory for MaxProb. In summary, heuristic search is
much stronger in proving that the maximum goal probability
is found, but is often distracting for improving V L quickly.

As both parts of Figure 5 use the same base instance but
with different constrainedness levels C, we can also draw
conclusions on the effect of surplus budget. With more bud-

get, more actions can be applied before reaching absorbing
states. This adversely affects the upper bound (consistently
across our experiments), which takes a much longer time to
decrease (cf. C = 1.8 vs. C = 1.4 in Figure 5). The lower
bound, on the other hand, often increases more quickly with
higher C as it is easier to find goal states.

7.3 Cyclic Planning with FRET
We now consider cyclic planning, pertaining to the standard
IPPC benchmarks, and to probabilistic NoMystery, Rovers,
TPP without budget (nor resource-) limit. We run only
LRTDP, as AO∗ is restricted to acyclic state spaces. We use
the two different variants of FRET described earlier: FRET-
V U as per Kolobov et al. (2011), and our new variant FRET-
πU . We consider all 3 objectives, and the same 4 dead-
end pruning methods (as LM-cut returns ∞ iff the cheaper
heuristic hmax does, we use hmaxhere). We do not vary node
selection strategies as (like we have seen before) in LRTDP
these do not bring an advantage over the default strategy. We
use the deterministic-bisimulation (BS) reduced state space
with each base algorithm, as some differences do emerge (in
difference to the acyclic case) between VI and the other al-
gorithms, which now need to run FRET. Again, given BS we
do not require any dead-end pruning.

Overall, this yields 55 different possible algorithm con-
figurations. As before, not all of these are interesting, and
we instead organize our experiment in terms of parts focus-
ing on issues of interest. Specifically, we have parts (1) and
(2) as before. As node selection strategies are not relevant
here, we do not have the previous part (3). Table 5 gives an
overview.

(1) Search Algorithms & Pruning Methods in MaxProb
Table 6 shows coverage data. Most strikingly, FRET-πU
outperforms both VI and FRET-V U substantially. Note that,
in all domains except ExplodingBlocks and Rovers, the ad-
vantage over VI is obtained even without dead-end pruning,
i. e., for trivial initialization of V U . This strongly confirms
the power of heuristic search even in the absence of good
admissible goal probability estimators. Figure 6 compares
the search space sizes. The non-trivial initialization using

Experiment FRET variant Search Algorithm Pruning # Configs

(1) MaxProb search
& pruning

–, FRET-V U ,
FRET-πU

VI,
LRTDP|U ALL (4), BS 15

(2) AtLeastProb &
ApproxProb pa-
rameters

–, FRET-V U ,
FRET-πU

VI,
LRTDP|U,
LRTDP|LU

hmax 10

Table 5: Overview of algorithms tested on cyclic problems,
Section 7.3. Note that VI does not require (and is this not
combined with) FRET; we denote this (not using FRET at
all) by “–”. In (2), note that the number of configurations
gets multiplied by 2 because AtLeastProb vs. ApproxProb
result in different algorithm configurations (using different
termination criteria).

VI FRET-V U FRET-πU

– hmax M&S on – hmax M&S on – hmax M&S on
Domain # N ∞ BS N ∞ BS N ∞ BS

IPPC Benchmarks
Blocksworld 15 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Boxworld 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Drive 15 15 15 15 6 6 15 15 15 6 6 15 15 15 6 6
Elevators 15 15 15 15 5 5 15 15 15 5 5 15 15 15 5 5
ExplodingBlocks 15 4 6 4 4 4 4 6 4 4 4 5 14 5 4 4
Random 15 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0
RectangleTireworld 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
Tireworld 15 10 10 10 10 11 10 11 10 10 11 15 15 15 12 11
Zenotravel 15 3 3 3 1 0 3 3 3 1 1 3 3 3 1 1

Probabilistic Resource-Constrained Benchmarks
NoMystery 10 5 5 5 5 5 5 5 5 5 5 4 4 4 4 1
Rovers 10 5 5 5 5 9 5 5 5 5 9 9 9 9 8 9
TPP 10 6 6 6 6 6 6 6 6 6 6 8 8 8 6 6∑

164 81 83 81 60 64 81 84 81 60 65 96 105 92 64 61

Table 6: Cyclic planning. MaxProb coverage. Best values in
boldface. FRET-V U is as per Kolobov et al. (2011), FRET-
πU is our modified version. Both use LRTDP|U. Dead-end
pruning variants: “–” none, else based on heuristic value
∞, for hmax respectively merge-and-shrink (“N” size bound
N = 100k, “∞” no size bound). “on BS”: run on reduced
(bisimulated) state space.

hmax is useful, but gains of up to 3 orders of magnitude are
possible even without it.

Running the search on a deterministic-bismulation state
space is less effective on the cyclic benchmarks in Table 6,
than on the acyclic ones in Table 2. It gives a clear advantage
only in Rovers.

Table 7 gives per-domain mean runtime and visited-states
data, across search algorithms and heuristic functions. In
contrast to the acyclic case, there is only one domain where
dead end pruning is able to reduce the search space substan-
tially: ExplodingBlocks. In the other domains, there either
is no reduction or a minor/moderate one only. Among the
tested search algorithms, strikingly, FRET-πU consistently
visits the smallest number of states, by far. This advantage
typically yields better runtimes as well, with the notable ex-
ception of NoMystery where the larger number of FRET it-
erations results in a substantial slow-down, despite the much
smaller search space.

Kolobov et al. (2011) experimented only on Exploding-
Blocks, and only ran VI with no pruning vs. FRET-V U with
pruning based on SixthSense (Kolobov, Mausam, and Weld
2010). They observed a coverage of 4 for the former and of 6
for the latter, identical with our results for VI “–” vs. FRET-
V U hmax here. Figure 7 compares the results in more detail,

101 102 103 104 105 106 107
101

102

103

104

105

106

107

101 102 103 104 105 106 107
101

102

103

104

105

106

107

(a) (b)
Figure 6: Cyclic planning. Number of states visited, for VI
(x) vs. FRET-πU (y), with no pruning (a) respectively hmax

pruning (b).

1 2 3 4 5 6

102

104

106

108

VI (Kolobov)
VI

VI (hmax)

FRET-V U (Kolobov)

FRET-V U (hmax)

FRET-πU (hmax)

1 2 3 4 5 6
10−1

100

101

102

103

104

105

(a) (b)
Figure 7: Cyclic planning. Results on ExplodingBlocks, as
shown by Kolobov et al. (2011): FRET vs VI, (a) number
of states visited, (b) runtime in CPU seconds, as a function
of the IPPC instance index. Different variants included for
comparison. The data for Kolobov et al. is taken from their
paper (as this code is not available anymore), hence the run-
time comparison is modulo the different computational plat-
forms, and should be treated with care.

showing the number of states visited and the total runtime in
terms of plots over IPPC instance index as done by Kolobov
et al.

Consider first (a), the search space size. The only dif-
ference between VI (Kolobov) and our VI here is the dif-
ferent task/state representation resulting from the respective
implementation framework, the FD framework being some-
what more effective. The substantially better performance
of VI with hmax dead-end pruning shows that the omission
of Kolobov et al.’s study, using dead-end pruning in FRET
but not in VI, indeed obfuscates the possible conclusions re-
garding the effect of heuristic search vs. the effect of the
state pruning itself: with hmax pruning, VI is almost as ef-
fective as FRET-V U using the same pruning. Kolobov et
al.’s FRET-V U also is very close to this, except for explor-
ing significantly less states in the large instances. The latter
shows, especially given the more effective representation in
FD, that SixthSense is a stronger dead-end detector here than
hmax – which is hardly surprising seeing as the information
sources in SixthSense are full determinized planning as well
as h2 (Graphplan) based tests. On the other hand, these in-
formation sources are much more time-intensive than hmax,
which presumably is the reason for the runtime picture in

VI FRET-V U FRET-πU

– hmax M&S – hmax M&S – hmax M&S
Domain # N ∞ N ∞ N ∞

IPPC Benchmarks
Blocksworld 4 0.0 0.0 2.8 2.7 0.0 0.1 2.7 2.8 0.1 0.1 3.0 2.8
Drive 1 0.0 0.0 6.0 42.8 0.0 0.0 5.8 33.1 0.0 0.0 6.1 42.8
Elevators 5 0.0 0.0 2.2 1.7 0.0 0.0 2.2 1.8 0.0 0.0 2.2 1.9
ExplodingBlocks 4 2.6 0.7 19.3 18.1 15.9 0.4 31.5 17.7 15.7 0.0 28.8 17.5
Tireworld 8 7.3 10.9 14.0 35.0 60.0 55.3 60.2 86.4 0.0 0.0 3.8 24.7
Zenotravel 1 55.7 49.3 96.3 283.8 7.0 12.6 54.3 241.1 0.2 0.2 43.5 227.4

Probabilistic Resource-Constrained Benchmarks
NoMystery 4 21.5 29.8 29.1 69.4 133.9 127.0 141.4 166.7 627.3 582.4 676.4 618.7
Rovers 5 33.1 40.2 39.1 42.7 439.8 420.3 435.2 425.1 1.8 1.3 6.2 8.3
TPP 6 11.8 14.4 20.1 44.8 140.1 125.8 136.6 156.3 32.9 18.3 63.2 71.3

VI FRET-V U FRET-πU

– hmax M&S – hmax M&S – hmax M&S
Domain # N ∞ N ∞ N ∞

IPPC Benchmarks
Blocksworld 4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
Drive 1 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2
Elevators 5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.2 0.2 0.2 0.2
ExplodingBlocks 4 408.5 46.5 252.3 39.9 408.5 20.1 242.2 16.9 44.3 0.2 14.0 0.1
Tireworld 8 1.2K 1.2K 1.2K 1.2K 1.2K 974.7 974.7 974.7 0.5 0.2 0.2 0.2
Zenotravel 1 309.3 309.3 309.3 309.3 309.3 309.3 309.3 309.3 2.7 2.7 2.7 2.7

Probabilistic Resource-Constrained Benchmarks
NoMystery 4 2.6K 2.6K 2.6K 2.6K 2.6K 2.6K 2.6K 2.6K 433.0 430.8 433.0 430.8
Rovers 5 2.8K 2.8K 2.8K 2.8K 2.8K 2.8K 2.8K 2.8K 15.2 14.8 15.1 14.8
TPP 6 1.3K 1.3K 1.3K 1.3K 1.3K 1.3K 1.3K 1.3K 112.6 89.2 95.7 89.2

Table 7: Cyclic planning. Top: MaxProb geometric mean
runtime (in CPU seconds). Bottom: MaxProb geometric
mean search space size (number of different states visited
before termination) in multiples of 1000. “#” gives the size
of the instance basis, namely those instances solved by all
shown configurations, skipping instances solved in under 1
second by all configurations. Rows with empty instance ba-
sis are skipped.

(b), which is qualitatively very similar to (a) except that
FRET-V U (Kolobov) is significantly worse, rather than bet-
ter, on the largest instance. This last conclusion should be
taken with a grain of salt though, given the different compu-
tational environments. Certainly, given the clarity of FRET-
πU ’s advantage in both search space size and runtime, one
can conclude that this variant of FRET substantially im-
proves over the previous state of the art.

(2) AtLeastProb and ApproxProb Parameter Analysis
For the weaker objectives AtLeastProb and ApproxProb, as
before we examine coverage as a function of θ respectively
δ. Figure 8 shows the data for default node selection in
AtLeastProb. By FRET|U respectively FRET|LU, we refer
to FRET using LRTDP|U respectively LRTDP|LU.

For FRET-V U , the behavior is similar to Figure 4 (a),
FRET|LU-V U exhibiting an easy-hard-easy pattern due to
the advantages of early termination. For FRET-πU , though,
the curves are flat over θ. This is due to the scaling of
benchmarks, combined with an extreme performance loss
at some point in the scaling: in each domain, there is an
instance number x so that, below x, FRET-πU can solve all
instances completely (i. e., solving MaxProb), while above x
neither V L(I) nor V U (I) can be improved at all, remaining
0 respectively 1 up to the time/memory limit. On smaller
instances, we do get the expected anytime behavior. Fig-
ure 9 exemplifies this. The easy-hard-easy pattern would
thus emerge for smaller runtime/memory limits.9

9Figure 9 (b) considers the largest instance feasible when using

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

85

90

95

100

105

FRET|U -V U FRET|U -πU

FRET|LU -V U FRET|LU -πU

VI

Figure 8: Cyclic planning. AtLeastProb total coverage as a
function of θ, using hmax dead-end pruning and default node
selection.

0 20 40 60

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

0

0.2

0.4

0.6

0.8

1

(a) (b)
Figure 9: Cyclic planning. Anytime behavior of FRET-πU
with LRTDP|LU, (a) without pruning for ExplodingBlocks
instance 04, and (b) with hmax pruning for instance 15.

Figure 10 shows coverage data for default node selection
in ApproxProb, as a function of δ. The behavior is qualita-
tively similar to that observed for AtLeastProb in Figure 8.

00.10.20.30.40.50.60.70.80.9

85

90

95

100

105

FRET|UV U FRET|UπU

FRET|LUV U FRET|LUπU

VI

Figure 10: Cyclic planning. ApproxProb total coverage as a
function of δ, using hmax dead-end pruning and default node
selection.

hmax pruning. Figure 9 (a) considers the second-largest instance
feasible without pruning: on the largest one, 05, the maximum goal
probability is 1 so the anytime curve for V U is not interesting. We
remark that, in ExplodingBlocks 04, with hmax pruning V U and
V L converge instantly. In ExplodingBlocks 15, when not using
pruning, V U and V L remain 0 respectively 1 throughout.

8 Conclusion
Optimal goal probability analysis is a notoriously hard prob-
lem, to the extent that the amount of work addressing it is
limited. We clarified the empirical state of the art, and sub-
stantially improved it through a novel variant of FRET and
through a novel state-space reduction method. We showed
that there are opportunities arising from naturally acyclic
problems, and from early termination on criteria weaker than
maximum goal probability. We hope that this will inspire
renewed interest in this important problem. Promising fu-
ture directions include advanced admissible goal probability
estimators, e. g. from abstractions interpreted as bounded-
parameter MDPs (Givan, Leach, and Dean 2000); hybrids
of heuristic search with Monte-Carlo tree search, geared at
good anytime behavior and thus early termination; and the
exploitation of goal probability monotonicity as a function
of remaining budget. Simulated pentesting is an application
worth algorithms research in it own right. Partial-order re-
duction appears especially promising there.

Acknowledgments. This work was partially supported by
the German Research Foundation (DFG), under grant HO
2169/5-1. We thank Christian Muise for his Probabilistic-
PDDL extension of the FD parser. We thank Andrey
Kolobov for discussions. We thank the anonymous review-
ers, whose comments helped to improve the paper.

References
Altman, E. 1999. Constrained Markov Decision Processes.
CRC Press.
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
Intelligence 72(1-2):81–138.
Bertsekas, D. 1995. Dynamic Programming and Optimal
Control, (2 Volumes). Athena Scientific.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improv-
ing the convergence of real-time dynamic programming. In
Giunchiglia, E.; Muscettola, N.; and Nau, D., eds., Pro-
ceedings of the 13th International Conference on Automated
Planning and Scheduling (ICAPS’03), 12–21. Trento, Italy:
Morgan Kaufmann.
Bonet, B., and Geffner, H. 2006. Learning depth-first
search: A unified approach to heuristic search in determin-
istic and non-deterministic settings, and its application to
MDPs. In Long, D., and Smith, S., eds., Proceedings of the
16th International Conference on Automated Planning and
Scheduling (ICAPS’06), 142–151. Ambleside, UK: Morgan
Kaufmann.
Bryce, D., and Buffet, O. 2008. 6th international planning
competition: Uncertainty part. In Proceedings of the 6th
International Planning Competition (IPC’08).
Camacho, A.; Muise, C.; and McIlraith, S. A. 2016. From
FOND to robust probabilistic planning: Computing compact
policies that bypass avoidable deadends. In Coles, A.; Coles,

A.; Edelkamp, S.; Magazzeni, D.; and Sanner, S., eds., Pro-
ceedings of the 26th International Conference on Automated
Planning and Scheduling (ICAPS’16). AAAI Press.
Coles, A. J.; Coles, A.; Garcı́a Olaya, A.; Jiménez, S.;
Linares López, C.; Sanner, S.; and Yoon, S. 2012. A survey
of the seventh international planning competition. The AI
Magazine 33(1).
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2013. A
hybrid LP-RPG heuristic for modelling numeric resource
flows in planning. Journal of Artificial Intelligence Research
46:343–412.
Coles, A. J. 2012. Opportunistic branched plans to max-
imise utility in the presence of resource uncertainty. In
Raedt, L. D., ed., Proceedings of the 20th European Confer-
ence on Artificial Intelligence (ECAI’12), 252–257. Mont-
pellier, France: IOS Press.
Dai, P.; Mausam; Weld, D. S.; and Goldsmith, J. 2011.
Topological value iteration algorithms. Journal of Artificial
Intelligence Research 42:181–209.
Dean, T. L., and Givan, R. 1997. Model minimization in
markov decision processes. In Kuipers, B. J., and Webber,
B., eds., Proceedings of the 14th National Conference of the
American Association for Artificial Intelligence (AAAI’97),
106–111. Portland, OR: MIT Press.
Domshlak, C., and Mirkis, V. 2015. Deterministic over-
subscription planning as heuristic search: Abstractions and
reformulations. Journal of Artificial Intelligence Research
52:97–169.
Givan, R.; Leach, S. M.; and Dean, T. 2000. Bounded-
parameter Markov decision processes. Artificial Intelligence
122(1-2):71–109.

Hansen, E. A., and Zilberstein, S. 2001. LAO*: a heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1-2):35–62.
Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. In Cesta, A., and Borrajo, D., eds.,
Proceedings of the 6th European Conference on Planning
(ECP’01), 121–132. Springer-Verlag.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
Association for Computing Machinery 61(3).
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J.; Kissmann, P.; and Torralba, Á. 2014. “Dis-
tance”? Who Cares? Tailoring merge-and-shrink heuris-
tics to detect unsolvability. In Schaub, T., ed., Proceedings

of the 21st European Conference on Artificial Intelligence
(ECAI’14). Prague, Czech Republic: IOS Press.
Hoffmann, J. 2015. Simulated penetration testing: From
“Dijkstra” to “Turing Test++”. In Brafman, R.; Domshlak,
C.; Haslum, P.; and Zilberstein, S., eds., Proceedings of the
25th International Conference on Automated Planning and
Scheduling (ICAPS’15). AAAI Press.
Hou, P.; Yeoh, W.; and Varakantham, P. 2014. Revisiting
risk-sensitive MDPs: New algorithms and results. In Chien,
S.; Do, M.; Fern, A.; and Ruml, W., eds., Proceedings of the
24th International Conference on Automated Planning and
Scheduling (ICAPS’14). AAAI Press.
Jimenez, S.; Coles, A.; and Smith, A. 2006. Planning in
probabilistic domains using a deterministic numeric planner.
In Proceedings of the 25th Workshop of the UK Planning
and Scheduling Special Interest Group (PlanSig’06).
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In Boutilier, C., ed., Proceedings of the 21st
International Joint Conference on Artificial Intelligence (IJ-
CAI’09), 1728–1733. Pasadena, California, USA: Morgan
Kaufmann.
Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011.
Heuristic search for generalized stochastic shortest path
MDPs. In Bacchus, F.; Domshlak, C.; Edelkamp, S.;
and Helmert, M., eds., Proceedings of the 21st Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’11). AAAI Press.
Kolobov, A.; Mausam; and Weld, D. S. 2010. Sixthsense:
Fast and reliable recognition of dead ends in MDPs. In Fox,
M., and Poole, D., eds., Proceedings of the 24th National
Conference of the American Association for Artificial Intel-
ligence (AAAI’10). Atlanta, GA, USA: AAAI Press.
Kolobov, A.; Mausam; and Weld, D. S. 2012. A theory
of goal-oriented MDPs with dead ends. In de Freitas, N.,
and Murphy, K. P., eds., Proceedings of the 28th Conference
on Uncertainty in Artificial Intelligence (UAI’12), 438–447.
Catalina Island, CA, USA: AUAI Press.
Kolobov, A. 2013. Scalable Methods and Expressive Models
for Planning Under Uncertainty. Ph.D. Dissertation, Uni-
versity of Washington.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. SARSOP: Ef-
ficient point-based POMDP planning by approximating op-
timally reachable belief spaces. In Robotics: Science and
Systems IV.
Little, I.; Aberdeen, D.; and Thiébaux, S. 2005. Prottle:
A probabilistic temporal planner. In Veloso, M. M., and
Kambhampati, S., eds., Proceedings of the 20th National
Conference of the American Association for Artificial Intel-
ligence (AAAI’05), 1181–1186. Pittsburgh, Pennsylvania,
USA: AAAI Press.
Little, I., and Thiebaux, S. 2007. Probabilistic planning vs
replanning. In ICAPS Workshop on the International Plan-
ning Competition: Past, Present and Future.
Marecki, J., and Tambe, M. 2008. Towards faster plan-
ning with continuous resources in stochastic domains. In
Fox, D., and Gomes, C., eds., Proceedings of the 23rd Na-

tional Conference of the American Association for Artificial
Intelligence (AAAI’08), 1049–1055. Chicago, Illinois, USA:
AAAI Press.
McMahan, H. B.; Likhachev, M.; and Gordon, G. J. 2005.
Bounded real-time dynamic programming: RTDP with
monotone upper bounds and performance guarantees. In
Proceedings of the 22nd International Conference on Ma-
chine Learning (ICML-05).
Meuleau, N.; Benazera, E.; Brafman, R. I.; Hansen, E. A.;
and Mausam, M. 2009. A heuristic search approach to plan-
ning with continuous resources in stochastic domains. Jour-
nal of Artificial Intelligence Research 34(1):27–59.
Milner, R. 1990. Operational and algebraic semantics of
concurrent processes. In van Leeuwen, J., ed., Handbook
of Theoretical Computer Science, Volume B: Formal Models
and Sematics. Elsevier and MIT Press. 1201–1242.
Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2012.
Improved non-deterministic planning by exploiting state
relevance. In Bonet, B.; McCluskey, L.; Silva, J. R.;
and Williams, B., eds., Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’12). AAAI Press.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A monte carlo random walk approach.
In Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B.,
eds., Proceedings of the 22nd International Conference on
Automated Planning and Scheduling (ICAPS’12), 181–189.
AAAI Press.
Nilsson, N. J. 1971. Problem Solving Methods in Artificial
Intelligence. McGraw-Hill.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Com-
puting perfect heuristics in polynomial time: On bisim-
ulation and merge-and-shrink abstraction in optimal plan-
ning. In Walsh, T., ed., Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’11),
1983–1990. AAAI Press/IJCAI.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), 273–280. AAAI Press.
Sanner, S. 2010. Relational dynamic influence dia-
gram language (rddl): Language description. Available
at http://users.cecs.anu.edu.au/˜ssanner/
IPPC_2011/RDDL.pdf.
Sarraute, C.; Buffet, O.; and Hoffmann, J. 2012. POMDPs
make better hackers: Accounting for uncertainty in penetra-
tion testing. In Hoffmann, J., and Selman, B., eds., Proceed-
ings of the 26th AAAI Conference on Artificial Intelligence
(AAAI’12), 1816–1824. Toronto, ON, Canada: AAAI Press.
Smith, T., and Simmons, R. G. 2006. Focused real-time
dynamic programming for MDPs: Squeezing more out of a
heuristic. In Gil, Y., and Mooney, R. J., eds., Proceedings of
the 21st National Conference of the American Association
for Artificial Intelligence (AAAI’06), 1227–1232. Boston,
Massachusetts, USA: AAAI Press.

Teichteil-Königsbuch, F.; Kuter, U.; and Infantes, G. 2010.
Incremental plan aggregation for generating policies in
MDPs. In van der Hoek, W.; Kaminka, G. A.; Lespérance,
Y.; Luck, M.; and Sen, S., eds., Proceedings of the 9th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS’10), 1231–1238. IFAAMAS.
Teichteil-Königsbuch, F. 2012. Stochastic safest and short-
est path problems. In Hoffmann, J., and Selman, B., eds.,
Proceedings of the 26th AAAI Conference on Artificial In-
telligence (AAAI’12). Toronto, ON, Canada: AAAI Press.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan:
a baseline for probabilistic planning. In Boddy, M.; Fox,
M.; and Thiebaux, S., eds., Proceedings of the 17th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’07), 352–359. Providence, Rhode Island, USA:
Morgan Kaufmann.
Younes, H. L. S.; Littman, M. L.; Weissman, D.; and As-
muth, J. 2005. The first probabilistic track of the inter-
national planning competition. Journal of Artificial Intelli-
gence Research 24:851–887.

A Landmarks Pruning: Admissible
Heuristic vs. Budget Reduction

As stated, Domshlak and Mirkis’ (2015) problem reformu-
lation, pruning states based on a global budget reduced us-
ing disjunctive action landmarks, is equivalent, regarding the
states pruned by the method on its own, to the much simpler
method using the same landmarks for pruning against the
remaining original budget. We now give this argument, pre-
viously made only for unit costs and pairwise disjoint land-
marks, for the general setting. We assume a classical plan-
ning setup for simplicity. The arguments in probabilistic and
oversubscription setups are essentially the same.

Assume a STRIPS planning task Π = (F,A, I,G), with
action costs c(a) and with a global budget b. We use a nota-
tion following admissible landmark heuristics as per Karpas
and Domshlak (2009). Let L be a set of disjunctive action
landmarks for I , i. e., for every l ∈ L and every action se-
quence ~a leading from I to the goal, ~a touches l (there exists
a ∈ l used on ~a). Let furthermore cp : A × L 7→ R+

0 be a
cost partitioning, i. e., a function satisfying, for each a ∈ A,
that

∑
l∈L c(a, l) ≤ c(a). Denote h(l) := mina∈l cp(a, l),

and for a subset L′ ⊆ L of landmarks denote h(L′) :=∑
l∈L′ h(l). Intuitively, each landmark l ∈ L is assigned a

weight h(l) via cp, and the admissible heuristic value h(L)
for I is obtained by summing up these weights.

We now describe Domshlak and Mirkis’ pruning tech-
nique in these terms. Domshlak and Mirkis’ formulation is
in terms of a compilation into a planning language, which is
more complicated, but is equivalent to our formulation here
as far as the pruning is concerned.

Domshlak and Mirkis’ technique maintains the “non-
used” landmarks as part of states. Namely, for a state s
reached on path ~a, l ∈ L is non-used in s iff ~a does not
touch l. We denote the set of non-used landmarks in s by
L(s). Obviously, the l ∈ L(s) are landmarks for s. Note
also that, as L(s) is part of the state, even if two search

paths lead to the same end state but use different landmarks,
their end states are considered to be different. This restric-
tion arises from the compilation approach, where the book-
keeping of landmarks must happen inside the language, i. e.,
inside states. One could formulate the pruning technique
without this restriction; we get back to this below.

The pruning technique now arises from the interplay of
a reduced global budget and reduced action costs depending
on non-used landmarks. Define the reduced global budget as
b′ := b − h(L). For any action a, denote by L(a) the set of
landmarks a participates in, i. e., L(a) := {l | l ∈ L, a ∈ l}.
For any state t during search, and an applicable action a,
the transition from t to t[[a]] has a reduced cost, namely the
cost c(a)− h(L(a)∩L(t)). In words, we reduce the cost of
a by the (summed-up) weight of the non-used landmarks a
participates in.

Consider now some state s during search. Denote the re-
maining reduced budget in s by b′(s). Say that we prune s iff
b′(s) < 0.10 Consider any path ~a ending in s. As non-used
landmarks are part of the state, all these paths must touch
the same subset of landmarks from L, namely L \ L(s).
Denote the actual cost of ~a by c(~a) :=

∑
a∈~a c(a). Rel-

ative to this cost, the cost saved thanks to the cost reduc-
tion is exactly h(L \ L(s)), the weight of the touched land-
marks. Therefore, b′(s) = b′ − (c(~a) − h(L \ L(s))) =
(b − h(L)) − c(~a) + h(L \ L(s)). By definition of h, this
equals (b −

∑
l∈L h(l)) − c(~a) +

∑
l∈L\L(s) h(l), which

equals b−c(~a)−
∑
l∈L(s) h(l) = b−c(~a)−h(L(s)). Thus,

s is pruned, b′(s) < 0, iff b − c(~a) < h(L(s)). The latter
condition is the same as b(s) < h(L(s)), which is exactly
the pruning condition resulting from using h(L(s)) as an
admissible heuristic function pruning against the remaining
budget.

In a non-compilation setting, one could, as is indeed cus-
tomary in admissible landmark heuristics, handle landmarks
in a path-dependent manner. That is, non-used landmarks
are maintained as annotations to states rather than as part of
them, and multiple search paths may end in the same state s
but use different landmarks. The set of remaining landmarks
L(s) for s then is the union over those for each individual
path; that is, l ∈ L is non-used in s iff there exists at least
one path that does not touch l. This still suffices to show that
l is a landmark for s. The landmark heuristic approach as per
Karpas and Domshlak does this kind of book-keeping, and
uses the admissible heuristic value h(L(s)).

If one were to apply Domshlak and Mirkis’ reformulation
technique without maintaining landmarks as part of state,
then the notion of transition-cost reduction would have to
become more complicated (lest one loses information). This

10Domshlak and Mirkis do not maintain the remaining budget
as part of the state, but instead prune if g(s) > b′. This is, obvi-
ously, equivalent, except that duplicate detection is more powerful
as it compares states based on their facts F (s) only. For the pur-
pose of our discussion here, this does not make a difference. Note
that, in the probabilistic setting, we do have to distinguish states
based on both F (s) and b(s), as goal probability depends on both
so maintaining only the best way of reaching F (s) does not suffice
to compute the exact goal probability of the initial state.

is because, if s is reached on ~a1 with a reduced cost due
to touching landmark l1, but later on we find another path
~a2 to s that does not touch l1, then l1 actually still is a valid
landmark for s, and therefore there was no need to reduce the
cost on ~a1. To account for this, we would have to revise path
costs posthoc, every time a new path to s becomes available.
After these revisions, the cost reduction on each path~a to s is
exactly h(L \ L(s)): the weight of the non-used landmarks
L(s) is no longer subtracted, and the weight of the other
landmarks L \ L(s) is subtracted on every ~a because, by
definition, every ~a touches every l ∈ L \ L(s). So the cost
saved on every path ~a to s, relative to ~a, is exactly h(L \
L(s)), from which point the same arguments as above apply
to show that the pruning is equivalent to pruning via b(s) <
h(L(s)). (This is a stronger pruning method than what we
would get without posthoc path cost revision.)

In summary, s based on reduced remaining budget
b′(s) < 0 is equivalent to pruning s based on original re-
maining budget vs. the landmark heuristic b(s) < h(L(s)).
It should be noted, though, that such pruning is not the only
benefit of Domshlak and Mirkis’ reformulation technique.
The technique allows to compute another, complementary,
admissible heuristic h on the reformulated task Π′ (and this
is what Domshlak and Mirkis point out as part of the mo-
tivation, and what they do in practice). From our perspec-
tive here, the landmark heuristic and h are used additively
for admissible pruning against the remaining budget, where
additivity is achieved with a method generalizing cost parti-
tionings: In Π′, the cost-reduced variant of each action can
be applied only once. So if h does not abstract away this
constraint, and if h uses an action twice, then it employs
the reduced cost only once, yet pays the full cost the second
time. Exploring this kind of generalized cost partitioning in
more detail is an interesting research line for future work.

