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Abstract

As modeling details can have a large impact on planner per-
formance, domain transformation has been a traditional sub-
ject of interest in the planning community not only between
languages, but also within languages. Herein, we automate
an intra-language transformation method that has as yet been
applied only manually, and that has never been formally de-
scribed: action schema splitting, which transforms an action
schema with a big interface (many parameters) into several
schemas with smaller interfaces, exponentially reducing the
number of ground actions. We spell out this method, charac-
terizing exactly the choice of splits preserving equivalence to
the original schema. Making that choice involves a trade-off
between interface size and plan length, which we explore by
designing automatic domain optimization methods. Our ex-
periments show that these methods can substantially improve
performance on domains with large interfaces.

Introduction
Automatic domain transformation has been a topic of in-
terest for a long time. There is a large number of works
(e. g. (Gazen and Knoblock 1997; Nebel 2000; Palacios and
Geffner 2009)) whose objective is to transform the planning
task at hand into a simpler language easier to deal with. It
is also often beneficial to transform a planning task within a
given language, the objective being to improve planner per-
formance through a more suitable model. For example, it
has been considered to remove redundant actions (Haslum
and Jonsson 2000) in order to reduce the branching fac-
tor, to (inversely) add additional redundant macro-actions
in order to reduce distance-to-goal (e. g. (Botea et al. 2005;
Newton et al. 2007)), and to simplify the task in ways proved
to be sound using causal graphs and other kinds of analyses
(e. g. (Knoblock 1994; Haslum 2007)). In this work, we fo-
cus on an intra-language transformation that has not, as yet,
been systematically investigated: action schema splitting.

Given an action schema a[X], i. e., a PDDL-like action
with parameters (variables) X ranging over objects, take
the interface size of a[X] to be its number of parame-
ters, |X|. The splitting operation creates several schemas
a1[X1], . . . , ak[Xk] whose combination corresponds ex-
actly to a[X] in any valid plan, yet each of which has a
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smaller interface. The key advantage of such a split is the
smaller number of ground actions. For example, if each
x ∈ X can be instantiated with 100 objects, |X| = 3, and
|Xi| = 1, then we reduce that number from 1000000 to 300.

Action schema splitting has been used as an engineer-
ing method to make domains accessible to standard plan-
ners that ground out the actions, in the creation of the IPC
Pipesworld and Cybersecurity domains (Hoffmann et al.
2006; Boddy et al. 2005), and in the formulation of genome
edit distance as planning (Haslum 2011). This was done
manually. The splitting method has never been formally de-
scribed, and no attempt has been made to automate it. Our
contribution is to fill these gaps.

We spell out formally what a valid action schema split
is, devising a general translation method. Specifically, we
show that, given a schema a[X], one can choose any split
a1[X1], . . . , ak[Xk] that preserves the intended order among
potentially identical preconditions/adds/deletes in the origi-
nal schema (e. g., preconditions need to be checked before
corresponding deletes are applied, or else the split schema
may not be applicable even though the original schema
is). Choosing a1[X1], . . . , ak[Xk] constitutes a trade-off
between minimizing interface size maxi |Xi| and thus the
number of ground actions, vs. minimizing split size k and,
therewith, plan length. We design automatic domain opti-
mization techniques addressing that trade-off. We evaluate
our methods on (a) standard IPC benchmarks, as well as
(b) “un-split” versions of the Pipesworld and genome edit
distance. Our techniques (a) are typically not beneficial on
the former domains, as IPC domains are already engineered
to challenge search not pre-processes; however, our tech-
niques (b) are beneficial, and sometimes even more so than
the manually split domain versions, for the latter domains.

We next provide the background on our planning frame-
work. We then introduce the action schema splitting oper-
ation. We devise automatic domain optimization methods,
and evaluate these experimentally. We close the paper with
a brief discussion of conclusions and future work.

Background
We focus on STRIPS-like planning domains. Action schema
splitting takes place on the first-order (lifted) level, where
actions are parameterized by object variables as in PDDL.
We distinguish that level from the propositional level, as



used in most current planner implementations, and where
the planning semantics is defined. We will denote variables
with x, y, z, and sets of variables with X,Y, Z.

Definition 1. An action schema a[X] is a 3-tuple (P,A,D)
where P (the precondition), A (the add list), and D (the
delete list) are finite sets of first-order atoms such that X
is the set of variables that appear in P ∪A∪D. X is called
the interface of a[X], and the variables themselves are of-
ten called the parameters of the action schema. We denote
pre(a[X]) = P , add(a[X]) = A, and del(a[X]) = D. We
denote At(a[X]) = P ∪A ∪D.

An action, or ground action, a is a 3-tuple (P,A,D)
where P , A, D are finite sets of propositional symbols. We
denote the pre(·), add(·), del(·), and At(·) functions ex-
actly as for action schemas. If A is a set of action schemas
or of actions, then At(A) is defined in the obvious way.

We always distinguish first-order constructs by notating
them along with their variables, e. g. writing l[X] for a first-
order atom with variables X; like for action schemas, we
refer to X as the interface. Instead of a[{x, y, z}], we often
write a(x, y, z).

Action schemas can be instantiated by assigning values –
objects – to their parameters, yielding actions. In that man-
ner, action schemas represent sets of actions. Given a finite
set of objectsO and an action schema a[X], the instantiation
of a[X] with O is the ground action a defined in the usual
manner, substituting the variables of the first-order atoms in
a[X] with the objects assigned to the schema’s parameters.

Example 1. As an illustrating running example, we will
consider the action schema moving block x from block y to
block z. We can write this in STRIPS notation as:

Move(x, y, z)
pre : {on(x, y), clear(x), clear(z)}
add : {on(x, z), clear(y)}
del : {on(x, y), clear(z)}

In our notation, this schema is represented as the
triple Move(x, y, z) = ({on(x, y), clear(x), clear(z)},
{on(x, z), clear(y)}, {on(x, y), clear(z)}). Instantiating
the variables x, y and z with objects A,B,C respectively,
the first-order atoms are grounded, and we can consider
them as propositional symbols. We write the correspond-
ing (instantiated) action simply by replacing the parame-
ters with objects, like “Move(A,B,C)”. In the present
case, Move(A,B,C) = ({on(A,B), clear(A), clear(C)},
{on(A,C), clear(B)}, {on(A,B), clear(C)}).

In PDDL, planning domains are represented using a set of
action schemas common to a set of planning instances giv-
ing the (finite) object set, initial state, and goal. Apart from
the instantiation of an action schema as defined above, we
don’t require an explicit notation for this. We base our for-
malization simply on grounded STRIPS as used in state-of-
the-art planners like, e. g., Fast Downward (Helmert 2006)
and LAMA (Richter and Westphal 2010).

Definition 2. A planning task Π is a 4-tuple Π =
(P,A, I,G) where P is a finite set of propositional symbols,
A is a finite set of actions where At(A) ⊆ P , I ⊆ P is the
initial state, and G ⊆ P is the goal.

A state s in Π is any set s ⊆ P . Action a is applicable to s
if pre(a) ⊆ s. In that case, the outcome state s′ of applying
a to s is s′ = (s \ del(a)) ∪ add(a), and we write s a−→ s′.
For an actipon sequence a, we write s a−→ t if the actions in
a can be iteratively applied to s, resulting in t. A plan for Π

is a sequence a such that I a−→ sG where G ⊆ sG. The plan
is optimal if its length is minimal among all plans for Π.

Note that we give adds a preference over deletes, i. e., if
the same proposition p appears in both del(a) and add(a),
then p is true after applying a. This complies with the of-
ficial semantics of PDDL (Fox and Long 2003); our tech-
nology can trivially be adapted to deal with the opposite se-
mantics if so desired. We do not consider action costs here,
restricting ourselves to the uniform-cost case for simplicity,
and as the most efficient planning systems (in terms of run-
time) tend to use uniform costs.

Action Schema Splitting
We define action schema splitting as a syntactic transfor-
mation on action schemas. The transformation is designed
such that the plans in a transformed planning task are in one-
to-one correspondence with those in the original task. To
illustrate the issues that must be tackled in achieving this,
consider our example:

Example 2. For the action schema Move(x, y, z) from Ex-
ample 1, a tentative split into sub-schemas could be:

Move1(x, y) Move2(x, z)
pre : {on(x, y), clear(x)} pre : {clear(z)}
add : {clear(y)} add : {on(x, z)}
del : {on(x, y)} del : {clear(z)}

The correspondence of this split schema to the original one
appears obvious, and one may be tempted to conclude that
action schema splitting is trivial. However, note that the split
shown is not actually valid:

(1) Nothing ensures that the two sub-schemas are instan-
tiated consistently, i. e., assign the same object to the
shared parameter x on both sides.

(2) Nothing ensures that the two sub-schemas are exe-
cuted en block, i. e., both together and without any
other actions inserted in between. E.g., applying just
Move2(x, z) allows us to move any block x onto z, re-
gardless of the current status of x.

(3) Nothing ensures the intended order among the unifi-
able add clear(y) and precondition clear(z): If y and
z are instantiated with the same object, then, in any
reachable state s, the original schema will not be ap-
plicable because we cannot have on(x, y) and clear(y)
at the same time. In the split schema, however, the
add of Move1(x, y) will establish that atom, render-
ing Move2(x, z) (and therewith the overall split schema)
applicable.

Issues (1) and (2) are easy to fix, for arbitrary splits, by
decorating the sub-schemas with new atoms ensuring con-
sistent instantiation and en-block execution. Issue (3) is
more subtle, and is the only one restricting the set of splits



we can choose from. We will now focus on issue (3), desin-
ing our splitting framework. Issues (1) and (2) will be han-
dled below by augmenting that framework with the men-
tioned decorations.

Annotated Atoms and Sound Sequentializations
It is convenient to formulate our framework relative to atoms
annotated with the part of the schema they belong to:

Definition 3. Let a[X] be an action schema, and let l[Y ] ∈
At(a[X]) be an atom in a[X]. Then the corresponding an-
notated atom is the pair (l[Y ], f(·)) where f(·) is pre(·) in
case l[Y ] ∈ pre(a[X]), add(·) in case l[Y ] ∈ add(a[X]),
and del(·) in case l[Y ] ∈ del(a[X]). The set of all anno-
tated atoms of a[X] is denoted AnnAt(a[X]).

To avoid clutter, we will write lpre [Y ] for annotated atoms
from the precondition, and similar for adds/deletes. Anno-
tated atoms are convenient because sub-schemas – schemas
containing a part of the original schema – correspond to sub-
sets of AnnAt(a[X]). In the remainder of the paper, we will
typically identify schemas (and sub-schemas) with their set
of annotated atoms. In particular, this is done in our defini-
tion of what a split is:1

Definition 4. Let A[Z] be a set of action schemas, and
let A[Z] be the set of all possible action schemas over
At(A[Z]). A split function for A[Z] is a function σ :
A[Z] 7→ P(A[Z]), such that, whenever σ(a[X]) =
{a1[X1], . . . , ak[Xk]}, then a1[X1], . . . , ak[Xk] is a parti-
tion of a[X], i. e., ai[Xi] ∩ ai[Xi] = ∅ for i 6= j and⋃
i ai[Xi] = a[X].

To address issue (3), we need to define a partial order over
AnnAt(a[X]). Valid splits are then ones that comply with
that order. Namely, we need to make sure that, when the split
schema is executed, preconditions are evaluated before adds
so the latter cannot establish the former; preconditions are
evaluated before deletes so the latter cannot disvalidate the
former; and deletes are executed before adds so the latter get
the desired preference over the former. Of course, we have
to do all this only in case the two atoms in question might
actually be identical in a ground action. In other words:

Definition 5. Let a[X] be an action schema, and let
l[Y ], l[Y ′] ∈ At(a[X]) be atoms in a[X] that share the same
predicate l. We order Ann(l[Y ]) before Ann(l[Y ′]), writ-
ten Ann(l[Y ]) → Ann(l[Y ′]), if either: l[Y ] ∈ pre(a[X])
and l[Y ′] ∈ add(a[X]); or l[Y ] ∈ pre(a[X]) and l[Y ′] ∈
del(a[X]); or l[Y ] ∈ del(a[X]) and l[Y ′] ∈ add(a[X]).

If σ(a[X]) is a split of a[X], then a sequentialization
of the split is any linear ordering a1[X1], . . . , ak[Xk] of
σ(a[X]). The sequentialization is sound if it complies
with the ordering relation→, i. e., whenever Ann(l[Y ]) →
Ann(l[Y ′]) and Ann(l[Y ]) ∈ ai[Xi] and Ann(l[Y ]) ∈
aj [Xj ], then i ≤ j.

Note first that→ is acyclic, and hence in principle always
allows sound sequentialization:

1While each schema is split separately, we define the splitting
operation for sets of schemas as the decorations addressing issues
(1) and (2) will be shared across all schemas in a domain.

Lemma 1. Let a[X] be an action schema. Then the directed
graph with vertices AnnAt(a[X]) and arcs→ is acyclic.

Proof. Direct from construction: The worst that can happen
is for the same predicate to appear in precondition, adds,
and deletes, in which case its precondition occurences are
ordered before those in each of the adds and deletes, and its
deletes occurences are ordered before those in the adds.

To understand these concepts, consider first the simple ex-
ample where a[X] has an empty precondition, adds {l(x)},
and deletes {l(y)}. Say the split separates the add atom from
the delete atom. The original schema will always result in
l(x) being true. However, if we instantiate x and y with the
same object and allow the deleting sub-schema to be applied
last, then the split schema will result in l(x) being false. In
a sound sequentialization, this cannot happen, tackling is-
sue (3) in controlling the splitting transformation and thus
establishing its correctness relative to the original domain.2

Quotient Graphs and Valid Splits
We now establish a characterization of the set of sound se-
quentializations, which also immediately leads us to meth-
ods for actually finding them. For illustration:

Example 3. For the action schema Move(x, y, z) from Ex-
ample 1, the graph of partially ordered annotated atoms is:
clearpre(z) clearpre(x)

cleardel(z)

clearadd(y)

onpre(x, y)

ondel(x, y)

onadd(x, z)

Intuitively, the tentative split in Example 2 does not com-
ply with the ordering over the clear(·) predicate atoms, as
the delete clear(z) is ordered in between the precondition
clear(x) and the add clear(y), but is ordered behind both
in the split. We now make this intuition precise.

Definition 6. Let a[X] be an action schema, and let σ(a[X])
be a split of a[X]. Then the quotient graph is the di-
rected graph whose vertices are the sub-schemas ai[Xi] ∈
σ(a[X]), and that has an arc from ai[Xi] to aj [Xj ] if
there exist annotated atoms Ann(l[Y ]) ∈ ai[Xi] and
Ann(l[Y ′]) ∈ aj [Xj ] such that Ann(l[Y ]) → Ann(l[Y ′]).
We say that σ(a[X]) is valid if the quotient graph is acyclic.

Quotient graphs as defined here are equivalent to impos-
ing an “abstraction” – aggregating vertices into “block ver-
tices” – over the acyclic graph of annotated atoms (identified
in Lemma 1). As we shall see, this simple concept achieves
our aim of characterizing the set of sound sequentializations.
For illustration, consider again our example:

2A subtle point here is that some planning approaches/tools dis-
allow non-empty intersections between adds and deletes. Our as-
sumption is that these, when given as input a ground action a not
complying with their restriction, transform a so that it does com-
ply (removing the duplicate atom from the delete list). Our split
schemas produce ground actions equivalent to a (and thus also to
the transformed action). Same if non-empty intersections between
preconditions and adds are disallowed, and if both are disallowed.



Example 4. The tentative split in Example 2 is not valid. Its
quotient graph is: (we omit self-loops for simplicity)

{onpre(x, y), clearpre(x), clearadd(y), ondel(x, y)}

{clearpre(z), onadd(x, z), cleardel(z)}
The downwards arc here results (amongst others) from the
ordering clearpre(x) → cleardel(z) (we need to make sure
to not delete our own precondition), whereas the upwards
arc results from the orderings clearpre(z) → clearadd(y)
and cleardel(z) → clearadd(y) (we need to make sure to
not add our own precondition, and to not delete our add). A
minimal way to get rid of the upwards arc, and thus of the
cycle, is to separate out clearadd(y):
{onpre(x, y), clearpre(x), ondel(x, y)}

{clearpre(z), onadd(x, z), cleardel(z)}

{clearadd(y)}

Note how this gets rid of issue (3) as observed in Example 2:
If we instantiate y and z with the same object now, then
the application of the split schema fails at the second sub-
schema when the precondition clear(z) comes up (because
that atom is no longer added by the previous sub-schema).

As advertized, quotient graphs characterize exactly the
sound sequentializations:
Lemma 2. Let a[X] be an action schema, let σ(a[X]) be
a split, and let a1[X1], . . . , ak[Xk] be a sequentialization of
σ(a[X]). Then a1[X1], . . . , ak[Xk] is sound if and only if it
complies with the quotient graph, i. e., whenever that graph
contains an arc from ai[Xi] to aj [Xj ], then i ≤ j.

Proof. Direct from construction: As the block vertices in the
quotient graph are the sub-schemas in the split, the ordering
constraints imposed by soundness correspond exactly to the
arcs in the quotient graph.

As a split is valid iff its quotient graph is acyclic, which
obviously is the case iff it is possible for a sequentialization
to comply with that graph, we get:
Corollary 1. Let a[X] be an action schema, and let σ(a[X])
be a split. Then σ(a[X]) is valid if and only if it has at least
one sound sequentialization.

Finding Valid Splits
We have now identified exactly which splits can be chosen
(namely, the valid ones). Remains the question, how to ac-
tually find such splits? Does there even always exist a non-
trivial split, with more than a single sub-schema? Both ques-
tions are easily answered; we start with the latter one:
Definition 7. Let a[X] be an action schema. Then its trivial
split, denoted TrivialSplit(a[X]), is the partition {a[X]}
that assigns every annotated atom to the same single sub-
schema. Its atom split, denoted AtomSplit(a[X]), is the
partition {{Ann(l[Y ])} | Ann(l[Y ]) ∈ a[X]} that assigns
every annotated atom to a separate sub-schema.
Corollary 2. Let a[X] be an action schema. Then
TrivialSplit(a[X]) and AtomSplit(a[X]) are both valid.

This corollary is trivial for TrivialSplit(a[X]), and direct
from Lemma 1 for AtomSplit(a[X]). As soon as the action
schema contains more than a single atom, AtomSplit(a[X])
is non-trivial (contains more than one sub-schema). For il-
lustration, reconsider Example 3: The atom split creates a
separate sub-schema for each of the seven annotated atoms,
and its quotient graph is exactly the one shown. In our sim-
ple example from above where a[X] adds {l(x)} and deletes
{l(y)}, the atom split separates the add atom from the delete
atom, and imposes that the delete is applied first, so that the
only compliant sequentialization, like the original schema,
always results in l(x) being true.

Towards answering the question how to find more general
valid splits, note first that splits naturally form a hierarchy (a
partial order): We say that σ(a[X]) is coarser than σ′(a[X])
if σ(a[X]) 6= σ′(a[X]) and, for every ai[Xi] ∈ σ′(a[X]),
there exists aj [Xj ] ∈ σ(a[X]) such that ai[Xi] ⊆ aj [Xj ].
The unique coarsest split is the trivial split, and the unique
finest split (i. e., the least coarse one) is the atom split. We
can travel between these two extremes by iteratively merg-
ing sub-schemas:

Definition 8. Let a[X] be an action schema, and let
σ(a[X]) = {a1[X1], . . . , ak[Xk]} be a split. Denote by→∗
the transitive closure over the arcs in the quotient graph.
Then sub-schemas ai[Xi] and aj [Xj ] are mergeable if there
exists no l ∈ {1, . . . , k} \ {i, j} where al[Xl] is ordered
between ai[Xi] and aj [Xj ], i. e., where either ai[Xi] →∗
al[Xl]→∗ aj [Xj ] or aj [Xj ]→∗ al[Xl]→∗ ai[Xi]. In that
case, the merged split is the one that results from merging
ai[Xi] and aj [Xj ], i. e., replacing them with ai[Xi]∪aj [Xj ]
in σ(a[X]).

Iterating such merging steps, starting from the atom split,
underlies our search methods for domain optimization, de-
scribed in the next section. This is suitable because:

Theorem 1. Let a[X] be an action schema. Then any split
constructed by starting with AtomSplit(a[X]), and itera-
tively merging mergeable sub-schemas, is valid. Vice versa,
any valid split can be constructed in this way.

Proof. The first half of the claim follows because
AtomSplit(a[X]) is valid (Corollary 2), and because if a
split is valid then the merged split is valid as well. To show
the latter, assume to the contrary that merging ai[Xi] and
aj [Xj ] introduces a cycle. Say al[Xl] is any node on that
cycle, different from ai[Xi] ∪ aj [Xj ]. Then there is a path
from ai[Xi] ∪ aj [Xj ] to al[Xl], and a path from al[Xl] to
ai[Xi]∪aj [Xj ]. The “from” and “to” paths cannot both con-
tact ai[Xi]∪aj [Xj ] in ai[Xi] or else the previous split would
have contained a cycle already; same for aj [Xj ]. Thus, in
the original quotient graph, al[Xl] must have been ordered
between ai[Xi] and aj [Xj ], in contradiction.

To see the second half of the claim, let σ(a[X]) be any
valid split, and let ai[Xi] ∈ σ(a[X]). Let the “basis” of
ai[Xi] be those annotated atoms that are not transitively or-
dered by→ behind any member of ai[Xi]. Such atoms exist
as→ over the atoms is acyclic. The basis atoms are not tran-
sitively ordered relative to each other, so can be merged. All
other atoms are reached via a → path ~p from at least one



basis atom. As σ(a[X]) is valid, all atoms in between on ~p
must be contained in ai[Xi] as well (else there would be a
cycle), so we can iteratively merge-in all atoms on ~p.

Example 5. The valid split in Example 4 (bottom figure)
can be obtained from the atom split in Example 3 by iter-
atively merging clearpre(x) with onpre(x, y) (basis) with
ondel(x, y); and merging clearpre(z) with onadd(x, z) (ba-
sis) with cleardel(z).

Decorating Splits, and Correctness
We have now clarified how to tackle issue (3) raised above
in Example 2, but we have not yet done anything about is-
sue (1), ensuring consistent parameter instantiation across
the split schema, nor about issue (2), ensuring en-block exe-
cution across all split schemas in the domain. As advertized,
both issues are easy to address by introducing artificial (new)
atoms. We formalize this in terms of modifying the split
function to decorate each sub-schema with these new atoms;
the construction also fixes a sequentialization of the split:

Definition 9. Let A[Z] be a set of action schemas, and let
σ be a split function for A[Z] such that, for every a[X] ∈
A[Z], σ(a[X]) is valid. We define the decorated split func-
tion σ̃ that, for each a[X], selects an arbitrary sound se-
quentialization a1[X1], . . . , ak[Xk] of σ(a[X]), and deco-
rates that sequentialization as follows:

(i) Token procnone. If σ(a[X]) has more than one sub-
schema, then define σ̃(a[X]) adding the atom proc-
none() to pre(a1[X1]), del(a1[X1]) and add(ak[Xk]).
If σ(a[X]) has only one sub-schema, add procnone()
to pre(a1[X1]).

(ii) Token do. Assuming a bijective function id :
A[Z] 7→ {1, . . . , |A[Z]|}, if σ(a[X]) has more than
one sub-schema, then define σ̃(a[X]) adding the atoms
doid(a[X])

2 to add(a1[X1]); doid(a[X])
j to pre(aj [Xj ])

and del(aj [Xj ]) and doid(a[X])
j+1 to add(aj [Xj ]), for

1 < j < k; doid(a[X])
k to pre(ak[Xk]) and

del(ak[Xk]). If σ(a[X]) has only one sub-schema, do
is not used.

(iii) Token par. Assuming a bijective function id :
X 7→ {1, . . . , |X|}, if x ∈ Xi ∩ Xj for i 6= j,
then define σ̃(a[X]) adding the literal parid(x)(x) to
add(ajmin[Xjmin]) where jmin is the smallest j such
that x ∈ Xj; to pre(aj [Xj ]) for every j > jmin such
that x ∈ Xj; to del(ajmax[Xjmax]) where jmax is
the largest j such that x ∈ Xj .

By σ̃(A[Z]) =
⋃
a[X]∈A[Z] σ̃(a[X]) we denote the set of

sub-schemas obtained by applying σ̃ to all action schemas
in A[Z]. We refer to σ̃(A[Z]) as the split domain obtained
from A[Z] via σ.

Tokens procnone and do together ensure that the sub-
schemas of an original schema a[X] can only be executed
en block, i. e., grouped together. Thanks to procnone, no
other block can be active when we start with a1[X1], and
we only release the block when we end with ak[Xk]. As
the do token is ID’ed, no sub-actions from any other action

schema can be executed in between. Token do furthermore
enforces the chosen sequentialization within the block, en-
suring soundness, ensuring that every sub-schema is applied
exactly once, and ensuring that the temporality underlying
clauses (i) and (iii) is adhered to. Token par forces the
planner to instantiate the sub-schemas consistently, by fix-
ing the instantiation of every shared parameter x in the first
sub-schema using x. The token is ID’ed with the variable
in question, as otherwise the roles of two shared variables
could be exchanged (if x and y are instantiated to o1 respec-
tively o2 up front, then the roles of non-ID’ed instantiated
tokens par(o1) and par(o2) could be changed later on, e. g.
using o2 for x and o1 for y).
Example 6. Consider once more the action schema
Move(x, y, z). Using the valid split in Example 4 (bot-
tom figure), and using id(Move(x, y, z)) = 1 as well as
id(x) = 1 and id(y) = 2, we obtain the following deco-
rated split σ̃(Move(x, y, z)):

Move1(x, y)
pre : {on(x, y), clear(x), procnone}
add : {do1

2, par1(x), par2(y)}
del : {on(x, y), procnone}

Move2(x, z)
pre : {clear(z), do1

2, par1(x)}
add : {on(x, z), do1

3}
del : {clear(z), do12, par1(x)}

Move3(y)
pre : {do1

3, par2(y)}
add : {clear(y), procnone}
del : {do1

3, par2(y)}
These sub-schemas can only be executed in the given or-
der. They consume the block-token procnone at the start
and release it at the end. Parameters x and y have to be
instantiated consistently as Move2(x, z) has to get par1(x)
from Move1(x, y), and Move3(y) has to get par2(y) from
Move1(x, y). The ordering constraints from the split’s quo-
tient graph are respected. Thus all three issues (1–3) from
Example 2 are solved.

In general, the split domain preserves plans exactly; all
we have to do is include the new artificial atoms, adding
procnone into the initial state and goal:
Theorem 2. Let A[Z] be a set of action schemas, and
let σ be a split function for A[Z] such that, for every
a[X] ∈ A[Z], σ(a[X]) is valid. Let O be a finite set of
objects, and let A respectively Aσ be the sets of ground ac-
tions obtained by instantiating every schema in A[Z], re-
spectively every schema in the split domain σ̃(A[Z]), with
O. Denote P = At(A) and let I,G ⊆ P be any sub-
sets of P . Then the plans for the task Π = (P,A, I,G)
are in one-to-one correspondence with those for the task
Πσ = (At(Aσ), Aσ, I ∪ {procnone}, G ∪ {procnone}).

Proof. Any plan for Π can be transformed into a corre-
sponding plan for Πσ in the obvious manner, inflating ev-
ery action grounding a schema a[X] into the corresponding
sequences of grounded sub-schemas a1[X1], . . . , ak[Xk].
Vice versa, any plan for Πσ can be transformed into a corre-
sponding plan for Π in the inverse manner, thanks to the en



block execution, consistent instantiation, and sound sequen-
tialization as discussed above.

Note that our transformation does not preserve optimality.
An optimal plan for Π does not necessarily correspond to an
optimal plan for Πσ , nor vice versa, because action schemas
with a larger number of sub-schemas get “punished”. This
could be avoided with the help of general action costs, sim-
ply by giving each sub-schema cost 1/|σ(a[X])|. For now,
we stick to uniform costs to keep things simple.

Domain Optimization
With the machinery to split action schemas at hand, we still
need to design methods for applying that machinery auto-
matically: How to find good splits? And what are “good
splits” anyhow? Towards answering these questions, re-
call the hierarchy of splits between the atom split (all an-
notated atoms separated) and the trivial split (equal to the
original schema, no splitting done). As we move up and
down in that hierarchy for an action schema a[X], coarser
coverings have less sub-schemas and therefore tend to re-
sult in shorter plans using the split domain; and finer cov-
erings have smaller interfaces and therefore tend to result
in less ground actions. We capture this in terms of the
split’s size, SplitSize(σ(a[X])) = |σ(a[X])|, and inter-
face size, IntSize(σ(a[X])) = maxai[Xi]∈σ(a[X]) |Xi|. Plan
length increases linearly in SplitSize(σ(a[X])) (if the un-
derlying action indeed participates in the plan), and the
number of ground actions decreases exponentially in |X| −
IntSize(σ(a[X])) (disregarding pruning methods such as
static predicates as used in most implementations).3 The
trivial split is optimal in split size, the atom fit is optimal
in interface size. In practice, we need to find a good trade-
off between these two extremes. Unsurprisingly, doing so
optimally is hard:

Theorem 3. Let split optimization be the problem of decid-
ing, given an action schema a[X] as well as natural numbers
K and N , whether there exists a valid split σ(a[X]) such
that SplitSize(σ(a[X])) ≤ K and IntSize(σ(a[X])) ≤ N .
Then split optimization is NP-complete.

Proof. Membership is trivial: Guess a split σ(a[X]) and
test whether it has the desired properties. Hardness can be
proved via a polynomial reduction from Bin Packing. Each
“item” of size n is simulated by an add atom with n param-
eters, with no overlaps between atoms. The interfaces be-
tween sub-schemas are then disjoint, simulating the “bins”.
Bin size corresponds to IntSize(σ(a[X])), and the number
of bins corresponds to SplitSize(σ(a[X])); there are no or-
dering constraints so validity trivializes.

Given this, for the time being we experimented with a
family of greedy approximate optimization methods (explor-
ing optimal splits is a topic for future work). Within these

3Ideally, one would be interested in the actual increase in plan
length, respectively decrease in the number of ground actions,
which at least for the latter parameter might even be feasible. We
did not explore this for now, considering only the criteria (split size
and interface size) that can be read directly off the split.

methods, we capture the trade-off in terms of a weighted
sum, normalizing each criterion to the interval [0, 1] to en-
hance comparability. From now on, for simplicity we as-
sume an action schema a[X] and, abusing notation, denote
its split σ(a[X]) simply by σ. Normalized split size is

NSplitSize(σ) =
SplitSize(σ)

SplitSize(AtomSplit(a[X]))

and normalized interface size is

NIntSize(σ) =
IntSize(σ)

IntSize(TrivialSplit(a[X]))

Our optimization problem then is to find a valid split σ min-
imizing

TradeOff (σ) = γNSplitSize(σ) + (1− γ)NIntSize(σ)

where the parameter γ ∈ [0, 1] controls the trade-off.
We approximate that optimization problem through either

of hill-climbing or beam search in the split hierarchy as per
Theorem 1, starting at the finest split and moving to coarser
ones. In detail, we instantiate hill-climbing as follows:
• Start node: σ0 = AtomSplit(a[X]).
• Successor function: SuccFn(σ) = {σ′ |
σ′ is a merged split of σ as per Definition 8}.

• Evaluation function: f(σ) = TradeOff (σ).
• Termination condition: σ is a local minimum, i. e.,
∀σ′ ∈ SuccFn(σ) . f(σ′) > f(σ).

Hill-climbing thus iteratively generates all splits obtained
by merging a mergeable pair of sub-schemas, selecting one
with the best trade-off. Note that this is guaranteed to even-
tually end up in a local minimum, at the latest when we reach
TrivialSplit(a[X]) which has no successors and thus is a lo-
cal minimum by our definition.

Beam search is parameterized by beam width B. It is like
breadth-first search except that, at each breadth-first level
t, which we denote by Level t, only B nodes with best f -
value are kept. We instantiate beam search exactly like hill-
climbing, except for the termination condition:
• Beam search termination condition:

minσ′∈Levelt+1
f(σ′) > minσ∈Leveltf(σ), where t

is the index of the level that is currently being expanded.
Intuitively, this termination condition can be understood as
saying that “viewed as a whole, the current level is a local
minimum”. Note that, in this setup, hill-climbing is exactly
beam search with B = 1.

In each of hill-climbing and beam search, ties are broken
using the expression Overlap(ai[Xi], aj [Xj ]) =

|Xi∩Xj |
|Xi∪Xj | .

That is, successor nodes σ′ are ordered lexicographically
by f -value first, and by Overlap(ai[Xi], aj [Xj ]) second,
where ai[Xi] and aj [Xj ] are the sub-schemas merging
which lead from the current node σ to σ′. Intuitively,
Overlap(ai[Xi], aj [Xj ]) gives a preference to merging sub-
schemas that share a lot of variables, so that combining them
appears favorable regarding interface size in future search
steps. If ties remain within this enhanced ordering, these are
broken arbitrarily.



A few words are in order regarding the extreme cases γ =
1 (all weight on split size) and γ = 0 (all weight on interface
size). With γ = 1, f(σ′) < f(σ) for all successor nodes σ′
in every search step, so both searches will end up returning
TrivialSplit(a[X]) (implying that it makes no sense to run
them with γ = 1). With γ = 0, in contrast, the searches
become very conservative, exploring only nodes with opti-
mal interface size equalling that of AtomSplit(a[X]). These
searches thus attempt to find smaller splits with optimal in-
terface size. As all successors in each search step will have
the same f -value (uniquely identified by their size), that
search is guided only by Overlap(ai[Xi], aj [Xj ]).

We use HC, respectively BS, to denote hill-climbing, re-
spectively beam search. Although the former is a special
case of the latter, we find this notation easier to look at.

Once HC or BS returned a valid split σ, we select a sound
sequentialization of σ. Among sub-schemas not ordered
with respect to each other, we prefer ones with more pre-
conditions. This way, during a forward search, inapplicable
instantiations of the split will be detected earlier on.

Evaluation

Our techniques are implemented as a stand-alone tool (not
starting from existing PDDL parser or planner implemen-
tations) in Java. The source code is available at http:
//liis.famaf.unc.edu.ar/resources, together
with the original and split domains used in the following
evaluation.

A major question in the evaluation is which domains to
run. We, of course, did run the IPC domains. However,
it is a well known fact that these domains are engineered
to challenge search, not pre-processes. This is particularly
true of the aforementioned IPC Pipesworld and Cyberse-
curity domains (Hoffmann et al. 2006; Boddy et al. 2005)
where action schemas were split manually to make the do-
mains amenable to standard pre-processes. More generally,
most benchmarks were created having in mind to test search
capabilities; we are aware of only a single benchmark (“Pi-
geonhole” in (Ridder, Fox, and Long 2014)) that was cre-
ated specifically to test pre-processing capabilities. A final
detail is that domains with complex encodings (like Cyber-
security, DiningPhilosophers, and OpticalTelegraph) often
come in ADL and are translated to STRIPS using a ground-
ing compilation, to the effect that the versions we can handle
(STRIPS) have no (lifted) schemas. As a result, almost all
action schemas in IPC STRIPS domains have small inter-
faces, and there is not much to gain by schema splitting.

Our focus domains thus are (non-IPC) ones whose ac-
tion schemas have large interfaces. We run the two ver-
sions of Pipesworld with the original un-split domain prior
to the manual splitting operation, on the IPC test instances.
The interesting question then is whether our automatic meth-
ods result in equal (or better) performance as the manually
split domains used in the IPC. Similarly, we run Haslum’s
STRIPS genome edit distance problems (Haslum 2011) with
the un-split original domain (“ged3-itt.pddl”) as well as the
manually split domain (“ged2-itt.pddl”), on the two test

suites (“ds1” and “ds2nd”) provided.4
We ran BS with B ∈ {2, 4, 8, . . . , 128}, and we ran both

HC and BS with γ ∈ {0, 0.1, 0.2, . . . , 0.9}. Table 1 shows
statistics about the splitting process. We do not report run-
times as they were always negligible, seeing as the splitting
has to be done only once per domain (typically HC takes up
to 1 second, and BS takes a few seconds, up to 1 minute).
We report data only for HC as, mostly, BS did not find splits
that were not also found by HC. With one exception, we re-
port only γ ∈ {0, 0.7, 0.8} as, mostly, other values of γ did
not result in different splits.

TrivialSplit ManualSplit HC 0.8 HC 0.7 HC 0.0 AtomSplit
A avg mx A avg mx A avg mx A avg mx A avg mx A avg mx

Genome (1 and 2) 14 2.4 3 21 1.8 2 24 2.0 3 26 1.9 2 26 1.9 2 163 1.1 2
PipesworldNoT 4 8.0 9 6 6.3 7 8 5.0 7 10 4.6 5 24 2.7 3 59 2.0 3
PipesworldT 4 10.5 12 6 6.3 7 14 5.1 6 22 3.6 6 32 3.0 3 93 1.8 3
Freecell 10 4.9 7 19 2.7 7 24 2.2 5 35 1.9 2 117 1.3 2
Transport 3 4.3 5 TrivialSplit TrivialSplit 15 2.0 2 20 2.0 2

Table 1: Split Statistics. “Trivial Split”: un-split domain for
our focus benchmarks, original IPC domain for the two IPC
examples. “A”: number of action schemas; “avg”: average
interface size; “mx”: maximal interface size.

Genome1 and Genome2 use the same domain (they differ
in the instance set only) and they are shown in a single row in
Table 1. We include Freecell and Transport to exemplify the
behavior in standard IPC benchmarks. Clearly, as HC gets
more tailored towards small interface size for small values
of γ, interface size goes down while the number of action
schemas goes up. This is true of our focus domains just like
most IPC benchmarks, to varying extents. AtomSplit forms
an extreme case with extremely low average interface size,
but at the cost of extremely many action schemas and (as
dictated by theory) no gain in maximal interface size over
HC with γ = 0. Compared to the manually split domains,
our automatic splits always get down to the same maximal
interface size or much less, but at the cost of a larger number
of action schemas.
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Figure 1: Expanded states with hFF in IPC domains (all HC
versions, no AtomSplit).

Regarding performance, as a canonical planner to con-

4The original cyber security domain, as well as natural language
generation (Koller and Hoffmann 2010), challenge pre-processes
as well, but are formulated in ADL so our current tool cannot han-
dle them. Extending our techniques to ADL is an ongoing topic.
Pigeonhole from (Ridder, Fox, and Long 2014) has a single un-
splittable action schema with interface size 2, and the challenge
constructed arises only from an enormously large set of objects.



hFF (no preferred operators)
TrivialSplit ManualSplit HC 0.8 HC 0.7 (Transport: 0.6) HC 0.0 AtomSplit

Cov Cov Time Grd A Cov Time Grd A Cov Time Grd A Cov Time Grd A Cov Time Grd A
Genome1 15 52 8380 22.7m 21 5361 18.8m 66 8508 21.9m 66 8508 21.9m 6 -438 18.6m
Genome2 154 156 14566 4.3m 156 15358 3.5m 156 17717 4.1m 156 17717 4.1m 24 -1662 2.7m
PipesworldNoT 24 28 1230 6.7m 28 1220 6.7m 17 625 6.7m 10 -464 6.7m 13 -1096 6.7m
PipesworldT 12 22 365 2.9m 8 -925 2.6m 11 -2585 2.7m 13 -1855 2.9m 11 -492 2.9m
Freecell 59 19 -167 0.7m 24 -394 0.8m 30 -2210 0.8m 39 -3467 -13167
Transport 30 TrivialSplit 30 714 85410 25 -151 86188 26 -396 79463

LAMA (first iteration)
Genome1 73 110 64176 22.7m 34 -4716 18.8m 76 -1188 21.9m 76 -1188 21.9m 6 -22 18.6m
Genome2 156 156 5392 4.3m 156 -7277 3.5m 156 -4410 4.1m 156 -4410 4.1m 69 -16985 2.7m
PipesworldNoT 38 44 8618 6.7m 44 8625 6.7m 23 794 6.7m 23 -183 6.7m 17 -1014 6.7m
PipesworldT 16 40 3226 2.9m 13 -2900 2.6m 13 -600 2.7m 19 727 2.9m 15 215 2.9m
Freecell 59 36 -3728 0.7m 38 -2432 0.8m 35 -2392 0.8m 31 -7167 -13167
Transport 30 TrivialSplit 30 -471 85410 30 -1761 86188 28 -1100 79463

Table 2: Performance overview. “Cov”: coverage; “Time”: sum of the total-runtime advantage over TrivialSplit, across those
instances commonly solved using both domain versions involved; “Grd A”: sum of the number-of-ground-actions advantage
over TrivialSplit (“m”: million), across those instances where that set was successfully computed using both domain versions
involved (which are all instances except for PipesworldNoTankage where TrivialSplit completed only 38 cases and Pipesworld-
Tankage where TrivialSplit completed only 20 cases). Best-performing domain version(s) shown in boldface, split domains
better than the original domain shown in italic (“better” here means higher coverage, or equal coverage and better runtime).

sider, we ran Fast Downward (FD) (Helmert 2006) using
hFF in lazy greedy best-first search without preferred oper-
ators. As a representation of the state of the art in runtime,
we ran (the FD implementation of) the first search iteration
of LAMA (Richter and Westphal 2010).

There are 27 IPC STRIPS benchmarks that our parser can
handle. On these, (a) maximal interface size and the number
of ground actions tends to go down, but (b) overall perfor-
mance suffers because grounding is not the bottleneck and
the split domains tend to result in larger search spaces. To
illustrate (a), while the summed-up number of ground ac-
tions is about 4 million with the original domains, it is about
2.5 million with the domains split by HC with γ = 0. To
illustrate (b), see Figure 1.

Table 2 summarizes performance data for our focus do-
mains (plus the two exemplary IPC benchmarks from Ta-
ble 1). A quick glance at the table immediately conveys two
major messages: schema splitting dramatically reduces the
number of ground actions in domains with large interfaces,
often yielding substantial performance improvements; our
automatically split domains are often better than the origi-
nal ones, and are sometimes as good as, or even strictly bet-
ter than, the manually split ones. The second observation is
especially true for the canonical hFF planner, where we sub-
stantially beat the manually split domain in both genome edit
distance test suites, are equally good in PipesworldNoTank-
age, and produce some automatic split better than the origi-
nal domain in all focus domains (Transport is one of the very
few cases where performance gets better in the IPC bench-
marks). The picture is not as positive for LAMA, but still
there are good results in Genome1 and PipesworldNoTank-
age. We remark that, in PipesworldNoTankage, the number
of ground actions for HC with γ = 0.8 is exactly the same
as that with the manually split domain. In that sense, our au-
tomatic splitting methods re-construct the manual split here
(although our domain has more action schemas, cf. Table 1).

Figure 2 shows expanded states for our focus domains.
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Figure 2: Expanded states with hFF in our focus domains (all
HC versions, no AtomSplit).

The split domains still tend to result in larger search spaces,
though to a lesser extent than on the IPC domains (compare
Figure 1). Hence the performance improvements in Table 2
are mainly due to the savings in pre-processing time.

Conclusion
We have systematized and automated prior works on ac-
tion schema splitting, as a pre-process to standard planners
that ground out the actions. The method shows promise on
domains with large interfaces that were previously split by
hand, indicating that it could be a useful tool for, especially,
applicationers without planning expertise who wish to apply
planning technology but are not intimately familiar with it.

The most pressing line of work, already ongoing, is to
extend our techniques to ADL so that we can handle more
complex domain descriptions, in particular those of the orig-
inal cyber security domain as well as natural language gen-
eration. An interesting open question regards better domain
optimization methods, that measure more directly the im-
pact on the planner, rather than syntactical properties of the
split domain. A promising radical variant could be to imple-
ment the splitting process as a kind of domain-specific learn-



ing, where one would fix a set of small training instances
and optimize relative to the actuall performance of a planner
solving these instances with different domain versions.
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