Where Ignoring Delete Lists Works, Part II: Causal Graphs

Jörg Hoffmann

INRIA
Nancy, France

June 14, 2011
Outline

- What happened?
- On causal graphs and h^+
- Guaranteed global analysis
- Approximate local analysis
- Diagnosis
- Conclusion
Outline

► What happened?
► On causal graphs and h^+
► Guaranteed global analysis
► Approximate local analysis
► Diagnosis
► Conclusion
Where Ignoring Delete Lists Works

<table>
<thead>
<tr>
<th>Blocksworld–Arm Depots Driverlog</th>
<th>Pipesworld–Tank Pipesworld–NoTank PSR</th>
<th>Rovers</th>
<th>Mystery Mprime Freecell Airport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanoi [0] Blocksworld–NoArm [0] Transport [0]</td>
<td>Grid [0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>local minima ed <= c</th>
</tr>
</thead>
<tbody>
<tr>
<td>undirected</td>
</tr>
<tr>
<td>flat ed <= c</td>
</tr>
</tbody>
</table>

red: no local minima at all under h^+
Can we recognize this automatically?

\[
\begin{array}{c}
\text{E} \\
\text{D} \\
\text{B} \\
\text{A}
\end{array}
\xrightarrow{== \ 1 \text{ EUR}}

\begin{array}{c}
\text{D} \\
\text{C}
\end{array}
\xrightarrow{+= \ 1 \text{ EUR}}

\begin{array}{c}
\text{B} \\
\text{C} \\
\text{E}
\end{array}
\xrightarrow{mv \ B \ D}

\begin{array}{c}
\text{D} \\
\text{C}
\end{array}
\xrightarrow{mv \ D \ E}

\begin{array}{c}
\text{A}
\end{array}
= \ 1 \text{ EUR}

\begin{array}{c}
\text{C}
\end{array}
\xrightarrow{mv \ C \ D}

\begin{array}{c}
\text{D}
\end{array}
\xrightarrow{mv \ D \ C}

\begin{array}{c}
\text{B}
\end{array}
\xrightarrow{at \ B}

\begin{array}{c}
\text{C}
\end{array}
\xrightarrow{at \ C}

\begin{array}{c}
\text{A}
\end{array}
\xrightarrow{at \ A}

\begin{array}{c}
\text{E}
\end{array}
\xrightarrow{at \ E}

\begin{array}{c}
\text{D}
\end{array}
\xrightarrow{1 \text{ EUR}}
Can we recognize this automatically?

Works only in trivialities; explodes quickly
Time passes ...
Time passes . . .

← me in 2003
Time passes . . .

← me in 2004
Time passes . . .
Time passes ...
Time passes . . .

← me in 2007
Time passes . . .

← me in 2008
Time passes . . .

← me in 2009
Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: “When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn’t one build a tool based on recognizing h^* topology?”

Jörg: “Oh yeah, I already tried that during my PhD, but it didn’t work.”

Carlos/Luciana: “But couldn’t we do something like XYZ?”

Jörg: “Hm I don’t think so.”

Carlos/Luciana: “αβγ maybe?”

... [45 minutes later] ...

Jörg: “Look, just consider Blocksworld and Logistics. One has local minima, the other doesn’t. Still both have deletes.”

Jörg: “And there is no other obvious difference in their structure . . .”

Jörg: “. . . Causal graphs!!!”
Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: “When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn’t one build a tool based on recognizing h^+ topology?”
Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: “When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn’t one build a tool based on recognizing h^+ topology?”

Jörg: “Oh yeah, I already tried that during my PhD, but it didn’t work.”
Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: “When we made PDDL models, it was very hard to know how to design them so that planners would perform better.Couldn’t one build a tool based on recognizing h^+ topology?”

Jörg: “Oh yeah, I already tried that during my PhD, but it didn’t work.”

Carlos/Luciana: “But couldn’t we do something like XYZ?”
Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: “When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn’t one build a tool based on recognizing h^+ topology?”

Jörg: “Oh yeah, I already tried that during my PhD, but it didn’t work.”

Carlos/Luciana: “But couldn’t we do something like XYZ?”

Jörg: “Hm I don’t think so.”
Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: “When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn’t one build a tool based on recognizing h^+ topology?”

Jörg: “Oh yeah, I already tried that during my PhD, but it didn’t work.”

Carlos/Luciana: “But couldn’t we do something like XYZ?”

Jörg: “Hm I don’t think so.”

Carlos/Luciana: “αβγ maybe?”
Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: “When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn’t one build a tool based on recognizing h^+ topology?”

Jörg: “Oh yeah, I already tried that during my PhD, but it didn’t work.”

Carlos/Luciana: “But couldn’t we do something like XYZ?”

Jörg: “Hm I don’t think so.”

Carlos/Luciana: “$\alpha\beta\gamma$ maybe?”

... [45 minutes later] ...
Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: “When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn’t one build a tool based on recognizing \(h^+ \) topology?”

Jörg: “Oh yeah, I already tried that during my PhD, but it didn’t work.”

Carlos/Luciana: “But couldn’t we do something like XYZ?”

Jörg: “Hm I don’t think so.”

Carlos/Luciana: “\(\alpha \beta \gamma \) maybe?”

... [45 minutes later] ...

Jörg: “Look, just consider Blocksworld and Logistics. One has local minima, the other doesn’t. Still both have deletes.”
Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: “When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn’t one build a tool based on recognizing h^+ topology?”

Jörg: “Oh yeah, I already tried that during my PhD, but it didn’t work.”

Carlos/Luciana: “But couldn’t we do something like XYZ?”

Jörg: “Hm I don’t think so.”

Carlos/Luciana: “αβγ maybe?”

... [45 minutes later] ...

Jörg: “Look, just consider Blocksworld and Logistics. One has local minima, the other doesn’t. Still both have deletes.”

Jörg: “And there is no other obvious difference in their structure ...”
Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: “When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn’t one build a tool based on recognizing h^+ topology?”

Jörg: “Oh yeah, I already tried that during my PhD, but it didn’t work.”

Carlos/Luciana: “But couldn’t we do something like XYZ?”

Jörg: “Hm I don’t think so.”

Carlos/Luciana: “$\alpha\beta\gamma$ maybe?”

. . . [45 minutes later] . . .

Jörg: “Look, just consider Blocksworld and Logistics. One has local minima, the other doesn’t. Still both have deletes.”

Jörg: “And there is no other obvious difference in their structure . . .”

Jörg: “. . . Causal graphs!!!”
The causal graph of Blocksworld contains cycles; h^+ local minima.

That of Logistics doesn’t; h^+ no local minima.

Is there a general phenomenon behind this?
Outline

- What happened?
- On causal graphs and h^+
- Guaranteed global analysis
- Approximate local analysis
- Diagnosis
- Conclusion
On causal graphs and h^+

Details:

On causal graphs and h^+

Details:

CG acyclic & invertibility \implies no local minima under h^+
Finite-domain vars ("SAS\(^+\)") \(x_0, x_1, x_2 \)

Domain transition graphs

Causal graph: top left

Transitions invertible + no side effects

Red: need this; Blue: how to get it; Green: where we are (state \(s \))

"Start" state \(s \) is not a local minimum!

State \(s_0 \): \(x_1 = c_1 \) and \(x_2 = c_2 \)
CG acyclic & invertibility \implies no local minima under h^+

- Assume optimal relaxed plan $P^+(s)$ for s
- $P^+(s)$ must achieve c_1, c_2 via some paths T_1, T_2
- If we remain within these paths, h^+ never increases!
CG acyclic & invertibility \implies no local minima under h^+

Assume optimal relaxed plan $P^+(s)$ for s

$P^+(s)$ must achieve c_1, c_2 via some paths T_1, T_2

If we remain within these paths, h^+ never increases!

Wlog $P^+(s) = \langle R1^+, R2^+, R3^+ \rangle \circ P^+$
CG acyclic & invertibility \implies no local minima under h^+

Assume optimal relaxed plan $P^+(s)$ for s

$P^+(s)$ must achieve c_1, c_2 via some paths T_1, T_2

If we remain within these paths, h^+ never increases!

Wlog $P^+(s) = \langle R1^+, R2^+, R3^+ \rangle \circ P^+$

Say $s' := \text{apply}(s, R1, R2, R3)$
CG acyclic & invertibility \implies no local minima under h^+

Assume optimal relaxed plan $P^+(s)$ for s

$P^+(s)$ must achieve c_1, c_2 via some paths T_1, T_2

If we remain within these paths, h^+ never increases!

Wlog $P^+(s) = \langle R1^+, R2^+, R3^+ \rangle \circ P^+$

Say $s' := \text{apply}(s, R1, R2, R3)$

$P^+(s') := \langle L3^+, L2^+, L1^+ \rangle \circ P^+$

apply$(s, R1^+, R2^+, R3^+)[x_1] = \{d_1, d_2, d_3, c_1\} =$

apply$(s', L3^+, L2^+, L1^+)[x_1]$
CG acyclic & invertibility \implies no local minima under h^+

Say we're in s_0
CG acyclic & invertibility \iff no local minima under h^+

Say we’re in s_0

$P^+(s_0) = \langle \text{op}_0^+ \rangle \circ P^+$, and (from prev arg) $|P^+(s_0)| \leq |P^+(s)|$
CG acyclic & invertibility \implies no local minima under h^+

Say we’re in s_0

$P^+(s_0) = \langle \text{op}_0^+ \rangle \circ P^+$, and (from prev arg) $|P^+(s_0)| \leq |P^+(s)|$

op_0 is applicable now, leading to s_1
CG acyclic & invertibility \implies no local minima under h^+

Say we’re in s_0

- $P^+(s_0) = \langle op_0^+ \rangle \circ P^+$, and (from prev arg) $|P^+(s_0)| \leq |P^+(s)|$

- op_0 is applicable now, leading to s_1

- $P^+(s_1) := P^+$ (remove op_0 from $P^+(s_0)$); thus $h^+(s_1) < h^+(s)$!!
What does any of this have to do with causal graphs???
What does any of this have to do with causal graphs???

\(x_0 \) is CG leaf

\[\Rightarrow \text{moving } x_0 \text{ does not affect relaxed plan, thus applying } op_0 \text{ in } s_0 \text{ decreases } h^+ \]
CG acyclic & invertibility \implies no local minima under h^+

- What does any of this have to do with causal graphs???

- x_0 is CG leaf
 \implies moving x_0 does not affect relaxed plan, thus applying op_0 in s_0 decreases h^+

- Moving x_0 involves only CG predecessors; if those have invertible transitions & no cyclic dependencies
 \implies can construct path to s_0 with non-increasing h^+
Is this useful for anything?
Is this useful for anything?

- Domain analysis!
- TorchLight
- Long-term goal: “automatic Hoffmann”
Is this useful for anything?

- **Domain analysis!**
- **TorchLight**
- Long-term goal: “automatic Hoffmann”
- Guaranteed global analysis
- Approximate local analysis
- Diagnosis

⇒ TorchLight demo today 17:30 – 20:00
Outline

- What happened?
- On causal graphs and h^+
- **Guaranteed global analysis**
- Approximate local analysis
- Diagnosis
- Conclusion
Guaranteed global analysis

- Prove absence of local minima & global bound on lookahead
- Criterion strictly more general than what we just saw
- Allows e.g. non-unary operators, provided any side-effects are “harmless”

- Recognizes Logistics, Miconic-STRIPS, Movie, SimpleTSP
- Does not recognize anything else just yet ... \[\frac{4}{12} \] domains
Outline

▶ What happened?
▶ On causal graphs and h^+
▶ Guaranteed global analysis
▶ **Approximate local analysis**
▶ Diagnosis
▶ Conclusion
Approximate local analysis

- Local: *Is state s not a local minimum?*
- Analyze relaxed plan $P^+(s)$
- Answer “yes” guaranteed correct if $P^+(s)$ is optimal

Theoretically, given optimal $P^+(s)$ as input, recognizes Ferry, Gripper, Elevators, Transport [+ global = $\frac{8}{12}$ domains]

- Randomly sample states; fraction of “yes”: success rate
Approximate local analysis

- Local: *Is state s not a local minimum?*

- Analyze relaxed plan $P^+(s)$

- Answer “yes” guaranteed correct if $P^+(s)$ is optimal

- Theoretically, given optimal $P^+(s)$ as input, recognizes Ferry, Gripper, Elevators, Transport [+ global $= \frac{8}{12}$ domains]

- Randomly sample states; fraction of “yes”: success rate

- Disclaimer:
 - Success rates can also be obtained by trivial search probing
 - Strong theoretical differences; some differences in benchmarks
Success rate: average per-domain from single sample state per-instance

<table>
<thead>
<tr>
<th>Domain</th>
<th>Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zenotravel</td>
<td>[95]</td>
</tr>
<tr>
<td>Satellite</td>
<td>[81]</td>
</tr>
<tr>
<td>Rovers</td>
<td>[76]</td>
</tr>
<tr>
<td>PSR</td>
<td>[60]</td>
</tr>
<tr>
<td>Pipesworld–Tank</td>
<td>[57]</td>
</tr>
<tr>
<td>Pipesworld–NoTank</td>
<td>[50]</td>
</tr>
<tr>
<td>Mystery</td>
<td>[49]</td>
</tr>
<tr>
<td>Mprime</td>
<td>[40]</td>
</tr>
<tr>
<td>Freecell</td>
<td>[39]</td>
</tr>
<tr>
<td>Blocksworld–NoArm</td>
<td>[30]</td>
</tr>
<tr>
<td>Grid</td>
<td>[23]</td>
</tr>
<tr>
<td>Driverlog</td>
<td>[22]</td>
</tr>
<tr>
<td>Depots</td>
<td>[10]</td>
</tr>
<tr>
<td>Blocksworld–Arm</td>
<td>[5]</td>
</tr>
<tr>
<td>Airport</td>
<td>[0]</td>
</tr>
<tr>
<td>Hanoi</td>
<td>[0]</td>
</tr>
<tr>
<td>Airports</td>
<td>[0]</td>
</tr>
<tr>
<td>Blocksworld–Arm</td>
<td>[30]</td>
</tr>
<tr>
<td>Mystery</td>
<td>[39]</td>
</tr>
<tr>
<td>Pipesworld–Tank</td>
<td>[40]</td>
</tr>
<tr>
<td>Mprime</td>
<td>[49]</td>
</tr>
<tr>
<td>Freecell</td>
<td>[56]</td>
</tr>
<tr>
<td>Blocksworld–NoArm</td>
<td>[57]</td>
</tr>
<tr>
<td>Pipesworld–NoTank</td>
<td>[76]</td>
</tr>
<tr>
<td>Grid</td>
<td>[80]</td>
</tr>
<tr>
<td>Depots</td>
<td>[81]</td>
</tr>
<tr>
<td>Zenotravel</td>
<td>[95]</td>
</tr>
<tr>
<td>Tyreworld</td>
<td>[100]</td>
</tr>
<tr>
<td>Transport</td>
<td>[100]</td>
</tr>
<tr>
<td>Simple–Tsp</td>
<td>[100]</td>
</tr>
<tr>
<td>Movie</td>
<td>[100]</td>
</tr>
<tr>
<td>Miconic–STRIPS</td>
<td>[100]</td>
</tr>
<tr>
<td>Logistics</td>
<td>[100]</td>
</tr>
<tr>
<td>Hanoi</td>
<td>[100]</td>
</tr>
<tr>
<td>Gripper</td>
<td>[100]</td>
</tr>
<tr>
<td>Grid</td>
<td>[100]</td>
</tr>
<tr>
<td>Ferry</td>
<td>[100]</td>
</tr>
<tr>
<td>Elevators</td>
<td>[100]</td>
</tr>
<tr>
<td>Blocksworld–NoArm</td>
<td>[100]</td>
</tr>
</tbody>
</table>
Hoffmann vs. TorchLight

Zenotravel, Satellite, Rovers, PSR, Pipesworld–Tank, Pipesworld–NoTank, Mystery, Mprime, Freecell, Driverlog, Depots, Blocksworld–Arm, Airport

Hanoi [0], Airport [0], Blocksworld–Arm [30], Mystery [39], Pipesworld–Tank [40], Mprime [49], PSR [50], Freecell [56], Blocksworld–NoArm [57], Pipesworld–NoTank [76], Grid [80], Depots [81], Zenotravel [95]

Tyreworld, Transport, Simple–Tsp, Movie, Miconic–STRIPS, Logistics, Hanoi, Gripper, Grid, Ferry, Elevators, Blocksworld–NoArm

Tyreworld [100], Transport [100], Simple–Tsp [100], Satellite [100], Rovers [100], Movie [100], Miconic–STRIPS [100], Logistics [100], Gripper [100], Ferry [100], Elevators [100], Driverlog [100]

Not all domains are “fully recognized” . . .

... mostly because Hoffmann is too optimistic
<table>
<thead>
<tr>
<th>Zenotravel</th>
<th>Hanoi [0]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite</td>
<td>Airport [0]</td>
<td></td>
</tr>
<tr>
<td>Rovers</td>
<td>Blocksworld−Arm [30]</td>
<td></td>
</tr>
<tr>
<td>PSR</td>
<td>Mystery [39]</td>
<td></td>
</tr>
<tr>
<td>Pipesworld−Tank</td>
<td>Pipesworld−Tank [40]</td>
<td></td>
</tr>
<tr>
<td>Pipesworld−NoTank</td>
<td>Mprime [49]</td>
<td></td>
</tr>
<tr>
<td>Mystery</td>
<td>PSR [50]</td>
<td></td>
</tr>
<tr>
<td>Mprime</td>
<td>Freecell [56]</td>
<td></td>
</tr>
<tr>
<td>Freecell</td>
<td>Blocksworld−NoArm [57]</td>
<td></td>
</tr>
<tr>
<td>Driverlog</td>
<td>Pipesworld−NoTank [76]</td>
<td></td>
</tr>
<tr>
<td>Depots</td>
<td>Grid [80]</td>
<td></td>
</tr>
<tr>
<td>Blocksworld−Arm</td>
<td>Depots [81]</td>
<td></td>
</tr>
<tr>
<td>Airport</td>
<td>Zenotravel [95]</td>
<td></td>
</tr>
</tbody>
</table>

Tyreworld	Tyreworld [100]	
Transport	Transport [100]	
Simple−Tsp	Simple−Tsp [100]	
Movie	Satellite [100]	
Miconic−STRIPS	Rovers [100]	
Logistics	Movie [100]	
Hanoi	Miconic−STRIPS [100]	
Gripper	Logistics [100]	
Grid	Gripper [100]	
Ferry	Ferry [100]	
Elevators	Elevators [100]	
Blocksworld−NoArm	Driverlog [100]	

Some new domains are “fully recognized” . . .

. . . mostly because Hoffmann is too pessimistic
Success rates are more than a "yes/no" answer!
Outline

- What happened?
- On causal graphs and h^+
- Guaranteed global analysis
- Approximate local analysis
- Diagnosis
- Conclusion
Which domain aspects cause local minima?
▶ Which domain aspects cause local minima?

▶ Which unsatisfied conditions caused the analysis to fail?
Diagnosis

- Which domain aspects cause local minima?
- Which unsatisfied conditions caused the analysis to fail?
- Operator-name/predicate pairs \((op, P)\) where \(op\) effect on \(P\) prevented use as successful \(op_0\) in approximate local analysis
- Zenotravel: “fly,fuel-level”
- Mystery/Mprime: “feast,locale”
- Satellite: “switch-on,calibrated”
- Rovers: “take-image,calibrated”
- This is merely a first-shot technique!
Outline

- What happened?
- On causal graphs and h^+
- Guaranteed global analysis
- Approximate local analysis
- Diagnosis
- **Conclusion**
Conclusion

Improving TorchLight:
▶ Strengthen global analysis with complementary techniques
▶ Derive “good case” characterizations from local analysis?

Using TorchLight:
▶ Relaxed plan analysis ⇒ macro actions
▶ Performance prediction (even online during search)
▶ Abstract by removing (some) harmful effects (diagnosis!)
▶ Modeling support for planning end-users (diagnosis!)
Conclusion

Improving TorchLight:

- Strengthen global analysis with complementary techniques
- Derive “good case” characterizations from local analysis?

Using TorchLight:

- Relaxed plan analysis \implies macro actions
- Performance prediction (even online during search)
- Abstract by removing (some) harmful effects (diagnosis!)
- Modeling support for planning end-users (diagnosis!)
Thanks. Questions?

p.s. There is an error in these slides. Where?