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Abstract

The ignoring delete lists relaxation is of paramount impor-
tance for both satisficing and optimal planning. In earlier
work (Hoffmann 2005), it was observed that the optimal re-
laxation heuristic h+ has amazing qualities in many classical
planning benchmarks, in particular pertaining to the complete
absence of local minima. The proofs of this are hand-made,
raising the question whether such proofs can be lead automat-
ically by domain analysis techniques. In contrast to earlier
disappointing results (Hoffmann 2005) – the analysis method
has exponential runtime and succeeds only in two extremely
simple benchmark domains – we herein answer this question
in the affirmative. We establish connections between causal
graph structure and h+ topology. This results in low-order
polynomial time analysis methods, implemented in a tool we
call TorchLight. Of the 12 domains where the absence of lo-
cal minima has been proved, TorchLight gives strong success
guarantees in 8 domains. Empirically, its analysis exhibits
strong performance in a further 2 of these domains, plus in
4 more domains where local minima may exist but are rare.
In this way, TorchLight can distinguish “easy” domains from
“hard” ones. By summarizing structural reasons for analysis
failure, TorchLight also provides diagnostic output indicating
domain aspects that may cause local minima.

Introduction
The ignoring delete lists relaxation is of paramount impor-
tance for both satisficing and optimal planning (e.g., Bonet
and Geffner 2001; Hoffmann and Nebel 2001; Richter,
Helmert, and Westphal 2008; Helmert and Domshlak 2009).
The planners based on it approximate, in a variety of ways,
the optimal relaxation heuristic h+ which itself is NP-hard
to compute. As earlier observed (Hoffmann 2005), h+ has
some rather amazing qualities in many classical planning
benchmarks. Figure 1 gives an overview of these results.1

The results divide domains into classes along two di-
mensions. We will herein ignore the horizontal dimen-
sion, which pertains to dead ends (easy-to-test powerful
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1We omit ADL domains, and we add the more recent IPC
benchmarks Elevators and Transport (without action costs), for
which these properties are trivial to prove based on the earlier re-
sults. Blocksworld-Arm is the classical blocksworld, Blocksworld-
NoArm is a variant allowing to “move A from B to C” directly.
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Figure 1: Overview of h+ topology (Hoffmann 2005).

criteria implying that a task is “undirected”/”harmless” are
known). The vertical dimension divides the domains into
three classes, with respect to the behavior of exit distance,
defined as d−1 where d is the distance to a state with strictly
smaller h+ value. In the “easiest” bottom class, there exist
constant upper bounds on exit distance from both, states on
local minima and states on benches (flat regions). In the fig-
ure, the bounds are given in square brackets. For example, in
Logistics, the bound for local minima is 0 – meaning that no
local minima exist at all – and the bound for benches is 1. In
the middle class, a bound exists only for local minima; that
bound is 0 (no local minima at all) for all domains shown. In
the “hardest” top class, both local minima and benches may
take arbitrarily many steps to escape.

The proofs underlying Figure 1 are hand-made. For deal-
ing with unseen domains, the question arises whether one
can design domain analysis methods leading such proofs au-
tomatically. The potential uses of such analysis methods are
manifold; we discuss this at the end of the paper. For now,
note that addressing this question is quite a formidable chal-
lenge – at least if we are willing to take as an indication
that (the decision problem is hard and) research trying to ad-
dress it (Hoffmann 2005) managed only to design an analy-
sis whose runtime explodes quickly with task size, and that
succeeds only in Movie and Simple-TSP – arguably the two
most simplistic benchmarks in existence.2

By contrast, the TorchLight tool developed herein has
low-order polynomial runtime and usually terminates in split
seconds. Distinguishing between global (per task) and lo-

2Simple-TSP encodes TSP but on a fully connected graph with
uniform edge cost. The domain was originally introduced as a
benchmark for symmetry detection.



cal (per state) analysis, it proves the global absence of lo-
cal minima in Movie, Simple-TSP, Logistics, and Miconic-
STRIPS. It gives a strong guarantee for local analysis in
Ferry, Gripper, Elevators, and Transport. Empirically its lo-
cal analysis exhibits strong performance also in Zenotravel,
Satellite, Tyreworld, Grid, Driverlog, and Rovers. In this
way, TorchLight can distinguish domains with “easy” h+

topology from “hard” ones, even based on analyzing only a
single state per instance. By summarizing structural reasons
for analysis failure, TorchLight also gives diagnostic output
indicating problematic aspects of the domain, i.e., aspects
that may cause local minima under h+.

What is the key to this performance boost? Consider Lo-
gistics and Blocksworld-Arm. At the level of their PDDL
domain descriptions, the difference is not evident – both
have delete effects, so why do those in Blocksworld-Arm
“hurt” and those in Logistics don’t? What does the trick is
to move to the finite-domain variable representation (e.g.,
Helmert 2006) and to consider the associated structures, no-
tably the causal graph capturing the precondition and ef-
fect dependencies between variables. The causal graph of
Blocksworld-Arm contains cycles. That of Logistics does
not. Looking into this, it was surprisingly easy to derive the
following basic result:
If the causal graph is acyclic, and every variable transition

is invertible, then there are no local minima under h+.
This result is certainly interesting in that, for the first time,
it establishes a connection between causal graph structure
and h+ topology. However, by itself the result is much
too weak for domain analysis – of the considered bench-
marks, it applies only in Logistics. We devise generaliza-
tions and approximations yielding the analysis results de-
scribed above. Aside from their significance for domain
analysis, these techniques are also interesting with respect
to research on causal graphs. Whereas traditional methods
(e.g., Jonsson and Bäckström 1995; Brafman and Domshlak
2004) seek execution paths solving the overall task, here we
seek “only” execution paths decreasing the value of h+. In
local analysis, this enables us to consider small fragments
of the causal graph, creating the potential to successfully
analyze states in tasks whose causal graphs are otherwise
arbitrarily complex.

We next give some background, then describe an illus-
trative example before delving into the technicalities. After
pointing out some domain-specific performance guarantees,
we report on a large-scale experiment with TorchLight. We
close by discussing related and future work. We omit many
details, and only outline the proofs. Full details are available
in the journal version of the paper (Hoffmann 2011).

Background
We adopt the terminology and notation of Helmert (2006),
with a number of modifications suiting our purposes.
A (finite-domain variable) planning task is a 4-tuple
(X, sI , sG, O). X is a finite set of variables, where each
x ∈ X is associated with a finite domain Dx. A partial
state over X is a function s on a subset Xs of X , so that
s(x) ∈ Dx for all x ∈ Xs; s is a state if Xs = X . The ini-

tial state sI is a state. The goal sG is a partial state. O is a
finite set of operators. Each o ∈ O is a pair o = (preo, effo)
of partial states, called its precondition and effect. The se-
mantics of planning tasks are defined as usual, based on al-
lowing to transition from s to s′ via o if preo ⊆ s, effo ⊆ s′,
and s(x) = s′(x) for all x ∈ X \ Xeffo

. We denote the
state space with S. We identify partial states with sets of
variable-value pairs, which we will often refer to as facts.

We next define the two basic structures in our analysis:
domain transition graphs and causal graphs. For the for-
mer, we diverge from Helmert’s definition only in introduc-
ing additional notations for responsible operators and “side
effects”. In detail, let x ∈ X . The domain transition
graph DTGx of x is the labeled directed graph with ver-
tex set Dx and the following arcs. For each o ∈ O where
x ∈ Xpreo ∩ Xeffo

with c := preo(x) and c′ := effo(x),
DTGx contains an arc (c, c′) labeled with responsible oper-
ator rop(c, c′) := o, with conditions cond(c, c′) := preo \
{(x, c)}, and with side effects seff(c, c′) := effo \ {(x, c′)}.
For each o ∈ O where x ∈ Xeffo

\Xpreo with c′ := effo(x),
for every c ∈ Dx with c 6= c′, DTGx contains an arc
(c, c′) labeled with rop(c, c′) := o, cond(c, c′) := preo,
and seff(c, c′) := effo \ {(x, c′)}.

The reader familiar with causal graphs may have won-
dered why we introduced a notion of side effects, seeing
as causal graphs can be acyclic only if all operators are
unary (affect only a single variable). The reason is that
we do handle cases where operators are non-unary. The
variant of causal graphs we use can still be acyclic in such
cases, and indeed this happens in some of our benchmark do-
mains. We define the support graph SG to be the directed
graph with vertex set X , and with an arc (x, y) iff DTGy

has a relevant transition (c, c′) so that x ∈ Xcond(c,c′).
Here, a transition (c, c′) on variable x is called relevant iff
(x, c′) ∈ sG ∪

⋃
o∈O preo.

Our definition modifies the most commonly used one in
that it uses relevant transitions only, and that it does not
introduce arcs between variables co-occurring in the same
operator effect. Transitions with side effects are handled
separately in our analysis. Note that irrelevant transitions
occur naturally, in domains with non-unary operators. For
example, unstacking a block induces the irrelevant transi-
tion making the arm non-empty, and departing a passenger
in Miconic-STRIPS makes the passenger “not-boarded”.

We now introduce the relevant notations pertaining to h+

and its topology. Let s ∈ S be a state. A relaxed plan for
s is an operator sequence achieving sG when allowing to
transition from fact set s to fact set s′ via o if preo ⊆ s and
s′ = s ∪ effo. h+(s) is the length of an optimal (shortest)
relaxed plan for s, or h+(s) = ∞ if no relaxed plan exists.
Say that 0 < h+(s) <∞. Then an exit is a state s′ reachable
from s so that h+(s′) = h+(s) and there exists a neighbor
s′′ of s′ so that h+(s′′) < h+(s′). The exit distance ed(s) of
s is the length of a shortest path to an exit, or ed(s) = ∞ if
no exit exists. A path in S is called monotone iff there exist
no two consecutive states s1 and s2 on it so that h+(s1) <
h+(s2). We say that s is a local minimum if there exists no
monotone path to an exit.

The topology definitions, adapted from (Hoffmann 2005),



should be self-explanatory. (They are specific to h+ only be-
cause we will not consider any other heuristics.) Regarding
h+, Helmert (2006) first described the presented adaptation
to finite-domain variables. To understand the definition, just
note that “ignoring deletes” essentially means to act as if
“what was true once will remain true forever”. This is ex-
actly what we do to the finite-domain variables here.

Domain analysis has a long tradition in planning (e.g.,
Fox and Long 1998; Gerevini and Schubert 1998; Edelkamp
and Helmert 1999; Rintanen 2000). However, there exists
no prior work at all trying to automatically infer topologi-
cal properties of a heuristic function – the single exception
being the aforementioned disappointing results (Hoffmann
2005).3 It is worth noting that such analysis is computation-
ally hard:
Theorem 1 It is PSPACE-complete to decide whether or
not the state space of a given planning task contains a local
minimum, and given an integer K it is PSPACE-complete
to decide whether or not for all states s we have ed(s) ≤ K.
Further, it is PSPACE-complete to decide whether or not a
given state s is a local minimum, and given an integer K it
is PSPACE-complete to decide whether or not ed(s) ≤ K.

These results are hardly surprising, but have not been
stated anywhere yet. The hardness results still hold when
restricting the input to solvable tasks/states. Their proofs re-
duce plan existence, the trick being to flatten h+ using a new
operator that can always achieve the goal but that has a fatal
side effect, and giving the planner a choice whether to solve
this modified task or a custom-designed alternative one. In
practice, computational hardness here is particularly chal-
lenging because, in most applications of domain analysis,
we are not willing to run a worst-case exponential search.
After all, the analysis will not actually solve the problem.

The reader will have noticed the state-specific analysis
problems in Theorem 1. We distinguish between global
analysis per-task, and local analysis per-state. Domain anal-
ysis traditionally considers only the global variant (or even
more generalizing variants looking at only the PDDL do-
main file). While global once-and-for-all analysis is also the
“holy grail” in the present work, local analysis has its ad-
vantages. It applies in any domain, including those that do
contain local minima, or that don’t but where global analysis
is not strong enough to recognize this. Indeed, we will see
that local analysis, based on very limited sampling, can be
used to produce accurate information about a domain.

An Illustrative Example
The basic connection we identify between causal graphs and
h+ topology is quite simple. It is instructive to understand
this first, before delving into the full results. Figure 2 shows
fragments of the domain transition graphs (DTGs) of three
variables x0, x1, and x2. All DTG transitions here are as-
sumed to be invertible, and to have no side effects.

3This method enumerates all ways in which facts may support
each other in a non-redundant relaxed plan. If there is no “conflict”
then h+ is the exact solution distance. This applies only in Simple-
TSP. A slightly more general special case applies in Movie and
trivial Logistics tasks with 2 locations, 1 truck, and 1 package.
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Figure 2: An example illustrating our basic result.

The imaginative reader is invited to think of x0 as a car
whose battery is currently empty and that therefore requires
the help of two people, x1 and x2, in order to push-start
it. The people may, to solve different parts of the task, be
required for other purposes too, but here we consider only
the sub-problem of achieving the goal x0 = g0. We wish
to take the x0 transition t0, which has the two conditions c1

and c2. These conditions are currently not fulfilled. In the
state s at hand, x1 is in s1 and x2 is in s2. We must move to
a different state, s0, in which x1 = c1 and x2 = c2. What
will happen to h+ along the way?

Say that an optimal relaxed plan P+(s) for s moves x1

to c1 along the path marked T1, and moves x2 to c2 along
the path marked T2 – clearly, some such paths will have to
be taken by any P+(s). Key observation 1 is similar to a
phenomenon known from transportation benchmarks. When
moving x1 and x2, whichever state s′ we are in, as long as
s′ remains within the boundaries of the values traversed by
T1 and T2, we can construct a relaxed plan P+(s′) for s′

so that |P+(s′)| ≤ |P+(s)|. Namely, to obtain P+(s′), we
simply replace the respective move sequence −→o i in P+(s),
for i = 1, 2, with its inverse ←−o i. For example, say we got
to s′ by −→o 1 = 〈R1, R2, R3〉 moving x1 to c1, as indicated
in Figure 2. Then wlog P+(s) has the form 〈R1, R2, R3〉 ◦
P . We define P+(s′) := 〈L3, L2, L1〉 ◦ P . The postfix P
of both relaxed plans is the same; at the end of the prefix,
the set of values achieved for x1, namely s1, c1, and the
two values in between, is also the same. Thus P+(s′) is
a relaxed plan for s′. This is true in general, i.e., ←−o 1 is
necessarily applicable in s′, and will achieve, within relaxed
execution of P+(s′), the same set of facts as achieved by−→o 1

in P+(s). Thus h+(s′) ≤ h+(s) for any state s′, including
the state s0 we’re after. Key observation 2: if x0 moves only
for its own sake, i.e., the car position is not important for
any other goal, then h+ will decrease by 1 after executing
t0 in s0. Thus s0 is an exit. With observation 1, the path to
s0 is monotone, hence s is not a local minimum, and its exit
distance is bounded by the number of moves on the path.

It is not difficult to imagine that the above works also if
preconditions need to be established recursively, as long as
no cyclic dependencies exist. A third person may be needed
to first persuade x1 and x2, the third person may need to take
a bus, and so on. Now, say that the support graph is acyclic,
and that all transitions are invertible and have no side effects.
Given any state s, unless s is already a goal state, some vari-
able x0 moving only for its own sake necessarily exists. But
then, within any optimal relaxed plan for s, a situation as
above exists, and therefore we have a monotone exit path,
Q.E.D. for no local minima under h+.



The execution path construction we have just discussed is
not so different from known results exploiting causal graph
acyclicity and notions of connectedness or invertibility of
domain transition graphs, e.g., (Jonsson and Bäckström
1995). What is new here is the connection to h+.

The technical results in what follows are structured in a
way similar to the above: (A) we identify circumstances un-
der which we can deduce from an optimal relaxed plan that
a monotone exit path exists. (B) we devise support-graph
based sufficient criteria implying that analysis (A) will al-
ways succeed. (B) underlies TorchLight’s global analysis.
By feeding (A) with the usual relaxed plans as computed,
e.g., by FF’s heuristic function, we obtain TorchLight’s main
instrument for (approximate) local analysis. Thus we do not
provide only a minimal version of (A) that would suffice to
prove (B). We identify special cases much richer than what
we can actually infer from support graphs (as yet).

Analyzing Optimal Relaxed Plans
We consider a state s and an optimal relaxed plan P+(s) for
s. To describe the circumstances under which a monotone
exit path is guaranteed to exist, we will need a number of
notations pertaining to properties of transitions etc. We will
introduce these notations along the way, rather than up front,
in the hope that this makes them easier to digest.

Given o0 ∈ P+(s), by P+
<0(s) and P+

>0(s) we denote the
parts of P+(s) in front of o0 and behind o0, respectively. By
P+(s, x) we denote the sub-sequence of P+(s) affecting x.

Definition 1 Let (X, sI , sG, O) be a planning task, let s ∈
S with 0 < h+(s) < ∞, let P+(s) be an optimal relaxed
plan for s, let x0 ∈ X , and let o0 ∈ P+(s) be an operator
taking a relevant transition of the form t0 = (s(x0), c).

An optimal rplan dependency graph is a graph oDG+ =
(V,A) with unique leaf vertex x0, and where x ∈ V and
(x, x′) ∈ A if either: x′ = x0, x ∈ Xpreo0

, and preo0(x) 6=
s(x) or x ∈ V \ {x0}; or x 6= x′ ∈ V \ {x0} and there
exists o ∈ P+

<0(s) taking a relevant transition on x′ so that
x ∈ Xpreo , and preo(x) 6= s(x) or x ∈ V \ {x0}.

For x ∈ V \ {x0}, by oDTG+
x we denote the sub-graph

of DTGx that includes only the values true at some point
in P+

<0(s, x), the relevant transitions t using an operator
in P+

<0(s, x), and at least one inverse of such t where an
inverse exists. We refer to the inverse transitions as induced.

The transition t0 with responsible operator o0 will be
our candidate for reaching the exit state, like t0 in Fig-
ure 2. oDG+ collects all variables x connected to a vari-
able x′ insofar as P+

<0(s) uses an operator preconditioned
on x in order to move x′ (if a precondition p is true in s
and x 6∈ V \ {x0}, then p will never be invalidated). These
are the variables we will need to move, like x1 and x2 in
Figure 2, to obtain a state s0 where t0 can be taken. For
any such variable x, oDTG+

x captures the domain transition
graph fragment that P+

<0(s) traverses and within which we
will stay, like T1 and T2 in Figure 2.

Note that there is no need to consider the operators
P+
>0(s) behind o0, simply because these operators are not

used in order to establish o0’s precondition. This is of

paramount importance in practice. For example, if o0 picks
up a ball b in Gripper, then P+(s) will also contain – be-
hind o0 – an operator o′ dropping b. If we considered o′

in Definition 1, then oDG+ would contain a cycle because
the definition would assume that o′ is used for making the
respective gripper hand free. In TorchLight’s approximate
local analysis, whenever we consider an operator o0, before
we build oDG+ we re-order P+(s) by moving operators be-
hind o0 if possible. This minimizes P+

<0(s), and oDG+ thus
indeed contains only the necessary variables and arcs.

Under which circumstances will t0 actually “do the job”?
The sufficient criterion we identify is rather complex. To
provide an overview of the criterion, we next state its defini-
tion. The items in this definition will be explained below.
Definition 2 Let (X, sI , sG, O), s, P+(s), x0, o0, t0, and
oDG+ = (V,A) be as in Definition 1. We say that oDG+

is successful if all of the following holds:
(1) oDG+ is acyclic.
(2) We have that either:

(a) the oDG+-relevant deletes of t0 are P+
>0(s)-

recoverable; or
(b) s(x0) is not oDG+-relevant, and t0 has replacable

side effect deletes; or
(c) s(x0) is not oDG+-relevant, and t0 has recoverable

side effect deletes.
(3) For x ∈ V \ {x0}, all oDTG+

x transitions either
have self-irrelevant deletes, or are invertible/induced
and have irrelevant side effect deletes and no side ef-
fects on V \ {x0}.

The most basic prerequisite, (1), is that oDG+ is acyclic.
If there are cycles, then moving a variable may involve mov-
ing itself in the first place, which of course kills our exit
path construction. For the oDTG+

x transitions, we are fine
if, as in the example, all transitions are invertible and have
no side effects. However, we can easily generalize this con-
dition, to the present condition (3). We need some nota-
tions. Let t = (c, c′) be a transition on variable x. The
context of t is the set ctx(t) of all facts that may be deleted
by side effects of t. That is, for each (y, d) ∈ seff(t),
(y, cond(t)(y)) ∈ ctx(t) if a condition on y is defined; else
all Dy values 6= d are inserted. We say that:
• t is invertible iff there exists an inverse transition (c′, c) in

DTGx, where cond(c′, c) ⊆ cond(c, c′).
• t has irrelevant side effect deletes iff ctx(t) ∩ (sG ∪⋃

o∈O preo) = ∅, and self-irrelevant side effect deletes
iff ctx(t) ∩ (sG ∪

⋃
rop(t)6=o∈O preo) = ∅.

• t has self-irrelevant deletes iff it has self-irrelevant side
effect deletes and (x, c) 6∈ sG ∪

⋃
rop(t) 6=o∈O preo.

A transition is invertible if we can “go back” without in-
troducing any new conditions (e.g. Logistics). Examples
of irrelevant side effect deletes are transitions with no side
effects at all, or a move in Simple-TSP, whose side ef-
fect deletes the target location’s being “not-visited”. Ex-
amples of self-irrelevant deletes are inflating a spare wheel
in Tyreworld (the wheel is no longer “not-inflated”), or de-
parting a passenger in Miconic-STRIPS, whose own effect
deletes “not-served(passenger)” and whose side effect delete
“boarded(passenger)” is used only by this operator itself.



How do these notions affect our exit path construction?
Recall that we are trying to traverse states s′ within the value
ranges for x ∈ V \ {x0} defined by oDTG+

x , to reach a
state s0 where we can apply t0. Along the way, we construct
relaxed plans P+(s′) with |P+(s′)| ≤ |P+(s)| by inverting
transitions of P+

<0(s). If all oDTG+
x transitions t we may be

using have irrelevant side effect deletes, then, as far as not
disvalidating any facts needed elsewhere is concerned, this
is just as good as having no side effects at all.4 Regarding the
own delete of t, this poses no problem here if t is invertible.
If it is not but all deletes of t are irrelevant except maybe
for the responsible operator itself, then to obtain P+(s′) we
can simply remove rop(t) from P+(s). Thus |P+(s′)| <
|P+(s)| so we have reached an exit and can stop.

Consider now our endpoint transition t0 and its responsi-
ble operator o0. We previously demanded that x0 “moves
for its own sake”, i.e., that x0 has a goal value and is not im-
portant for achieving any other goal. This is unnecessarily
restrictive. For example, in Driverlog, a driver may have its
own goal and be needed to drive vehicles, and still t0 mov-
ing the driver results in decreased h+ if the location moved
away from is not actually needed anymore. All we really
want is that “any deletes of t0 are not needed in the rest of
the relaxed plan”. We can then remove o0 from the relaxed
plan, and have reached an exit as desired.

Recall the situation we are addressing. We have reached
a state s0 in which t0 = (s(x0), c) can be applied, yield-
ing a state s1. We have a relaxed plan P+(s0) for s0 so
that |P+(s0)| ≤ |P+(s)|, where P+(s0) is constructed
from P+(s) by replacing some operators of P+

<0(s) with
operators responsible for induced oDTG+

x transitions for
x ∈ V \ {x0}. We construct P+

1 by removing o0 from
P+(s0), and we need P+

1 to be a relaxed plan for s1. What
are the facts possibly needed in P+

1 ? A safe approximation
is the union of sG, the precondition of any o0 6= o ∈ P+(s),
and any oDTG+

x values needed by induced oDTG+
x tran-

sitions. Denote that set with R+
1 . The values potentially

deleted by t0 are contained in C0 := {(x0, s(x0))}∪ctx(t0).
Thus if R+

1 ∩ C0 = ∅ then we are fine. We can sharpen this
further. Consider the set of facts F0 that are true after re-
laxed execution of P+

<0(s). If p 6∈ F0, then p is not needed
in the part of P+

1 pertaining to P+
<0(s); if it is needed in the

part pertaining to P+
>0(s), behind o0, then it is established by

some operator o′ ∈ P+
>0(s). Since o′ will still be in P+

1 , it
thus suffices if R+

1 ∩C0∩F0 = ∅. Now, even this last condi-
tion can still be sharpened. Say that there exists a (possibly
empty) sub-sequence−→o0 of P+

>0(s) so that−→o0 is applicable at
the start of P+

1 , and−→o0 re-achieves all facts in R+
1 ∩C0∩F0

(both are easy to define and test). Then moving −→o0 to the
start of P+

1 does the job. We say in this case that the oDG+-
relevant deletes of t0 are P+

>0(s)-recoverable. For example,
say o0 picks up ball b in Gripper. Then P+

>0(s) contains a
sub-sequence −→o0 moving to another room and dropping b.
This re-achieves R+

1 ∩ C0 ∩ F0 = “free-gripper”.

4We must require no side effects on V \ {x0} due to a subtlety
in the construction of P+(s′). We omit this for brevity.

Definition 2 (2b) and (2c) identify two alternative suffi-
cient conditions under which t0 is suitable. Both require that
s(x0) is not contained in R+

1 . We say in this case that s(x0)
is not oDG+-relevant. Then, R+

1 ∩ C0 = ∅ unless t0 has
side effects. Replacable side effect deletes means, in a nut-
shell, that any endangered operator can always be replaced
with an equivalent one (this happens, e.g., in Simple-TSP).
Recoverable side effect deletes means that there exists an op-
erator o′ that will be applicable and recovers all relevant side
effect deletes (e.g., in Rovers taking a rock/soil sample fills a
“store”, but we can easily empty the store again). Reaching
an exit then takes one more step, applying o′ after o0.

What will the length of the exit path be? We have one
move for x0. Each non-leaf variable x must provide a new
value at most once for every move of a variable x′ depend-
ing on it, i.e., where (x, x′) ∈ A. The new value can
be reached by a oDTG+

x traversal. Denote the maximum
length of such a traversal by d(oDTG+

x ). Now, we may
have d(oDTG+

x ) > d(DTGx) because oDTG+
x removes

not only vertices but also arcs: there may be “short-cuts”
not traversed by P+(s). Under certain circumstances it is
safe to take these short-cuts. Say that (*) all oDTG+

x tran-
sitions are invertible or induced, and all other transitions
are either irrelevant, or have empty conditions and irrele-
vant side effect deletes. While traversing a short-cut, it may
happen that h+ increases. But when we reach the end of the
short-cut, we are back in the region of states s′ where a re-
laxed plan P+(s′) can be constructed as above. Denote by
V ∗ the subset of V \ {x0} for which (*) holds. We define
costd∗(oDG+) :=

∑
x∈V costd∗(x), where costd∗(x) :=

1 x = x0

d(oDTG+
x ) ∗

∑
x′:(x,x′)∈A costd∗(x′) x 6= x0, x 6∈ V ∗

min(d(oDTG+
x ),d(DTGx))∗ x 6= x0, x ∈ V ∗∑

x′:(x,x′)∈A costd∗(x′)

For Definition 2 (2a,b), the exit distance is costd∗(oDG+)−
1 because we count the step reducing h+. Thus:
Theorem 2 Let (X, sI , sG, O), s, P+(s), and oDG+ be as
in Definition 1. If oDG+ is successful, then s is not a local
minimum, and ed(s) ≤ costd∗(oDG+). If we have Defini-
tion 2 (2a) or (2b), then ed(s) ≤ costd∗(oDG+)− 1.

Theorem 2 does not hold if P+(s) is not optimal, even
if P+(s) is non-redundant and parallel-optimal: at the end
of the “exit path” we may obtain a relaxed plan shorter than
P+(s) but not shorter than h+(s). My example proving this
is fairly contrived, though, and it seems unlikely that situa-
tions like this will occur in practice.

Note that costd∗(.) is exponential in the depth of the
graph. This is not an artifact of the length estimation. It
is easy to construct examples where exit distance is expo-
nential in that parameter.

Conservative Approximations
We now identify sufficient criteria guaranteeing that Theo-
rem 2 can be applied. We consider both the local case where
a particular state is given, and the global case where we gen-
eralize over all states in the task. We approximate optimal
rplan dependency graphs as follows:



Definition 3 Let (X, sI , sG, O) be a planning task, let s ∈
S with 0 < h+(s) < ∞, let x0 ∈ XsG , and let t0 =
(s(x0), c) be a relevant transition in DTGx0 with o0 :=
rop(t0).

A local dependency graph is a graph lDG = (V,A) with
unique leaf vertex x0, and where x ∈ V and (x, x′) ∈ A
if either: x′ = x0, x ∈ Xpreo0

, and preo0(x) 6= s(x) or
x ∈ V \{x0}; or x′ ∈ V \{x0} and (x, x′) is an arc in SG.

A global dependency graph is a graph gDG = (V,A)
with unique leaf vertex x0, and where x ∈ V and (x, x′) ∈
A if either: x′ = x0 and x0 6= x ∈ Xpreo0

; or x′ ∈ V \{x0}
and (x, x′) is an arc in SG.

If an optimal relaxed plan P+(s) for s contains o0, then
oDG+ as per Definition 1 will be a sub-graph of lDG and
gDG as defined here. This is simply because any optimal
rplan dependency graph has only arcs (x, x′) contained in
the support graph of the task.5 We remark that the support
graph may contain a lot more arcs than actually necessary.
Consider the earlier point that, when constructing oDG+,
it is important to consider only operators in front of o0 in
P+(s). This information is of course not contained in SG.
In Gripper, to stick with our previous example, SG will sug-
gest that dropping a ball may be needed in order to support
“free-gripper” for picking up the same ball. Thus SG “de-
tects” a cyclic dependency here. One of the main open di-
rections is to improve this part of the approximation, by de-
vising conservative methods recognizing operators that will
never have to precede o0 in an optimal relaxed plan.

Defining when an lDG respectively gDG is successful
does not involve any new notation:

Definition 4 Let (X, sI , sG, O), s, x0, t0, o0, and G =
lDG or G = gDG be as in Definition 3. We say that
G = (V,A) is successful if all of the following hold:
(1) G is acyclic.
(2) If G = lDG then sG(x0) 6= s(x0), and there exists no

transitive successor x′ of x0 in SG so that x′ ∈ XsG
and sG(x′) 6= s(x′).

(3) We have that t0 either:
(a) has self-irrelevant side effect deletes; or
(b) has replacable side effect deletes; or
(c) has recoverable side effect deletes.

(4) For x ∈ V \ {x0}, all DTGx transitions either are ir-
relevant, or have self-irrelevant deletes, or are invertible
and have irrelevant side effect deletes and no side effects
on V \ {x0}.

Consider first only local dependency graphs G = lDG;
we will discuss G = gDG below. Assume that we have
an optimal relaxed plan P+(s) for s that contains o0, and
thus oDG+ is a sub-graph of lDG. Then condition (1) ob-
viously implies Definition 2 (1). Condition (4) implies Defi-
nition 2 (3) because oDTG+

x does not contain any irrelevant
transitions. Condition (2) implies that s(x0) is not oDG+-
relevant, i.e., s(x0) is not needed in the rest of the relaxed
plan. This is simply because no other un-achieved goal de-
pends on x0. But then, condition (3a) implies Definition 2

5For gDG, note that preo0(x0), if defined, will be = s(x0) and
thus x0 does not need to be recorded as its own predecessor.

(2a) because R+
1 ∩ C0 = ∅, in the notation introduced pre-

viously. Conditions (3b) and Definition 2 (2b), respectively
(3c) and Definition 2 (2c), are equivalent under this premise.

Regarding exit distance, we do not know which part of
x ∈ V \ {x0} will be traversed by P+(s). An obvi-
ous bound on d(oDTG+

x ) is the length mD(DTGx) of a
longest non-redundant path through the graph (a path vis-
iting each vertex at most once). Unfortunately, we cannot
compute mD(.) efficiently: there exists a Hamiltonian path
in a graph G = (V,A) iff mD(G) = |V | − 1. Torch-
Light over-approximates mD(G) simply by |V | − 1. On
a more positive note, we can sometimes use d(DTGx) in-
stead of mD(DTGx), namely if we are certain that x is one
of the variables V ∗ used in the definition of costd∗(oDG+).
This can be ensured by postulating that all DTGx transi-
tions either are irrelevant, or are invertible, have empty con-
ditions, irrelevant side effect deletes, and no side effects on
V \{x0}. Say that V ∗∗ contains this variable subset. We de-
fine costD∗(G) :=

∑
x∈V costD∗(x), where costD∗(x) :=

1 x = x0

mD(DTGx) ∗
∑

x′:(x,x′)∈A costD∗(x′) x 6= x0, x 6∈ V ∗∗

d(DTGx) ∗
∑

x′:(x,x′)∈A costD∗(x′) x 6= x0, x ∈ V ∗∗

Because x0 must move – to attain its own goal – every
optimal relaxed plan must take at least one transition leaving
s(x0). Thus, with Theorem 2 and the above, we have that:
Theorem 3 Let (X, sI , sG, O) be a planning task, and let
s ∈ S be a state with 0 < h+(s) < ∞. Say that x0 ∈ X
so that, for every o0 = rop(s(x0), c) in DTGx0

where
(s(x0), c) is relevant, lDGo0 is a successful local depen-
dency graph. Then s is not a local minimum, and ed(s) ≤
maxo0 costD∗(lDGo0). If, for every lDGo0 , we have Defini-
tion 4 (3a) or (3b), then ed(s) ≤ maxo0 costD∗(lDGo0)−1.

Theorem 3 is our tool for guaranteed local analysis, i.e.,
a search-state analysis that guarantees its information to be
correct. For guaranteed global analysis, we simply look
at the set of all global dependency graphs gDG, requir-
ing them to be successful. In particular, all gDG are then
acyclic, from which it is not difficult to deduce that any non-
goal state s will have a variable x0 fulfilling Definition 4 (2).
For that x0, we can apply Theorem 3 and thus get:
Theorem 4 Let (X, sI , sG, O) be a planning task. Say that
all global dependency graphs gDG are successful. Then S
does not contain any local minima and, for any state s ∈ S
with 0 < h+(s) < ∞, ed(s) ≤ maxgDG costD∗(gDG).
If, for every gDG, we have Definition 4 (3a) or (3b), then
ed(s) ≤ maxgDG costD∗(gDG)− 1.

If SG is acyclic and all transitions are invertible and have
no side effects, then Theorem 4 applies, whereby we have
now in particular proved our basic result. Vice versa, note
that, if Theorem 4 applies, then SG is acyclic. As far as local
minima are concerned, one may thus reformulate Theorem 4
in simpler terms not relying on a notion of “successful de-
pendency graphs”. The present formulation already paves
the way for future research: a gDG is defined relative to a
concrete variable x0 and operator o0, and may thus allow
for more accurate analysis of which other variables may ac-
tually become important for x0 and o0, in a relaxed plan.



Benchmark Performance Guarantees
We now state some guarantees that our analysis gives in
benchmark domains. The underlying finite-domain variable
formalizations are straightforward.

Proposition 1 Let (X, sI , sG, O) be a planning task from
the Logistics, Miconic-STRIPS, Movie, or Simple-TSP do-
main. Then Theorem 4 applies, and the bound delivered is
at most 1, 3, 1, and 1 respectively.

Proposition 2 Let (X, sI , sG, O) be a planning task from
the Elevators, Ferry, Gripper, or Transport domain, and let
s ∈ S. In Ferry and Gripper, for every optimal relaxed plan
P+(s) there exists oDG+ so that Theorem 2 applies, the
bound being at most 1. In Elevators and Transport, there
exists at least one P+(s) and oDG+ so that Theorem 2 ap-
plies, the bound being at most 1 in Elevators and at most the
road map diameter in Transport.

Proposition 2 holds because all vehicle capacity deletes
are recovered inside the relaxed plan. For Elevators and
Transport, the result is slightly weaker because a vehicle
may have capacity > 1, allowing relaxed plans to use un-
loading operators recovering a capacity not actually present.

Experiments
TorchLight is implemented in C based on FF-v2.3, using
Fast-Downward’s translator to find the finite-domain vari-
ables.6 We run experiments in 37 domains, including those
of Figure 1 and all IPC STRIPS domains up to 2008, ex-
cept Cyber-Security which involved parsing and/or transla-
tion difficulties. The test instances, 1160 in total, were taken
from the IPC collection(s) where applicable, and (randomly)
generated elsewhere. All experiments are run on a 1.8 GHZ
CPU, with a 30 minute runtime and 2 GB memory cut-off.

TorchLight runs global analysis checking the precondi-
tions of Theorem 4. It then generates R sample states by
random walks. We run R = 1, 10, 100, 1000. Each state
is analyzed using guaranteed local analysis checking Theo-
rem 3, as well as approximate local analysis checking The-
orem 2 on a relaxed plan as computed by FF. The latter uses
the aforementioned relaxed plan re-ordering technique, and
a simple technique allowing to recognize situations where
failure due to one operator can be avoided by replacing with
an alternative operator. The local analyzes return statistics
concerning in particular the success rate, i.e., the fraction of
sample states where Theorem 3/Theorem 2 applied.

The code is currently optimized much more for readabil-
ity than for speed. Still, TorchLight is fast. Up to R = 100,
the main bottleneck is Fast-Downward’s translator. With
R = 1 and R = 10, in 99% of the instances the actual
analysis takes at most as much time as the translator. With
R = 100 this holds for 96%. On average, the translator
takes 6.1 seconds; for analysis this is 0.8, 0.9, 1.9 with
R = 1, 10, 100. For R = 1000, analysis can be more ex-
pensive, up to >1 minute in 5 domains. As we will see, this
many samples are not needed to obtain useful information.

6The source code of TorchLight is available at http://www.
loria.fr/˜hoffmanj/TorchLight.zip
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Figure 3: Overview of TorchLight domain analysis results.
“*”: global analysis always succeeds; “+”: local analysis
always succeeds if provided an optimal relaxed plan; mean
success rates when sampling one state per domain instance.

The guarantees of Proposition 1 are confirmed, i.e.,
global analysis succeeds as described in Logistics, Miconic-
STRIPS, Movie, and Simple-TSP. It never succeeds in any
other domain, though. In some domains, fractions of the
gDGs are successful, e.g., up to 97% in Satellite. How-
ever, if the fraction is below 100% then nothing is proved
so this data may at best serve as an indication of which as-
pects of the domain are “good-natured”. As for guaranteed
local analysis, this generally is not much more applicable
than global analysis. In what follows, we hence concentrate
on approximate local analysis (via Theorem 2) exclusively.

Proposition 2 is backed up impressively. Approximate lo-
cal analysis succeeds in every single sample state of Ferry,
Gripper, Elevators, and Transport. Thus the potentially sub-
optimal relaxed plans do not hurt here. Indeed, the analysis
yields high success rates in almost all domains where lo-
cal minima are non-present or limited. This is not the case
for the other domains, and thus TorchLight can distinguish
domains with “easy” h+ topology from “hard” ones. Con-
sider Figure 3, showing mean success rates per-domain with
R = 1. The picture is similar for R = 10, 100, 1000.

The domains whose h+ topology is not known are shown
separately on the right hand side in Figure 3. For the other
domains, we see quite nicely that “harder” domains tend to
have lower success rates. To some extent, we can even dis-
tinguish Pipesworld-Tankage from Pipesworld-NoTankage,
and Mprime from Mystery (in Mprime, fuel can be trans-
ferred between locations). Strong outliers are Driverlog,
Rovers, Hanoi, and Blocksworld-NoArm. But all of these
are more problems of the hand-made analysis than of Torch-
Light’s. In Driverlog and Rovers, deep local minima do ex-
ist, but only in awkward situations that don’t tend to arise in
the IPC instances. As for Hanoi and Blocksworld-NoArm,
these are not actually easy to solve for FF, and the absence
of local minima is due to rather idiosyncratic reasons.

Success rates can also be obtained by search probing (SP).
For each sample state, we search (using FF’s helpful actions)
for a monotone exit path under FF’s heuristic. Runtime is
worst-case exponential for any R, but in this experiment is
competitive up to R = 10. For R = 1000, in 11 (4) domains
runtime can be >1 (>30) minute(s). To some extent, one can
handle this by a small time cut-off. Allowing 1 second per
sample state changes the success rate by at most 5%, in 99%
of these benchmarks. In general, though, of course such a
cut-off severely limits the lookahead capability of search.



Remarkably, the prediction quality of TorchLight is just
as good as – sometimes even better than – that of unlimited
SP. For details, see (Hoffmann 2011). We consider primitive
classifiers based on only the success rate, predicting whether
or not FF’s enforced hill-climbing search will succeed in
solving the overall task. The classifiers answered “yes” iff
the success rate was above a threshold T in 0, 10, . . . , 100.
The best rate of correct predictions (T being around 80) is
71.8% (R = 100) and 71.9% (R = 10) for TorchLight vs.
71.2% and 70.2% for SP; a baseline always answering “yes”
would achieve 60.7% success here. This simplistic predic-
tion method does not work as well for FF as a whole and for
LAMA, which solve many tasks with unfavorable h+ topol-
ogy. However, looking at the runtime distributions below
and above T , the mean of the latter is significantly smaller
in all cases for TorchLight, and in most cases for SP.

TorchLight can also tell us why analysis failed, identifying
domain features causing the presence of local minima. Since
the tested criteria are sufficient but not necessary, there is no
correctness guarantee. Still, at least for analysis using Theo-
rem 2, the diagnosis can be quite accurate. It currently does
not do much more than report all variable/operator pairs fail-
ing to qualify for x0, o0. In Zenotravel, this always correctly
identifies fuel consumption as the problem. In Mprime and
Mystery, most of the time the same correct diagnosis is re-
turned. In Satellite and Rovers, it always reports the problem
to be that switching on an instrument, respectively taking an
image, deletes calibration – precisely the only reason why
local minima exist here. In Tyreworld, Grid, Blocksworld-
Arm, and Freecell, the diagnosis identifies critical resources
(like “hand-empty” and “have-cellspace”). It seems likely
that these results could still be much improved, by com-
bining them with other information sources in TorchLight
and/or with other domain analysis techniques.

Discussion
We identified a connection between causal graphs and h+,
and devised a tool allowing to analyze search space topology
without actually running any search. The tool is not yet an
“automatic Hoffmann”, but its analysis quality is impressive
even when compared to unlimited search probing.

Causal graphs were previously used to identify tractable
fragments (e.g., Jonsson and Bäckström 1995; Brafman and
Domshlak 2004; Haslum 2007). However, tractability and
absence of local minima are orthogonal properties. The
strongest connection is that, if Theorem 4 applies, then plan
existence (but not plan generation nor optimal planning) is
tractable. For our basic result, but not for the full scope of
Theorem 4, this tractability is known (Hoffmann 2011).

At a technical level, this work establishes two new aspects
of causal graph analysis. (1) One can “localize” the analysis,
considering only the fragment relevant for solving a parti-
cular state. This enables succes in tasks that are otherwise
arbitrarily complex. (2) One can construct paths improv-
ing the value of a heuristic, rather than achieving the global
goal. This is not limited to h+. Both (1) and (2) suggest
completely new avenues of causal graph research.

TorchLight is useful for performance prediction. Like
limited SP, it generates a highly informative feature without

jeopardizing runtime, thus enabling automatic planner con-
figuration. Unlike for SP, this may even work on-line dur-
ing search. Based on a single relaxed plan, e.g., one might
choose a different search strategy, or switch helpful actions
on/off, depending on the outcome of checking Theorem 2.

Local analysis can be used to generate macro-actions, fol-
lowing the path to the better state. This relates to work on
macros (e.g., Botea, Müller, and Schaeffer 2004), but with a
very targeted analytical way of generating them.

One could use TorchLight’s diagnosis facility as the ba-
sis of an abstraction technique for deriving search guidance.
The diagnosis can pin-point which operator effects are caus-
ing problems for search. If we remove enough harmful ef-
fects so that Theorem 4 applies, then the abstract problem is
tractable. If we do not abstract that much, the information
provided may still outweigh the effort for abstract planning.

Another interesting issue is domain reformulation.
Haslum (2007) identifies as a main open problem the lack
of guiding information. TorchLight’s diagnosis may come
to the rescue. Automatic reformulation could, e.g., pre-
compose variable subsets touched by harmful effects, or
hide these effects within macro-actions. The diagnosis could
also give modeling advice to non-planning experts, support-
ing them in the design of hierarchies of domains giving dif-
ferent trade-offs between planning effort and plan accuracy,
thus helping to make planning technology more accessible.
Acknowledgments. I had long ago given up on this prob-
lem. Thanks to Carlos Areces’ and Luciana Benotti’s insis-
tence, I finally saw the connection to causal graphs – while
trying to convince them that such an analysis is not possible.
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Jonsson, P., and Bäckström, C. 1995. Incremental planning. Euro-
pean Workshop on Planning.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
revisited. AAAI’08, 975–982.
Rintanen, J. 2000. An iterative algorithm for synthesizing invari-
ants. AAAI’00, 806–811.


