
Fork-Decoupled State Space Search
(Technical Report)

Daniel Gnad and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{gnad, hoffmann}@cs.uni-saarland.de

Abstract

Factored planning decouples planning tasks into subsets (fac-
tors) of state variables. The traditional focus is on handling
complex cross-factor interactions. Departing from this, we
introduce a form of target-profile factoring, forcing the cross-
factor interactions to take the form of a fork, with several
leaf factors and one potentially very large root factor. We
show that forward state space search gracefully extends to
such structure, by augmenting regular search on the root fac-
tor with maintenance of the cheapest compliant paths within
each leaf factor. We analyze how to guarantee optimality.
Connecting to standard heuristics, the performance improve-
ments relative to A∗ are substantial, and sometimes dramatic:
In four IPC benchmark domains, fork-decoupled state space
search outperforms standard state space search even when us-
ing hmax in the former vs. LM-cut in the latter.

Introduction
Factored planning decouples planning tasks into subsets,
factors, of state variables. In localized factored planning
(Laneky and Getoor 1995; Amir and Engelhardt 2003; Braf-
man and Domshlak 2006; 2008; 2013; Fabre et al. 2010),
two factors interact if they are affected by common actions,
and a global plan needs to comply with these cross-factor
interactions. In hierarchical factored planning (e. g. (Sacer-
doti 1974; Knoblock 1994; Kelareva et al. 2007)), the factors
are used within a hierarchy of increasingly more detailed ab-
straction levels, accumulating the factors processed so far as
search proceeds down the hierarchy.

In localized factored planning, much of the complexity
stems from having to resolve complex cross-factor interac-
tions. In hierarchical factored planning, at higher levels we
don’t know whether the abstract plan will be realizable at
lower levels, leading to backtracking across levels. So what
both localized and hierarchical factored planning algorithms
share is the ability to deal with very complex forms of cross-
factor interactions, and the difficulties entailed.

But do we actually need that ability? Provided we are
willing to handle very large “factors”, we can force the
cross-factor interactions to be simple. We baptize this ap-
proach target-profile factoring: fixing a particular profile
which we want the factoring to induce. Here, we instantiate
this with fork (Katz and Domshlak 2008) profiles, where a
single root factor provides preconditions required for mov-

ing several leaf factors. The root factor may be arbitrarily
large, as we will tackle it by (heuristic) search. To obtain
such a fork factoring, we view the causal graph as a DAG
of strongly connected components (SCC) in which the root
SCCs are at the top and the leaf SCCs at the bottom. We
draw a horizontal line anywhere through that DAG, perceive
the (entire) top part as the root factor, and perceive each
weakly connected component inside the bottom part as a leaf
factor. Of course, not every planning task has a useful fork
factoring (e. g. if the causal graph is a single SCC). We will
see this within negligible runtime at factoring time, and if
so, simply abstain from solving the task.

The key advantage of fork factorings is a particular form
of conditional independence: for any fixed root path, the
leaves can be moved independently of each other. We ex-
ploit this by augmenting regular search on the root factor
with maintenance of the cheapest compliant paths (paths
that comply with the moves of the root) independently
within each leaf factor. Compared to standard state space
search, such fork-decoupled state space search can drasti-
cally reduce search space size, and in contrast to hierarchical
factoring it avoids backtracking across levels.

We show how to naturally extend standard concepts such
as A∗ and admissible heuristics, how to connect to standard
heuristics, and how to guarantee (global cost-)optimality.
Empirically, for satisficing planning the decoupling helps
dramatically in transportation with fuel consumption (IPC
NoMystery), but only there, because other fork-like domains
are already easy for existing heuristic search techniques. For
optimal planning, the empirical results are almost consis-
tently good, and, in some domains, quite amazing.

It is worth pointing out at this early stage already that
target-profile factoring, beyond fork profiles, suggests an en-
tirely new way of exploiting structure:

Instead of relaxing the planning task into a (structurally
defined) fragment to obtain a heuristic function, try to
factorize the task into the fragment to obtain a plan.

This suggests a new direction for causal graph research, de-
signing fragments suited to specialized combinatorial search
algorithms, as opposed to tractability analysis. In the long
term, this could lead to an entire portfolio of target profiles.

Preliminaries
We use the finite-domain state variable setting (e. g.
(Bäckström and Nebel 1995; Helmert 2006)). A finite-
domain representation planning task, short FDR task, is a
quadruple Π = 〈V,A, I,G〉. V is a set of state variables,
where each v ∈ V is associated with a finite domain D(v).
We identify (partial) variable assignments with sets of vari-
able/value pairs. A complete assignment to V is a state. I
is the initial state, and the goal G is a partial assignment
to V . A is a finite set of actions. Each action a ∈ A
is a triple 〈pre(a), eff(a), cost(a)〉 where the precondition
pre(a) and effect eff(a) are partial assignments to V , and
cost(a) ∈ R0+ is the action’s non-negative cost.

For a partial assignment p, V(p) ⊆ V denotes the subset
of state variables instantiated by p. For any V ′ ⊆ V(p), by
p[V ′] we denote the value of V ′ in p. An action a is ap-
plicable in a state s if pre(a) ⊆ s, i. e., if s[v] = pre(a)[v]
for all v ∈ V(pre(a)). Applying a in s changes the value
of each v ∈ V(eff(a)) to eff(a)[v], and leaves s unchanged
elsewhere; the outcome state is denoted sJaK. The outcome
state of applying a sequence of (respectively applicable) ac-
tions is denoted sJ〈a1, . . . , an〉K. A plan for Π is an action
sequence s.t. G ⊆ IJ〈a1, . . . , an〉K. The plan is optimal if
its summed-up cost is minimal among all plans for Π.

The causal graph of a planning task captures state vari-
able dependencies incurred by co-occurrences in actions
(e. g. (Knoblock 1994; Jonsson and Bäckström 1995; Braf-
man and Domshlak 2003; Helmert 2006)). We use the
commonly employed definition in the FDR context, where
the causal graph CG is a directed graph over vertices V ,
with an arc from v to v′, which we denote (v → v′),
if v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a)) ∪ V(pre(a))] × V(eff(a)). We assume
for simplicity that CG is weakly connected (else, the task
can be equivalently split into several independent tasks).

Example 1 As an illustrative running example, we consider
a transportation task with one package p, and two trucks
tA, tB moving along three locations l1, l2, l3 arranged in a
line. Precisely, the FDR planning task Π = 〈V,A, I,G〉 is
as follows. V = {p, tA, tB} whereD(p) = {A,B, l1, l2, l3}
and D(tA) = D(tB) = {l1, l2, l3}. The initial state is I =
{p = l1, tA = l1, tB = l3}, i. e., p and tA start at l1, and tB
starts at l3. The goal isG = {p = l3}. The actions (uniform
costs) are the usual truck moves and load/unload, that is:

• move(x, y, z) with precondition {tx = y} and ef-
fect {tx = z}, where x ∈ {A,B} and {y, z} ∈
{{1, 2}, {2, 3}}.

• load(x, y) with precondition {tx = y, p = y} and effect
{p = x}, where x ∈ {A,B} and y ∈ {l1, l2, l3}.

• unload(x, y) with precondition {tx = y, p = x} and ef-
fect {p = y}, where x ∈ {A,B} and y ∈ {l1, l2, l3}.

The causal graph of this task is shown in Figure 1.

Fork Factoring
Our definitions of factorings and forks follow those by Braf-
man and Domshlak (2006) and Katz and Domshlak (2008):

p

tA tB

Figure 1: The causal graph of our illustrative example.

T

B

T

B T

B

Figure 2: Examples of “horizontal lines” {T,B} through a
DAG of SCCs, and the corresponding fork factorings.

Definition 1 (Fork Factoring) Let Π be an FDR task with
variables V . A factoring F is a partition of V into non-
empty subsets F , called factors. The interaction graph
IG(F) of F is the directed graph whose vertices are the fac-
tors, and with an arc (F → F ′) if F 6= F ′ and there exist
v ∈ F and v′ ∈ F ′ such that (v → v′) is an arc in CG.
F is a fork factoring if |F| > 1 and there exists FR ∈ F

s.t. the arcs in IG(F) are exactly {(FR → FL) | FL ∈
F \ {FR}}. FR is the root of F , and all other factors
FL ∈ FL := F \ {FR} are leaves. We also consider the
trivial fork factoring where FR = V and FL = ∅, and the
pathological fork factoring where FR = ∅ and FL = {V }.

The only global interactions in a fork factoring consist in
the root factor establishing preconditions for actions mov-
ing individual leaf factors. But when do fork factorings
exist, and how to find one? Denote by FSCC the factor-
ing whose factors are the strongly connected components
of CG. Clearly, any fork factoring F must be coarser than
FSCC, i. e., for every F ∈ FSCC we must have F ′ ∈ F with
F ⊆ F ′. In other words, we must perform the factoring
at the level of SCCs in the causal graph. In particular, if
|FSCC| = 1 (the causal graph consists of a single SCC), then
the only fork factorings are the trivial and pathological ones.

For the case where |FSCC| > 1, consider Figure 2. We
view the interaction graph IG(FSCC) over SCCs as a DAG
where the root SCCs are at the top and the leaf SCCs at
the bottom. Let {T,B} (top, bottom) be a “horizontal
line” through that DAG, i. e., a partition of V where ev-
ery F ∈ FSCC is fully contained in either of T or B, and
where the only arc in IG({T,B}) is (T → B). Let W be
the set of weakly connected components of FSCC within B.
Then we obtain a fork factoring F by setting FR := T and
FL :=W . Vice versa, any non-trivial fork factoring can be
obtained in this manner, except the redundant ones where
some FL ∈ FL contains several weakly connected compo-
nents fromW . Thus finding a (non-redundant) fork factor-
ing is equivalent to finding the “horizontal line” {T,B}.

Our concrete strategy for finding that line is quite simple,
and will be described in the experiments section. The strat-
egy tries to obtain a factoring with many small leaf factors,
which is when our method typically works well: a lot of con-
ditional independence, not much overhead. In particular, if
we don’t find a factoring with at least two leaves (which we
will know after negligible runtime), we abstain from solv-

ing the input task. We can then pass the task on to standard
techniques (or, in the long term, to other target profiles).

Example 2 Consider again our illustrative example. Given
its causal graph, cf. Figure 1, there are exactly four possible
fork factorings F for this planning task: {{tA}, {tB , p}},
{{tB}, {tA, p}}, {{tA, tB}, {p}}, and {{tA, tB , p}}. In the
first three cases, there is a single leaf containing the pack-
age; the factorings differ regarding whether they include a
truck into that leaf, and if so, which one(s). The last case
is the trivial factoring, where there is no leaf at all, and all
variables are contained in the fork root.

We will henceforth consider the third of these four fac-
torings, {{tA, tB}, {p}}, where the trucks together form the
root and the package on its own forms the leaf.

{t, f}

p1 p2 p3 p4 p5

T

B

m1 m2 m3

{c(o1),s(o1)

t(o1),w(o1)}
{c(o2),s(o2)

t(o2),w(o2)}
{c(o3),s(o3)

t(o3),w(o3)}

T

B

Figure 3: Possible fork factorings in transportation with fuel
consumption (left), and job-planning problems (right).

To illustrate the kind of structure we can exploit, consider
Figure 3. On the left (as in IPC NoMystery), a truck t with
fuel supply f transports packages p1, . . . , pn; t and f form
an SCC in the causal graph, each pi is a leaf SCC on its
own. On the right (similar to IPC Woodworking), individual
objects oi are mutually independent except for sharing the
machines, so that each leaf SCC contains the properties per-
taining to one oi. In both cases, our factoring strategy will
come up with the fork factoring shown in the figure.

Fork-Decoupled State Spaces
We assume an FDR task Π = 〈V,A, I,G〉 and a fork factor-
ingF with root FR and leaves FL ∈ FL. We refer to the ac-
tions AR affecting the root as root actions, notation conven-
tion aR, and to the actions AL affecting V \ FR (i. e. any of
the leaves) as leaf actions, notation convention aL. For the
set of actions affecting one particular FL ∈ FL, we write
AL|FL . Bear in mind that the root actions AR have precon-
ditions and effects only on FR, and the leaf actions AL|FL

have preconditions only on FR ∪ FL, and effects only on
FL. In particular, the sets AR and AL|FL form a partition
of the original action set A. A root path is a sequence of
root actions applicable to I; a leaf path is a sequence of leaf
actions applicable to I when ignoring preconditions on the
root. Value assignments to FR are root states, notated sR,
and value assignments to any FL ∈ FL are leaf states, no-
tated sL. For the leaf states of one particular FL ∈ FL, we
write SL|FL , and for the set of all leaf states we write SL.
A root state sR is a goal root state if sR ⊇ G[FR], and a
leaf state sL ∈ SL|FL is a goal leaf state if sL ⊇ G[FL].
Finally, for a root state sR, AL|sR denotes the leaf actions
enabled by sR, i. e., those where pre(aL)[FR] ⊆ sR.

The fork-decoupled state space augments root paths with
maintenance of cheapest compliant leaf paths. Leaf path
πL = 〈aL1 , . . . , aLn〉 complies with root path πR if we can

schedule the aLi at monotonically increasing points along-
side πR so that each aLi is enabled in the respective root
state sR, i. e., aLi ∈ AL|sR . Formally:

Definition 2 (Compliant Paths) Let Π be an FDR task, F
a fork factoring, and πR a root path traversing root states
〈sR0 , . . . , sRn 〉. For a leaf path πL = 〈aL1 , . . . , aLm〉, an em-
bedding into πR is a monotonically increasing function e :
{1, . . . ,m} 7→ {0, . . . , n} so that, for every i ∈ {1, . . . ,m},
aLi ∈ AL|sR

e(i)
. We say that πL complies with πR, short πL

is πR-compliant, if an embedding exists.
Where the root path in question is clear from context, or

when discussing compliant paths in general, we will omit
“πR” and simply talk about compliant leaf paths.

Example 3 In our illustrative example, πL =
〈load(A, l1)〉 complies with the empty center path,
and πL = 〈load(A, l1), unload(A, l2)〉 complies
with the center path πC = 〈move(A, l1, l2)〉. But,
e. g., πL = 〈load(A, l1), unload(A, l3)〉 does not
comply with πC because the required precondi-
tion tA = l3 is not established on πC . And
πL = 〈load(A, l1), unload(A, l2), load(A, l2), load(A, l1)〉
does not comply with πC because the last precondition
tA = l1 does not appear behind tA = l2 on πC .

Definition 3 (Fork-Decoupled State Space) Let Π be an
FDR task, and F a fork factoring. A fork-decoupled state
s is a pair 〈rt(s), prices(s)〉 with rt(s) being a root state,
and prices(s) : SL 7→ R0+ ∪ {∞} being a function which
assigns every leaf state a non-negative price. The fork-
decoupled state space is a labeled transition system ΘF =
〈SF , AR, TF , IF , SFG 〉 as follows:

(i) SF is the set of all fork-decoupled states s.
(ii) AR, the set of root actions, gives the transition labels.

(iii) TF is the set of transitions, with (s
a−→ t) ∈ TF if

a ∈ AR, rt(s)JaK = rt(t), and, for every leaf state tL,
prices(t)[tL] = minsL(prices(s)[sL] + c(sL)) where
c(sL) is the cost of a cheapest path of AL|rt(t) actions
from sL to tL if such a path exists, else c(sL) :=∞.

(iv) IF is the fork-decoupled initial state, where rt(IF) :=
I[FR], and prices(IF)[sL], for every leaf state sL ∈
SL|FL for some FL ∈ FL, is the cost of a cheapest
path of AL|rt(IF) actions from I[FL] to sL if such a
path exists, else prices(IF)[sL] :=∞.

(v) SFG are the fork-decoupled goal states sG, where
rt(sG) is a goal root state and, for every FL ∈
FL, there exists a goal leaf state sL ∈ SL|FL s.t.
prices(sG)[sL] <∞.

The cost of a path πF = s0
a1−→ s1 . . . sn−1

an−−→ sn in ΘF

is cost(πF) :=
∑n

i=1 cost(ai). A fork-decoupled plan for
Π is a path πF from IF to an element of SFG .

Note that, as stated, SF is infinite. The reachable part
of SF , however, is finite because it corresponds to root
paths leading to different end states and/or pricing functions,
where prices decrease monotonically along any ΘF path.

The latter is because prices(s)[tL] forms part of the mini-
mization in (iii), namely when setting sL := tL and using
the empty path of AL|rt(t) actions.1

Intuitively, ΘF encapsulates the idea of searching only in
the root part, keeping track of what the leaves could do via
the pricing functions, and selecting the actually used leaf
paths as needed once we can achieve the goal. Observe in
particular that the cost cost(πF) of a fork-decoupled plan
πF accounts only for the root moves, not for the leaves. In
that sense, fork-decoupled goal states sG are goal states with
price tags: We still have to “buy” the leaf goals, i. e., for each
leaf factor FL, we must pay prices(sG)[sL] for a cheapest
goal leaf state sL ∈ SL|FL . We will get back to this below;
for now let us illustrate Definition 3 with an example.

Example 4 Consider again our illustrative example, with
the fork factoring {{tA, tB}, {p}}, i. e., the fork root is
FR = {tA, tB} and the only leaf is FL = {p}

Consider Definition 3 (i). The fork-decoupled states SF
here are assignments to {tA, tB} along with a price for ev-
ery leaf state, i. e., for every value of the leaf variable p. For
Definition 3 (ii), the transition labels are the truck-moving
actions, move(x, y).

For Definition 3 (iv), the fork-decoupled initial state IF ,
we clearly have rt(IF) = {tA = l1, tB = l3}. The pricing
function prices(IF) assigns 0 to p = l1, assigns 1 to p = A,
and assigns ∞ to all other leaf states, because AL|rt(IF)
contains exactly the load/unload actions for tA at l1, and
for tB at l3. Note here that the “price” of p = A is not
a cost we have already spent. It is the cost we would have
to spend if we decided to “buy” p = A in IF , i. e., if we
decided to augment the empty root path with a compliant
leaf path achieving p = A.

To illustrate Definition 3 (iii) and (v), let us apply some
root actions and consider the corresponding transitions in
ΘF . Say we obtain s1 from IF by moving tA to l2. Then
rt(s1) = {tA = l2, tB = l3}. The price tags prices(s1)
are still 0 for p = l1 and 1 for p = A, as these were the
prices in IF , no cheaper compliant paths become available
in s1, and prices(s)[tL] forms part of the minimization in
(iii) as pointed out above. In other words, the best option
for these leaf states is to not move at s1, instead using the
compliant paths that were already available at IF . The only
change in prices(s1) is that p = l2 gets price 2, accounting
for “unload(p, tA, l2)” which is compliant at s1 (but not at
IF).

Now say we obtain s2 from s1 by moving tB to l2, and
s3 from s2 by moving tB back to l3. Then s3 is a fork-
decoupled goal state, because prices(s2)[p = B] = 3 and
prices(s3)[p = l3] = 4. Tracing back the compliant leaf
path supporting p = l3, we get the following 7-step global
plan: load p onto tA, move tA to l2, unload p, move tB to
l2, load p onto t2, move tB to l3, unload p.

1The reader who is reminded, at the word “monotonic”, of
delete-relaxed planning (McDermott 1999; Bonet and Geffner
2001), or of red-black planning (Domshlak, Hoffmann, and Katz
2015), is right on target. Indeed, thinking about delete-relaxed
causal graph leaf variables in red-black planning is what lead us
to the idea of fork-decoupled search in the first place.

Finally, say we obtain s4 by moving tA to l3 in s3. The
compliant leaf path supporting p = l3 in s3 to yield the price
tag 4 is then superseded by the new path “load(p, tA, l1),
unload(p, tA, l3)” yielding prices(s4)[p = l3] = 2. Ob-
serve that we now get a 6-step global plan, i. e., a plan bet-
ter than that of the fork-decoupled goal state s3 we passed
through on the way to s4. This is because, as indicated, fork-
decoupled goal states have price tags. The price tag of s4 is
cheaper than that of s3, hence continuing search behind the
goal state s3 leads to a strictly better solution. We will see
later how to obtain a standard structure for search.

We will see later how to get rid of goal state price tags to
obtain a standard structure for search. For now, we establish
correctness of the fork-decoupled state space relative to the
original planning task. The central observation is:

Lemma 1 Let Π be an FDR task, and F a fork factoring.
For every root path πR, denoting by s the fork-decoupled
state reached by πR in ΘF , and for every leaf state sL,
prices(s)[sL] is exactly the cost of a cheapest leaf path πL

that complies with πR and achieves sL.

Proof: Showing this by induction, the claim holds directly
by construction, Definition 3 (iv), in IF . For the inductive
step, we show that if the claim holds for a fork-decoupled
state s, and (s

a−→ t) ∈ TF , then the claim holds for t as well.
Let πR = 〈aR1 , . . . , aRn 〉 be any root path. Denote πR itself
as πR[t], and denote the prefix of πR up to aRn−1 as πR[s].
Let s and t be the fork-decoupled states reached by πR[s] re-
spectively πR[t]. Say πL[t] is any πR[t]-compliant leaf path.
Let πL[s] be the longest πR[s]-compliant prefix of πL[t].
Then the postfix of πL[t] after πL[s], if non-empty, must
consist of actions in AL|rt(t). In other words, the compli-
ant leaf paths for t are (possibly empty) extensions of those
for s. If πL[t] is a cheapest πR[t]-compliant leaf path end-
ing in tL, then clearly πL[s] is a cheapest πR[s]-compliant
leaf path to its end point sL, and the postfix of πL[t] behind
πL[s] is a cheapest path of AL|rt(t) actions from sL to tL.
Hence the claim for t follows directly from the induction as-
sumption on s – prices(s)[sL] equals the cost of πL[s] – and
construction, Definition 3 (iii). �

To formalize the “goal state price tag”, recall that each
leaf factor may be the cross-product of several state vari-
ables, and hence may have more than one goal leaf state. So
we need to minimize over these leaf goal states:

Definition 4 (Goal Price) Let Π be an FDR task, F a fork
factoring, and ΘF the fork-decoupled state space.

The goal price of sG ∈ SFG is the sum over
minimal leaf goal state prices, i. e., Gprice(sG) :=∑

FL∈FL min{prices(sG)[sL] | sL ∈ SL|FL , sL ⊇G[FL]}.
The global cost of a ΘF path πF ending in sG ∈ SFG

is GlobalCost(πF) := cost(πF)+ Gprice(sG). A fork-
decoupled plan is fork-optimal if its global cost is minimal
among all fork-decoupled plans.

For a fork-decoupled plan πF ending in sG ∈ SFG , de-
fine GlobalPlan(πF) as πF augmented, for every FL ∈
FL, with a cheapest compliant leaf path πL achieving
arg min{prices(sG)[sL] | sL ∈ SL|FL , sL ⊇ G[FL]}. Vice

versa, given a plan π for Π, let ForkPlan(π) be the ΘF path
πF induced by the root actions in π. We have:

Theorem 1 Let Π be an FDR task, and F a fork factor-
ing. For any (fork-optimal) fork-decoupled plan πF for Π,
GlobalPlan(πF) is an (optimal) plan for Π. Vice versa, for
any (optimal) plan π for Π, ForkPlan(π) is a (fork-optimal)
fork-decoupled plan for Π.

Proof: Because F is a fork factoring, (*) any plan for Π can
be perceived as a root path πR achieving the goal for FR,
augmented for every leaf FL with a compliant leaf path πL

achieving G[FL].
Let πF be a fork-decoupled plan. By construction and

by (*), GlobalPlan(πF) is a plan for Π. By Lemma 1, the
global cost of πF is equal to the cost of GlobalPlan(πF).

Vice versa, let π be a plan. By construction and by (*),
ForkPlan(π) is a fork-decoupled plan for Π. Assuming now
that π is optimal, clearly its compliant leaf paths as per πL

are cheapest compliant leaf paths. Hence, by Lemma 1, the
global cost of ForkPlan(π) is equal to the cost of π.

We now know, in particular, that fork-optimal fork-
decoupled plans correspond to plans for Π of the same cost,
and that optimal plans for Π correspond to fork-decoupled
plans of the same cost. Hence optimal cost is the same on
both sides, which concludes our argument. �

In other words, (fork-optimal) search in ΘF is a form of
(optimal) planning for Π.

What can we say about the size of ΘF? It captures a
search over root paths, as opposed to root states, because
even if two paths lead to the same root state, they may lead
to different leaf prices. So what is the relation between the
reachable states in ΘF (denoted SFR) and the reachable states
in the standard state space (denoted SR)? A fork-decoupled
state s ∈ SFR can be viewed as a “condensed” set of (priced)
world states w ∈ SR, namely all those w consisting of the
same root state and, for each leaf factor, any leaf state sL
reachable in s i. e. where prices(s)[sL] < ∞. Condensing
world states in this way can dramatically reduce state space
size.

A pathological case arises when using the pathological
fork factoring (hence the name), where the entire task is a
single “leaf”. Then, obviously, |SFR | = 1, but that does not
buy us anything because the pricing function in the fork-
decoupled initial state enumerates the cheapest distances to
all states in SR.

The genuinely good cases are those where the decou-
pling exponentially reduces the state space, but each fork-
decoupled state has polynomial size. Here is one such case:

Example 5 Consider the variant of our illustrative example
with only the single truck tA, but n packages p1, . . . , pn and
a line l1, . . . , lm of locations. Initially, both truck and pack-
ages are at l1. Say the fork factoring is that where the root
is tA and each pi is a leaf. Obviously, |SR| = m∗ (m+1)n.
However, each fork-decoupled state has polynomial size
O(n ∗m), and |SFR | =

m(m+1)
2 . The number of (reachable)

fork-decoupled states does not even depend on the number
of packages!

To see this, consider how fork-decoupled states are
reached from the initial state. In the initial fork-decoupled
state, all packages may be loaded so each has the reached
value set {l1, A}. That is, the pricing function assigns finite
prices to the leaf states (values of each pi) l1 and A, and
assigns price ∞ to all other leaf states. We will ignore the
actual prices here, distinguishing only what is reached, as it
is easy to see that the price for the same leaf will always be
the same anyhow.

After moving to l2, the reached value sets are {l1, A, l2}.
Moving back to l1, we obtain the new fork-decoupled state
with reached value sets {l1, A, l2} and where the truck is
at l1. Similarly, for each location li where i > 2, the
new fork-decoupled states are those where the truck reaches
li itself for the first time, yielding the new reached value
sets {l1, A, l2, . . . , li}, plus the i − 1 fork-decoupled states
reached by going back to li−1, . . . , l1 from there. Hence,
overall we get

∑m
i=1 i = m(m+1)

2 reachable fork-decoupled
states as advertised.

That said, the condensed state sets may overlap for dis-
tinct fork-decoupled states. One can exploit this to construct
bad cases, in which SFR enumerates combinations of leaf
states for the same leaf factor, and SFR is exponentially larger
than SR. Here is one such case:

Example 6 Consider an FDR task with two variables, r and
l. Our fork factoring will have r as the root and l as the leaf.
The domain of r is {d1, da1 , db1, d2, da2 , db2, . . . , dn, dan, dbn},
arranged such that we can move from each di to each
dji , and from each dji where i < n to di+1. The initial
value is d1, and there is no goal on r. The domain of l
is e1, ea1 , e

b
1, e2, e

a
2 , e

b
2, . . . , en, e

a
n, e

b
n, en+1, arranged such

that, with precondition dji , we can move from ei to eji and
from eji to ei+1. The initial value is e1, and the goal value is
en+1.

In words, the domain of each variable forms a chain of
alternative branches a and b, where each such branch is fol-
lowed by a common culmination point. At each step along its
chain, the leaf variable has two alternative options to move
forward. The fork-decoupled state space will “remember”
which option was taken, in the sense that exactly one of the
respective options – eai or ebi – will have a finite price in all
subsequent fork-decoupled states. Hence the fork-decoupled
state space grows exponentially in n. In the standard state
space, on the other hand, once the leaf reached the common
culmination point ei+1, it will not matter whether we got
there via eai or ebi . Precisely, the standard state space has
polynomial size simply because it is bounded by the product
of variable domain sizes, O(n2).

Note that this example is contrived. On IPC benchmarks,
with our current factoring strategy, SFR is never larger than
SR, and is typically much smaller. The curious reader is
invited to skip forward to Table 1 for a moment.

Heuristic Functions
In fork-decoupled search, two different kinds of heuristic
functions are of interest:

Definition 5 (Heuristics) Let Π be an FDR task, and F a
fork factoring. A heuristic is a function h : SF 7→ R0+ ∪
{∞}.

The root-perfect heuristic, hR∗, is that where hR∗(s) for
any s is the minimum over cost(πF) for all ΘF paths πF
from s to some sG ∈ SFG . The fork-perfect heuristic,
hF∗, is that where hF∗(s) for any s is the minimum over
GlobalCost(πF) for all such paths.

We say that h is root-admissible if h ≤ hR∗, and fork-
admissible if h ≤ hF∗.

The conceptual distinction between hR∗ and hF∗ lies in
that hR∗ cares only about how much work is left for the
root factor, i. e., the cost of a root path sufficient to enable
every leaf to reach its goal somehow. In contrast, hF∗ ac-
counts for the combined cost of root and leaves, i. e. for the
best extension of our current root path into an overall fork-
decoupled plan (and thus a plan for the original input task
Π, cf. Theorem 1). We will refer to heuristics attempting
to estimate hR∗ as root heuristics, and to heuristics attempt-
ing to estimate hF∗ as fork heuristics, and distinguish them
notationally by superscripts “R” respectively “F”.

Observe that hF∗ is notably different from typical remain-
ing cost estimators (including, e. g., hR∗) due to the goal
state price tags, captured in Definition 5 by the goal price
component of GlobalCost(πF). These price tags account for
the entire cost of moving the leaves, including actions that
will be scheduled before (and up to) the state s in question.
In particular, hF∗ is not 0 on fork-decoupled goal states: we
still have to pay the goal prize, moving the leaves into place.

Observe furthermore that hR∗ is a special case of hF∗:
We can compute hR∗ as hF∗ in a modified planning task
where the cost of all leaf actions is set to 0. hR∗ keeps track
only of which leaf states are reachable, not of the associated
cost. This may lead to qualitatively different decisions, i. e.,
hR∗ and hF∗ may disagree. Using a transportation exam-
ple again, say that there are two alternative kinds of plans,
(a) ones that pass the packages through several trucks, load-
ing/unloading every time, vs. (b) ones that make more truck
moves but have to load/unload each package only once and
thus are better globally. Then hR∗ will draw search towards
plans (a), whereas hF∗ will draw search towards plans (b).

Turning our attention to the computation of practical
heuristics, we consider hF∗ first. Note that, to estimate hF∗,
we have to account for the option to schedule leaf actions
before (and up to) the state s in question. This is both, a
threat to informativity (we cannot simply discount the cost
of such actions) and to admissibility (we cannot simply pre-
tend that this is not possible). It turns out that both can be
tackled using the pricing information maintained in ΘF :

Definition 6 (From Classical h to hF∗ Estimation) Let h
be any FDR planning heuristic, Π = 〈V,A, I,G〉 an FDR
task, F a fork factoring, and s a fork-decoupled state. The
leaves-for-pay fork heuristic estimate is hFL$(s) := h(sL$)
using the FDR task ΠL$ = 〈VL$, AL$, sL$, G〉 as follows.
We set VL$:= V ∪{ch[FL] | FL ∈ FL}where each ch[FL]
is Boolean, and for each v 6∈ FC , we add the new value u
into D(v). The initial state is sL$:= rt(s) ∪ {v = u | v 6∈
FC} ∪ {ch[FL] = 0 | FL ∈ FL}. The actions AL$ are the

previous ones, plus, for every FL ∈ FL and sL ∈ SL|FL

where prices(s)[sL] <∞, a new action a[sL] with precondi-
tion {ch[FL] = 0}, effect eff(a[sL]) := sL∪{ch[FL] = 1},
and cost cost(a[sL]) := prices(s)[sL].

This construction caters for “leaf actions to be scheduled
before and up to s”, but not by allowing to explicitly insert
such actions. We instead allow the planner on ΠL$ to pay
the prize that would be incurred by doing so, using the new
actions a[sL].

Example 7 Consider the state s1 from Example 2, where
we moved tA to l2 and have rt(s1) = {tA = l2, tB = l3}
as well as finite-value price tags prices(s1)[p = l1] = 0,
prices(s1)[p = A] = 1, and prices(s1)[p = l2] = 2. The
task ΠL$ from Definition 6 then takes the following form.
The variables and goal are {p, tA, tB , ch[p]} respectively
{p = l3}. The new initial state sL$ uses the root state of
s1, {tA = l2, tB = l3}, uses the new “u” value of the leaf
variable, p = u, and it sets ch[p] = 0. We have the same
move/load/unload actions as before, plus the new leaf ac-
tions a[sL] with precondition ch[p] = 0, effects sL as well as
ch[p] = 1, and cost cost(a[sL]) := prices(s)[sL]. The latter
actions are present for each sL with a finite-value price tag
in s1, i. e., for p = l1 (price 0), for p = A (price 1, and for
p = l2 (price 2).

Clearly, the only optimal plan for ΠL$ is to use a[p =
A] to get the package into tA, then move tA over to l3 and
unload the package. So h∗(sL$) in ΠL$ equals 3, which
is the same as hF∗(s1). Note that existing heuristics like
hFF (Hoffmann and Nebel 2001) and LM-cut (Helmert and
Domshlak 2009) would return this same heuristic value.

It was no coincidence that h∗ in this example resulted in
the fork-perfect heuristic. This is true in general, and fur-
thermore the leaves-for-pay fork heuristic preserves admis-
sibility:

Theorem 2 If h is admissible, then hFL$ is fork-admissible.
If h = h∗, then hFL$ = hF∗.

Proof: Let s ∈ SF . Say πF is any ΘF path from s to
some sG ∈ SFG . We construct a plan π for ΠL$ by aug-
menting πF with cheapest compliant leaf paths achieving
the leaf goals when starting from the leaf states reached in s.
By construction, the cost of π in ΠL$ is equal to cost(πF)+
Gprice(sG) = GlobalCost(πF). Hence hF∗(s) ≥ h∗(sL$).

Vice versa, let π be any plan for ΠL$. Then the root ac-
tion sub-sequence πR of π must be augmentable with com-
pliant leaf paths achieving the leaf goals when starting from
a leaf state sL reached in s. So πR induces a ΘF path πF
from s to some sG ∈ SFG . Further, as the construction of
ΠL$ forces the plan to buy, for each leaf factor with a goal,
exactly one such sL, π must for each FL contain a πR-
compliant leaf path πL from such an sL to its goal. As π
is optimal, the πL are cheapest such paths. So the cost of
π is cost(πF) + Gprice(sG) = GlobalCost(πF), and hence
h∗(sL$) ≥ hF∗(s). We get h∗(sL$) = hF∗(s), from which
the claims follow. �

We now get an hR∗ estimate as a corollary via the afore-
mentioned relation to hF∗:

Definition 7 (From Classical h to hR∗ Estimation) Let h
be any FDR planning heuristic, Π = 〈V,A, I,G〉 an FDR
task, F a fork factoring, and s a fork-decoupled state.
The leaves-for-free root heuristic estimate is hRL0$(s) :=
h(sL0$) in the FDR task ΠL0$ = 〈VL0$, AL0$, sL0$, G〉
identical to ΠL$ as in Definition 6, except that we set
cost(aL) := 0 for all leaf actions aL ∈ AL, and define
cost(a[sL]) := 0.

Example 8 Reconsider Example 7. In difference to ΠL$ as
constructed there, in ΠL0$ all leaf actions, including the new
ones a[p = l1], a[p = A], and a[p = l1], have 0 cost. Other
than that, the two tasks are identical. Clearly, the only opti-
mal plan still is to use a[p = A] to get the package into tA,
then move tA over to l2 and unload the package. Only now
the cost of that plan is 1, which is exatly hR∗(s1).

Theorem 3 If h is admissible, then hRL0$ is root-admissible.
If h = h∗, then hRL0$ = hR∗.
Proof: Let s ∈ SF , reached from IF in ΘF using the root
action sequence πR. Consider the state s0 that would be
reached by πR in the modification Π0 of Π where all leaf
action costs are set to 0. Then hR∗[Π](s) = hF∗[Π0](s0).
Applying Definition 6 to Π0 and s0, we get ΠL$ = ΠL0$ and
sL$ = sL0$, so that as argued in the proof of Theorem 2 we
have hF∗[Π0](s0) = h∗[ΠL0$](sL0$). Overall, h∗(sL0$) =
hR∗(s), from which the claims follow. �

Search Algorithms
As usual, we say that a search algorithm is complete if it re-
turns a solution whenever one exists. We say that a search
algorithm is optimal if, whenever it returns a solution, its
cost is minimal among all solutions. Disregarding optimal-
ity, we can run any search algorithm on the fork-decoupled
state space, stopping at the first fork-decoupled goal state.
For optimal planning, matters are more subtle. One of our
methods is formulated on a modified state space where the
goal price tags are explicit:

Definition 8 (Explicit Goal Prices) Let Π be an FDR task,
F a fork factoring, and ΘF = 〈SF , AR, TF , IF , SFG 〉 the
fork-decoupled state space. The explicit goal-price state
space ΘFG$ is like ΘF but with a new state G′ and, for every
sG ∈ SFG , a new transition sG → G′ with cost Gprice(sG);
the set of goal states is set to be {G′}.

The explicit goal-price state space is useful because it al-
lows us to formulate search on ΘF , which is non-standard
due to the goal state price tags, in terms of standard search
on ΘFG$, via this correspondence:

Lemma 2 The solution paths in ΘFG$ are in one-to-one cor-
respondence with the fork-decoupled plans for Π.
Proof: This is direct from construction. Every solution path
π for ΘFG$ must have the form πF ◦ 〈sG → G′〉 where
sG ∈ SFG , the weight of sG → G′ is Gprice(sG), and πF

is a fork-decoupled plan. Clearly, cost(πF)+ Gprice(sG) =
GlobalCost(πF) equals the cost of π. Similar vice versa. �

Consider Figure 4. FDX just runs any search algorithm
X on ΘFG$. We have:

Algorithm Fork-Decoupled X (FDX):
Input: FDR planning task Π, fork factoring F

Heuristic search algorithm X
Fork heuristic hF

Output: A plan for Π, or “failed”

Let hFG$:=

{
hF (s) s ∈ SF
0 s = G′

Run X with hFG$ on ΘFG$

If X found a solution path π = πF ◦ 〈sG → G′〉
return GlobalPlan(πF)

else return “failed”

Figure 4: Exploiting any known search algorithm X .

Theorem 4 If X is complete, then FDX is complete. If X
is optimal for admissible heuristics, then FDX is optimal
for fork-admissible heuristics.
Proof: Completeness follows directly from Lemma 2 and
Theorem 1. Optimality follows in the same manner, as, for
fork-admissible hF , hFG$ is admissible in ΘFG$. �

Consider now Figure 5. AFRA∗ guides A∗ by a root
heuristic, and uses a fork heuristic merely for upper-bound
pruning. The search is drawn to cheap root paths, disregard-
ing leaf costs, so to guarantee optimality we must exhaust
the open list. Without early termination, this would be dom-
inated by FDA∗ because AFRA∗ would then have to expand
at least all N [s] where g(N) + hF (s) is less than optimal
solution cost. With early termination, that is not so because
in the best case we have to exhaust only those N [s] where
g(N) + hR(s) is less than optimal root solution cost.

Theorem 5 AFRA∗ is complete, and is optimal for root-
admissible hR and fork-admissible hF . FRA∗ is optimal for
root-admissible hR.
Proof: Completeness of AFRA∗ is obvious with Theorem 1.
Towards proving optimality, observe: (1) Without early ter-
mination and upper-bound pruning, AFRA∗ generates (in
particular) every fork-optimal fork-decoupled plan πF . (2)
With root-admissible hR, if AFRA∗ generates πF1 before
it generates πF2 , then cost(πF1) ≤ cost(πF2). (3) Upper-
bound pruning trivially preserves (2), and it preserves (1)
with fork-admissible hF because the pruned nodes N can-
not lead to fork-optimal solutions. (4) If early termination
fires for N [sG], then Gprice(sG) is minimal in SFG .

Optimality of AFRA∗ without early termination holds by
(1) and (3) with Theorem 1. Say that early termination fires
for N [sG], let πF1 be the fork-decoupled plan leading to N ,
and let πF2 be any fork-decoupled plan that would be gener-
ated later if we continued the search. By (4) πF2 pays at least
as high a goal price as πF1 , and by (2) cost(πF1) ≤ cost(πF2),
so πF2 cannot have better global cost than πF1 . With (1),
AFRA∗ already found a fork-optimal plan, which must be
stored in πFU .

To see optimality of FRA∗, just note that, by (2), the first
πF generated by AFRA∗ has minimal cost(πF) among all
fork-decoupled plans. With (4) and Theorem 1, the claim
follows, concluding the proof. �

FRA∗ is not complete because we force it to prove
optimality. In practice, one could return the plan any-
way, flagging it as “proved optimal” only if Gprice(sG) =

Algorithm Anytime Fork-Root A∗(AFRA∗):
Input: FDR planning task Π, fork factoring F

Root heuristic hR, fork heuristic hF

Output: An optimal plan for Π, or “unsolvable”
Let U :=∞ /* best known upper bound */
Let πFU := ⊥ /* corresponding plan */
Run A∗ with hR on ΘF , with these modifications:

Continue search until the open list is empty
Whenever a goal vertex node N [sG] is expanded:

If g(N) + Gprice(sG) < U
let U := g(N) + Gprice(sG)
let πFU := the fork-decoupled plan leading to N

If Gprice(sG) = MINGprice
return GlobalPlan(πFU) /* early termination */

Whenever a node N [s] is generated, and U 6=∞:
If g(N) + hF (s) ≥ U

discard N /* upper-bound pruning */
If πFU 6= ⊥ return GlobalPlan(πFU) else return “unsolvable”
Algorithm Fork-Root A∗(FRA∗):

Input: FDR planning task Π, fork factoring F
Root heuristic hR

Output: An optimal plan for Π, or “sorry no luck”
Run AFRA∗ with hR on ΘF , with these modifications:

Do not use upper-bound pruning
When the first goal vertex node N [sG] is expanded, do:

If Gprice(sG) = MINGprice
let πF := the fork-decoupled plan leading to N
return GlobalPlan(πF)

else return “sorry no luck”

Figure 5: New search algorithms. Search nodes are notated
N [s] where s is the state and N the node itself. MINGprice
is the sum, over the leaf factors FL ∈ FL, of optimal plan
cost for the projection of Π onto FL.

MINGprice. From a theory perspective, being optimal but
not complete is a rather unique profile. It can be viewed
as an effect of target-profile factoring, which is intrinsically
geared at special-case structure (in our case, the leaf costs).

Experiments
Our implementation is in FD (Helmert 2006). The pricing
function is maintained enumeratively for each leaf factor.
For plan extraction, each leaf state stores a backward pointer
to its predecessor on a cheapest compliant path. We employ
subsumption pruning, where s subsumes t if rt(s) = rt(t)
and, for every leaf state sL, prices(s)[sL] ≤ prices(t)[sL].
We implemented fork and root heuristics via Definitions 6
and 7 for hmax, LM-cut, and hFF (Bonet and Geffner 2001;
Helmert and Domshlak 2009; Hoffmann and Nebel 2001).
We also experiment with FD’s “blind heuristic”, returning 0
on goal states and mina∈A cost(a) elsewhere.

We ran all IPC STRIPS benchmarks (1998 – 2014), on a
cluster of Intel E5-2660 machines running at 2.20 GHz, with
time (memory) cut-offs of 30 minutes (4 GB).

Factoring Strategy
We proceed as follows. If the input task has causal graph leaf
variables, define F0 as the fork factoring whose leaf factors
are exactly those variables; else F0 is undefined. Initialize
D := IG(FSCC) to be the DAG interaction graph over the

State spaces Leaf factors (Mean stats)
Built Mean size (Common) Common All

Std Fork Std |SR| Fork |SFR | Nr MaxSize Nr MaxSize
Driverlog 20 5 8 3005640.0 27385.2 3.4 5.0 8.4 12.2
Logistics 63 12 23 422507.6 2614.2 4.9 7.5 11.2 71.2
Miconic 145 45 30 48544.0 6572.3 4.5 4.0 16.0 4.0
NoMystery 40 11 26 3561168.0 1290.4 5.0 6.7 9.0 10.5
Pathways 29 3 3 1167551.7 236471.7 3.0 2.0 21.1 2.0
Rovers 40 5 5 3925444.8 138813.4 3.8 2.0 20.9 2.0
Satellite 36 4 4 170808.0 109268.8 4.8 2.0 54.8 2.0
TPP 24 5 11 10029509.4 21.6 4.0 7.8 8.3 954.4
Woodwork 61 9 9 8204333.2 122433.9 2.8 160.1 3.9 43.6
Zenotravel 20 7 7 1965822.0 41887.1 3.7 5.1 10.0 11.7

Table 1: Reachable state space size and leaf factor statistics,
on IPC instances where our factoring method does not ab-
stain (see text). Where there are several IPC instance suites
of a domain, we take their union here. “Built”: reachable
state space could be fully built; “Common”: those instances
where both state spaces were built; “Nr”: (mean) number of
leaf factors; “MaxSize”: (mean) maximum leaf factor size,
where the “size” of FL ∈ FL is the number of reachable
states in the projection of Π onto FL.

input task’s SCCs. Set B0 := ∅ and i := 1. Then iter-
ate the following steps: Take the candidates to be those leaf
SCCs L in D where, with B′L := Bi−1 ∪ L andW ′L being
the weakly connected components within B′L, all W ′ ∈ W ′L
satisfy

∏
v∈W ′ |D(v)| ≤ 232. If there are no candidates, ter-

minate the iteration. Else, select a candidate L with minimal∏
v∈L |D(v)|. Set Bi := B′L, define Fi by FR

i := V \ Bi

and FL
i :=W ′L, remove L from D, increment i, and iterate.

Upon termination, consider the set of defined Fi. If this set
is empty, or no factoring in this set has more than a single
leaf, then we abstain from solving Π. Otherwise, we select
the factoring Fi whose number of leaf factors is maximal,
and whose index i is minimal among these factorings.

In words, we run a greedy pass through the lattice of fork
factorings, imposing for sanity that no leaf factor has esti-
mated size greater than MAXINT (for 32 bits). We select
the factoring with the maximal number of leaves, keeping
these as small as possible. This maximizes the amount of
conditional independence, while minimizing the overhead
of maintaining pricing functions. It takes negligible runtime
effort as the graph IG(FSCC) is reliably very small. The run-
time is (rounded to) 0.00 in 97% of all IPC STRIPS tasks,
and is ≤ 0.1 seconds in all but a single task, where we take
0.19 seconds but FD’s pre-process takes several minutes.

We also ran alternative strategies where we selected the
last factoring generated when imposing a bound M on the
sum

∑
FL∈FL

i

∏
v∈FL |D(v)| of estimated leaf sizes. In al-

most all domains, this either hardly changed the factoring
at all, or changed it only for large M (1 million and more),
and then only on the smallest instances where we obtained a
single “leaf” containing most of the state space, see next.

We abstain from single-leaf factorings because these
nearly always arise from a factoring grouping most of the
state variables into the leaf. In transportation domains with
capacity constraints, for example, the “horizontal line” is
drawn between the vehicles and the entire rest of the task.

Such factorings can sometimes be useful; e. g., in IPC’08-
optimal Transport instance p04, using LM-cut evaluations
go down from 95281 for A∗ to 17606 for FDA∗, and run-
time goes down from 56.8 to 17.6 seconds. But the huge
single leaf is typically manageable only on the smallest in-
stances of a domain. An interesting topic for future work is
to handle large leaves using a symbolic, rather than enumer-
ative, representation. For now, we concentrate on exploiting
conditional independence, across > 1 leaves.

Consider Table 1. One might wonder whether the radical
state space size reduction is pathological (if the entire task
is a single “leaf” then |SFR | = 1 but “MaxSize” = |SR|),
yet the right-hand side of the table shows that this is not
so. The only two domains where leaves do get “large” are
TPP and Woodworking, but compared to the state space re-
duction they are still tiny. Observe, though, that the state
space reduction does not pay off in Miconic, where it does
not outweigh the runtime/memory overhead and more stan-
dard state spaces are built. The reduction tends to be less if
the leaves are “too small”, as in Miconic, Rovers, Satellite,
and Pathways. This makes sense as the leaves then cannot
“do much on their own”, so, relatively speaking, less world
states are condensed into each single fork-decoupled state.

In all except the domains from Table 1, we abstain from
every instance. While this may be construed as a weakness
of fork factoring, arguably it is, at least as much, a strength.
Almost all known planning/search techniques work well
only on a limited domain subset. For example, state-of-
the-art partial-order reduction (POR) (Wehrle and Helmert
2014), a long-standing technique into which intense effort
was invested, improves coverage with LM-cut on 7 IPC do-
mains, substantially (> 1 instance) on 5. These numbers are
almost the same, actually slightly better (7 and 6, Table 2),
for fork factoring. However, in difference to POR and ba-
sically all other known techniques, fork factoring abstains
outside its scope: The structure it requires to work well is ex-
plicit and easily testable. This is perfect for portfolios (e. g.
(Xu et al. 2008; Cenamor, de la Rosa, and Fernández 2014)),
combining the strengths of different basic solvers, which is
necessary for effective general off-the-shelf tools anyhow.

Planner Performance Results
For satisficing planning, the domains within our scope are
often too easy for fork factoring to be beneficial. The most
notable exception is transportation with fuel consumption.
Denote with GBFS FD’s lazy-greedy best-first search with a
second open list for preferred operators. On the IPC’11 sat-
isficing NoMystery benchmarks, while GBFS solves 9 in-
stances with hFF, FDGBFS solves 19. Figure 6 examines
NoMystery more closely, on Nakhost et al.’s (2012) con-
trolled benchmarks. We ran the respective best satisficing
and optimal planners from Nakhost et al.’s experiments, as
well as IPC’14 optimal-track winner Symba (Torralba and
Alcázar 2013). FDGBFS solves all instances, vastly out-
performing its satisficing competitors when resources are
scarce. FDA∗ with LM-cut solves more than 90% of the in-
stances in “small”, vastly outperforming merge-and-shrink
(M&S). It solves all instances in “large”, in stark contrast to
the optimal planners run by Nakhost et al., as well as M&S

 40

 50

 60

 70

 80

 90

 100

 1 1.2 1.4 1.6 1.8 2

Std FD-AutoTune2

FDGBFS-hFF

Std M&S

FDA*-LMcut
 40

 50

 60

 70

 80

 90

 100

 1 1.2 1.4 1.6 1.8 2

Std Arvand2

FDGBFS-hFF

FDA*-LMcut

NoMystery “small” NoMystery “large”
Figure 6: % instances covered in Nakhost et al.’s (2012) No-
Mystery test suites, over resource constrainedness (factor by
which the available fuel exceeds the minimum required).
in our own runs here, none of which managed to solve any of
these instances. Symba handles “large” much better, though
clearly worse than FDA∗; in “small”, Symba has only 44%
coverage in total (data not included for readability).

Table 2 gives full results for optimal planning. To clar-
ify the competition: Almost all works on factored plan-
ning have notions of local- or step-optimality, and could
be rendered globally optimal only by impractical searches
over bounds on the number of (local) steps. Fabre et
al. (2010) do guarantee global cost-optimality, but report
themselves that their approach is impractical (except on
manually reformulated versions of the IPC’04 Promela do-
mains). We compare against partition pruning in A∗ (Nis-
sim, Apsel, and Brafman 2012; Nissim and Brafman 2014),
the only other work exploiting some form of decomposi-
tion in globally cost-optimal heuristic search. We compare
against POR (Wehrle and Helmert 2012; Wehrle et al. 2013;
Wehrle and Helmert 2014), in its best-performing (on our
non-abstained benchmarks) variant, as a representation of
the state of the art in admissible search space pruning.

Fork-decoupled state space search clearly has the edge in
overall coverage. For each of LM-cut, hmax, and the blind
heuristic, FDA∗ and AFRA∗ coverage dominates that of
A∗ in all domains except Miconic (as well as 2 instances
in Zenotravel for AFRA∗ with LM-cut). Our techniques
yield amazing benefits in Logistics, NoMystery, and TPP;
strong benefits in Woodworking and Rovers (the latter es-
pecially when using the alternative factoring strategy de-
scribed above); and minor to significant benefits in various
other cases. In Logistics, NoMystery, and TPP, as well as
Rovers with the alternative factoring strategy, even hmax and
blind search with fork-decoupled search have higher cover-
age than LM-cut with standard search. Indeed, when ignor-
ing the oversize Miconic domain, hmax and blind search out-
perform LM-cut in summed-up coverage (109–112 vs. 97).

In almost all cases, as evidenced by the coverage of FRA∗,
the first plan found by AFRA∗ is proved optimal by early
termination already. We need to continue search only some-
times in Driverlog, Woodworking, and Zenotravel.

The search space reduction obtained by fork decoupling
is typically much larger than that for partition pruning and
POR, although there are exceptions (Pathways, Satellite,
Woodworking). Similarly for runtime. The runtime fac-
tors are sometimes skewed by the small size of commonly
solved instances, as well as FD’s rounding; e. g., in TPP, all
runs of FDA∗ and AFRA∗ on commonly solved instances
are rounded to 0.1. The scatter plots shed additional light on

(A): Coverage
A∗ FDA∗ AFRA∗ FRA∗ PPrune POReduct

BL HM LM BL HM LM BL HM LM BL HM LM BL HM LM BL HM LM SB
Driver 20 7 9 13 11 11 13 11 11 13 9 10 10 7 9 13 7 9 13 14
Log00 28 10 12 20 22 22 28 22 22 25 22 22 25 11 12 20 10 12 20 19
Log98 35 2 2 6 4 3 6 4 4 6 4 4 6 3 3 6 2 3 6 5
Mico 145 50 50 136 36 36 135 36 36 135 36 36 135 45 45 136 45 45 136 102
NoMy 20 8 8 14 17 18 20 17 19 20 17 18 20 8 8 14 8 8 14 14
Pathw 29 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 5
Rovers 40 6 6 7 6 6 8 6 7 9 6 7 9 6 6 10 7 8 9 14
Satell 36 6 6 7 6 6 7 6 6 8 6 6 8 7 7 12 6 7 11 9
TPP 27 5 5 5 23 22 18 23 22 23 23 22 23 5 5 5 5 5 5 7
Woo08 13 4 5 6 5 6 10 5 6 11 1 2 7 4 5 6 6 8 11 11
Woo11 5 0 1 2 1 1 4 1 1 5 1 1 5 0 1 2 1 3 5 5
Zeno 20 8 8 13 11 11 13 11 11 11 9 9 8 8 8 13 8 8 13 11∑

418 109 115 233 145 145 266 145 148 270 137 140 260 107 112 241 108 119 247 216
Rovers F ’ 9 9 9 9 9 9 7 7 7

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

A∗ vs. FDA∗ A∗ vs. AFRA∗

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

A∗ vs. A∗ PPrune A∗ vs. A∗ POReduct

(B): Evaluations with LM-cut: Improvement factor relative to A∗ (C): Runtime with LM-cut: Improvement factor relative to A∗

FDA∗ AFRA∗ PPrune POReduct FDA∗ AFRA∗ PPrune POReduct
#

∑
D Gmea max

∑
D Gmea max

∑
D Gmea max

∑
D Gmea max #

∑
D Gmea max

∑
D Gmea max

∑
D Gmea max

∑
D Gmea max

Driver 13 2.2 3.5 73.2 1.2 3.0 83.3 1.4 1.3 2.0 1.0 1.2 1.9 9 0.7 1.8 31.6 0.4 1.7 54.0 1.2 1.0 1.7 1.0 0.9 1.0
Log00 20 960.3 130.7 1407 562.3 106.5 1119 2.8 2.1 5.4 2.9 2.7 22.3 11 311.9 67.1 561.1 337.9 69.9 841.7 2.9 2.2 5.4 3.0 2.4 5.2
Log98 6 49.3 11.4 458.8 0.2 1.7 458.8 4.3 2.4 3.0 2.5 3.4 5.4 4 14.8 7.7 158.3 0.1 1.0 299.6 2.4 1.9 2.7 3.9 2.7 4.8
Mico 135 2.2 1.7 6.5 2.2 1.7 6.5 1.0 1.0 1.0 1.0 1.0 1.0 100 0.8 0.8 3.4 1.7 2.0 9.7 0.7 0.6 0.9 0.9 0.8 1.0
NoMy 14 20.4 8.8 22.2 8.4 5.0 9.3 1.0 1.0 1.0 1.0 1.0 1.0 12 17.9 4.5 19.7 20.5 4.8 23.4 0.9 0.4 1.0 0.8 0.4 0.9
Pathw 4 1.9 1.3 1.9 1.7 1.2 1.7 2.2 1.3 2.2 16.2 3.0 16.7 1 1.2 1.2 1.2 1.2 1.2 1.2 2.2 2.2 2.2 13.4 13.4 13.4
Rovers 7 4.8 2.5 8.9 7.8 3.4 15.5 2.4 1.6 3.2 4.4 2.3 19.9 3 1.9 2.1 2.9 4.3 4.3 6.5 2.4 2.3 3.0 3.5 4.5 19.6
Satell 7 1.0 1.1 1.4 2.2 1.6 5.1 16.3 3.6 16.9 21.5 5.6 27.8 3 0.6 0.6 0.7 1.8 1.8 3.9 17.6 11.3 18.2 25.7 18.6 26.2
TPP 5 2491 49.0 5657 2858 52.7 6869 1.1 0.9 1.6 1.0 1.0 1.0 1 68.2 68.2 68.2 68.2 68.2 68.2 1.1 1.1 1.1 1.0 1.0 1.0
Woo08 6 82.4 42.9 135.2 72.8 41.4 108.0 1.4 1.2 1.5 243.2 10.6 346.9 2 65.9 27.3 84.7 69.8 30.4 85.9 1.3 1.3 1.4 233.6 113.1 269.8
Woo11 2 82.4 55.4 135.2 72.8 49.6 108.0 1.4 1.4 1.5 250.3 173.7 346.9 2 68.7 27.5 89.1 71.6 30.3 88.5 1.3 1.3 1.4 237.7 112.1 275.1
Zeno 11 6.5 3.0 13.2 1.4 1.3 4.0 2.3 1.5 3.1 1.0 1.0 1.3 7 4.0 1.6 6.9 1.1 0.8 3.1 2.0 1.0 2.2 0.9 0.8 1.0

Table 2: Performance on IPC optimal-track instances where our factoring strategy does not abstain. Best coverage bold,
better-than-baseline coverage italic. “BL” blind heuristic; “HM” hmax; “LM” LM-cut; “PPrune” partition pruning; “POReduct”
partial-order reduction; “SB” Symba. The scatter plots show runtime with LM-cut (A∗ on the x-axis). In (B) and (C), “

∑
D” is

the factor over the per-domain sums, and “Gmea” (“max”) is the Geometric mean (the maximum) over the per-instance factors.
Instances for (B) are commonly solved ones, for (C) the same but excluding ones commonly solved in ≤ 0.1 seconds (FD
rounds runtimes ≤ 0.1 to 0.1). Rovers F’ uses our alternative factoring strategy with leaf size bound M = 10 million.

this, showing that FDA∗ and AFRA∗ are highly beneficial
here, at a slightly higher risk in the case of AFRA∗.

Of course, our observations must be qualified against the
benchmark selection: fork factoring is great within its scope.
Yet keep in mind that, outside this scope, we can after negli-
gible runtime invoke whatever alternative planner we want.

Future Research Directions
In preliminary work, we have determined that the scope of
fork factoring can be extended to star-topology factoring:
replace the “root” with a “center” and the leaves with “pe-
riphery factors”, allowing arbitrary interactions between the
center and each periphery factor. This corresponds to a much
generalized notion of “conditional independence”: For any
fixed center path, the periphery factors can still be moved in-
dependently of each other, given that each complies with the
preconditions requested and provided by the center, as well
as co-occurring effects with the center. Note that this allows
to address planning tasks whose causal graph is strongly
connected. Indeed, if we are willing to tackle single-leaf
factorings (see next), then any partition of the state variables
into two subsets yields a star-topology factoring.

We currently enumerate leaf states explicitly, a major

caveat when dealing with large leaf factors. But one could
represent the pricing functions symbolically instead, via
ADDs (Bahar et al. 1997). This is true also of star-topology
factoring, which then becomes a highly configurable form of
mixing explicit-state search with symbolic search, including
in particular the option to freely divide the state variables
into ones (“center”) tackled by explicit search vs. ones (“sin-
gle periphery factor”) tackled by symbolic search.

Beyond this, the road opens up to target-profile factor-
ing more generally. Are there interesting structures other
than “conditional independence” to exploit? In chain struc-
tures, e. g., what about restrictions on the “domain transition
graphs” of the factors to guarantee that backtracking won’t
be needed, abstaining if these restrictions are not satisfied?
Can we combine different target profiles through hierarchi-
cal sub-structuring, where “factors” at a higher level are op-
timally solved via a target profile at a lower level? Viewing
target-profile factoring as a highly parameterized way of re-
formulating the search, can we benefit from orthogonal en-
hancements like partial-order reduction, macro-actions (e. g.
(Vidal 2004; Botea et al. 2005)), symmetries (e. g. (Domsh-
lak, Katz, and Shleyfman 2012))? Can we understand under
which circumstances a reformulation is beneficial or detri-

mental? Can we predict which alternative target profile best
matches the input, and design self-configuring portfolios?

Last but not least, it is worth mentioning that star topol-
ogy is a classical system design paradigm in many areas of
CS. Hence star-topology decoupled state space search could
turn out to be useful for control, synthesis, and verification
problems far beyond the realm of AI Planning.

Acknowledgments. We thank Carmel Domshlak for dis-
cussions, which contributed to many of the ideas for future
research.

References
Amir, E., and Engelhardt, B. 2003. Factored planning. In
Gottlob, G., ed., Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI-03), 929–935.
Acapulco, Mexico: Morgan Kaufmann.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.;
Macii, E.; Pardo, A.; and Somenzi, F. 1997. Algebraic
decision diagrams and their applications. Formal Methods
in System Design 10(2/3):171–206.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B.,
eds. 2012. Proceedings of the 22nd International Confer-
ence on Automated Planning and Scheduling (ICAPS’12).
AAAI Press.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research 24:581–621.
Brafman, R., and Domshlak, C. 2003. Structure and com-
plexity in planning with unary operators. Journal of Artifi-
cial Intelligence Research 18:315–349.
Brafman, R. I., and Domshlak, C. 2006. Factored plan-
ning: How, when, and when not. In Gil, Y., and Mooney,
R. J., eds., Proceedings of the 21st National Conference of
the American Association for Artificial Intelligence (AAAI-
06), 809–814. Boston, Massachusetts, USA: AAAI Press.
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Rinta-
nen et al. (2008), 28–35.
Brafman, R., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198:52–71.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2014. IBA-
COP and IBACOP2 planner. In IPC 2014 planner abstracts,
35–38.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-
black planning: A new systematic approach to partial delete
relaxation. Artificial Intelligence 221:73–114.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In Bonet et al. (2012).

Fabre, E.; Jezequel, L.; Haslum, P.; and Thiébaux, S. 2010.
Cost-optimal factored planning: Promises and pitfalls. In
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds., Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS’10), 65–72.
AAAI Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Jonsson, P., and Bäckström, C. 1995. Incremental planning.
In European Workshop on Planning.
Katz, M., and Domshlak, C. 2008. Structural patterns
heuristics via fork decomposition. In Rintanen et al. (2008),
182–189.
Kelareva, E.; Buffet, O.; Huang, J.; and Thiébaux, S. 2007.
Factored planning using decomposition trees. In Veloso, M.,
ed., Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI-07), 1942–1947. Hyder-
abad, India: Morgan Kaufmann.
Knoblock, C. 1994. Automatically generating abstractions
for planning. Artificial Intelligence 68(2):243–302.
Laneky, A. L., and Getoor, L. 1995. Scope and abstrac-
tion: Two criteria for localized planning. In Mellish, S.,
ed., Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI-95), 1612–1619. Montreal,
Canada: Morgan Kaufmann.
McDermott, D. V. 1999. Using regression-match graphs
to control search in planning. Artificial Intelligence 109(1-
2):111–159.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A monte carlo random walk approach.
In Bonet et al. (2012), 181–189.
Nissim, R., and Brafman, R. 2014. Distributed heuristic for-
ward search for multi-agent planning. Journal of Artificial
Intelligence Research 51:293–332.
Nissim, R.; Apsel, U.; and Brafman, R. I. 2012. Tunneling
and decomposition-based state reduction for optimal plan-
ning. In Raedt, L. D., ed., Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI’12), 624–629.
Montpellier, France: IOS Press.
Rintanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E., eds.
2008. Proceedings of the 18th International Conference
on Automated Planning and Scheduling (ICAPS’08). AAAI
Press.
Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence 5:115135.
Torralba, A., and Alcázar, V. 2013. Constrained sym-
bolic search: On mutexes, BDD minimization and more. In

Helmert, M., and Röger, G., eds., Proceedings of the 6th An-
nual Symposium on Combinatorial Search (SOCS’13), 175–
183. AAAI Press.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Koenig, S.; Zilberstein, S.; and Koehler, J.,
eds., Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS’04), 150–160.
Whistler, Canada: Morgan Kaufmann.
Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Bonet et al. (2012).
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Chien,
S.; Do, M.; Fern, A.; and Ruml, W., eds., Proceedings of the
24th International Conference on Automated Planning and
Scheduling (ICAPS’14). AAAI Press.
Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller,
R. 2013. The relative pruning power of strong stubborn sets
and expansion core. In Borrajo, D.; Fratini, S.; Kambham-
pati, S.; and Oddi, A., eds., Proceedings of the 23rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’13). Rome, Italy: AAAI Press.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
Satzilla: Portfolio-based algorithm selection for sat. Journal
of Artificial Intelligence Research 32:565–606.

