
All that Glitters is not Gold:
Using Landmarks for Reward Shaping in FPG

Olivier Buffet and Jörg Hoffmann
INRIA, France

olivier.buffet|joerg.hoffmann@inria.fr

Abstract
Landmarks are facts that must be true at some point in any
plan. It has recently been proposed in classical planning to
use landmarks for the automatic generation of heuristic func-
tions. We herein apply this idea in probabilistic planning. We
focus on the FPG tool, which derives a factored policy based
on learning from samples into the state space. The rationale
is that FPG’s performance can be improved significantly by
a trivial heuristic that counts the number of false goals; land-
marks provide much better estimates at little overhead cost.
We devise improved versions of the classical landmarks
heuristic, including a Markovian one that, unlike previous
ones, does not depend on the state history. As done previously
in FPG for the goal counting, we use the heuristics for reward
shaping: the planner gets a positive reward when improving
the heuristic value. Based on previous work, we argue that
such shaping is policy invariant for Markovian heuristics.
Our empirical results confirm that the landmarks heuristics
are almost as fast as the goal counting, while delivering much
more accurate estimates for initial states. In spite of this,
overall planner performance is almost never improved. We
discuss some intuitions as to why that is so.

Introduction
Landmarks are facts that must be true at some point in any
plan. It has been originally proposed to detect landmarks,
and ordering constraints between them, in a pre-process,
and then use this information for problem decomposition
(Hoffmann, Porteous, and Sebastia 2004). More recently,
it has been proposed in classical planning to use landmarks
for the automatic generation of heuristic functions (Richter,
Helmert, and Westphal 2008; Karpas and Domshlak 2009).
The basic idea is to count the number of yet un-achieved
landmarks, enforcing, where appropriate, achievement in the
order dictated by the ordering constraints. We herein ap-
ply these (classical) heuristic functions, for the first time,
in probabilistic planning. We focus on the FPG tool (Buf-
fet and Aberdeen 2009) that derives a factored policy based
on learning from samples into the state space. The ratio-
nale behind this research is that FPG’s performance can be
improved significantly by a trivial heuristic that counts the
number of false goals; landmarks provide much better esti-
mates at little overhead cost.

To illustrate our rationale, consider Table 1, where
we compare the success rates for policies computed by

BW8 BW12 EBW5 EBW8 EBW10
FPG 9 0 51 0 0
FPG+hG 100 4 42 50 0

Table 1: Success rate of FPG policies, computed without vs.
with goal counting heuristic.

FPG, in Blocksworld (“BW”, IPPC 2006) and Exploding-
Blocksworld (“EBW”, IPPC 2006), without vs. with the
goal counting heuristic (all other settings being the same).
Clearly, this trivial heuristic has a huge beneficial impact on
performance. It also has limitations, visible in the results on
BW12 and EBW10. Our initial hope in this work was to be
able to scale to these cases when exchanging the goal count-
ing with the much more informed counting of landmarks.

Like previously done in FPG for the goal counting, we use
the heuristics for reward shaping (Dorigo and Colombetti
1994; Matarić 1994). The planner receives a positive reward
when improving the heuristic value, hence guiding the learn-
ing towards smaller values. Reward shaping is called policy
invariant if it preserves the optimal policy of the problem at
hand, i.e., the policy that maximizes expected reward. Pre-
vious work (Ng, Harada, and Russell 1999) has shown that
heuristics-based reward shaping is policy invariant under the
standard restrictive assumptions implying that expected re-
ward is well-defined (using discounting or the existence of
an absorbing state). These assumptions are not per se given
in probabilistic planning – there may exist dead-end states
from which the goal can’t be reached – but can be achieved
by inserting an artificial absorbing state; the reward func-
tion is designed to distinguish between successful and failed
ways to reach that state. To the transformed problem, the
results of (Ng, Harada, and Russell 1999) apply as before.

The heuristics we use are all classical, and we take the
known approach of applying them to the all-outcomes de-
terminization of the probabilistic planning task. We devise
two new versions of the landmarks heuristic from (Richter,
Helmert, and Westphal 2008). The first version makes im-
provements pertaining to an analysis of undesirable features
of the original proposal, such as potential failure to recog-
nize goal states. The second version, in difference to the pre-
vious versions of the landmarks heuristic, is Markovian, i.e.,
does not depend on the state history. This is of potential im-
portance in our context because the results of (Ng, Harada,
and Russell 1999) pertain only to this kind of heuristic.

Our experiments confirm that the landmarks heuristics are
almost as fast as the goal counting, while delivering much
more accurate estimates for initial states. In spite of this,
overall FPG performance is almost never improved. We dis-
cuss some intuitions as to why that is so. We experiment
also with the well-known relaxed plans heuristic (Hoffmann
and Nebel 2001); this does not deliver good results either.

We next give some background on probabilistic planning
and FPG. We then provide an overview of shaping methods
and explain our strategy for FPG. We discuss in detail the
different variants of the landmarks heuristic, before present-
ing the empirical results and concluding the paper.

Background
Probabilistic Planning
A probabilistic planning domain is defined by a finite set of
boolean variables B = {b1, . . . , bn} – a state s ∈ S be-
ing described by an assignment of these variables, and often
represented as a vector s of 0s and 1s – and a finite set of
actions A = {a1, . . . , am}. An action a can be executed if
its precondition pre(a) – a logic formula on B – is satisfied.
If a is executed, a probability distribution P(·|a) is used to
sample one of its K outcomes outk(a). An outcome is a
set of truth value assignments on B which is then applied to
change the current state.

A probabilistic planning task T is defined by a planning
domain, an initial state s0 and a goal G – a formula on B
that needs to be satisfied. The aim is to find the plan that
maximizes the probability of reaching the goal, and possibly
minimizes the expected number of actions required. This
takes the form of a policy P[a|s] specifying the probability of
picking action a in state s. In the remainder of this section,
we see how FPG solves this with RL.

FPG
FPG addresses probabilistic planning as a Markov Decision
Process (MDP): in its default version, a reward function r
is defined, taking value rsucc = 1000 in any goal (success)
state, and 0 otherwise; a transition matrix P[s′|s, a] is natu-
rally derived from the actions; the system resets to the initial
state each time the goal is reached; and FPG tries to maxi-
mize the expected average reward. But rather than dynamic
programming – which is costly when it comes to enumerat-
ing reachable states –, FPG computes gradients of a stochas-
tic policy, implemented as a policy P[a|s; θ] depending on a
parameter vector θ ∈ Rn. We now present the learning al-
gorithm, then the policy parameterization.

On-Line POMDP The On-Line POMDP policy-gradient
algorithm (OLPOMDP) (Baxter, Bartlett, and Weaver 2001),
and many similar algorithms (Williams 1992; Szepesvári
2009), maximize the long-term average reward

R(θ) := lim
T→∞

1
T

Eθ

[
T∑
t=1

r(st)

]
, (1)

where the expectation Eθ is over the distribution of state tra-
jectories {s0, s1, . . . } induced by the transition matrix and

the policy. To maximize R(θ), goal states must be reached
as frequently as possible. This simultaneously minimizes
plan duration and maximizes the probability of reaching the
goal (failure states achieve no reward).

A typical gradient ascent algorithm would repeatedly
compute the gradient∇θR and follow its direction. Because
an exact computation of the gradient is very expensive in our
setting, OLPOMDP relies on Monte-Carlo estimates gener-
ated by simulating the task. At each time step of the simu-
lation loop, it computes a one-step gradient gt = rtet and
immediately updates the parameters in the direction of gt.
The eligibility vector et contains the discounted sum of nor-
malized action probability gradients. At each step, rt indi-
cates whether to move the parameters in the direction of et
to promote recent actions, or away from et to deter recent
actions (Algorithm 1).

Algorithm 1: OLPOMDP FPG Gradient Estimator
Set s0 to initial state, t = 0, et = [0], init θ0 randomly
while R not converged do

Compute distribution P[at = i|st; θt]
Sample action i with probability P[at = i|st; θt]
et ← βet−1 +∇ log P[at|st; θt]
st+1 ← next(st, i)
θt+1 ← θt + αrtet
if isTerminalState(st+1) then st+1 ← s0
t← t+ 1

OLPOMDP is “on-line” because it updates parameters for
every non-zero reward. It is also “on-policy” in the RL
sense of requiring trajectories to be generated according to
P[·|st; θt]. Convergence to a (possibly poor) locally optimal
policy is guaranteed even if some state information is omit-
ted from st for simplifying the policy representation.

Linear-Network Factored Policy FPG’s policy is fac-
tored: it is made of one linear network per action, each of
them taking the same vector s as input (plus a constant 1 bit
to provide bias to the perceptron) and outputting a real value
fi(st; θi). In a given state, a probability distribution over
eligible actions is computed as a Gibbs1 distribution

P[at = i|st; θ] =
exp(fi(st; θi))∑
j∈A exp(fj(st; θj))

.

The interaction loop connecting the policy and the task is
represented in Figure 1. Initially, the parameters are set to
0, giving a uniform random policy; encouraging exploration
of the action space. Each gradient step typically moves the
parameters closer to a deterministic policy.

Due to the availability of benchmarks and compatibility
with LAMA we focus on the non-temporal IPC version of
FPG. The temporal version extension simply gives each ac-
tion a separate Gibbs distribution to determine if it will be
executed, independently of other actions (mutexes are re-
solved by the simulator).

1Essentially the same as a Boltzmann or soft-max distribution.

Not Eligible
Choice disabled

Action N

Action 2

Action 1

next(st,at)

st

at

∆

b1

b1

· · ·
bn

P[at = 1|st, ~θ1] = 0.8

P[at = N |st, ~θN] = 0.1

Figure 1: FPG seen as a factored controller made of multiple
linear networks

Reward Shaping
In Reinforcement Learning, shaping is the idea of mod-
ifying the sequential decision problem at hand to make
it simpler. Reward shaping (rewritting the reward func-
tion, i.e. the objective) (Dorigo and Colombetti 1994;
Matarić 1994) is the main research direction in this area,
but it is also possible to modify the physics of the system
(through the transition function) (Randløv 2000). Major dif-
ficulties when using shaping approaches are:
• to possibly automate the shaping process;
• to make sure that the modified problem is indeed simpler

to solve than the original one;
• to make sure that (1) either one really benefits from shap-

ing when progressively turning the modified problem into
the original one (e.g., this is not the case in the mountain-
car problem when starting with a flat mountain); (2) or an
optimal solution to the modified problem is also an opti-
mal solution of the original problem (which is possible for
certain shaped rewards (Ng, Harada, and Russell 1999)).
We focus in this paper on reward shaping – which is al-

ready used in FPG – to theoretically verify its usage condi-
tions and experiment with various automatically computed
(heuristic-based) reward shapers.

Known Results
Simple Results for Finite or Infinite Horizon Problems
A very common result is that, in a classical MDP (i.e.,
with an infinite horizon and a discounted reward), policy
invariance is guaranteed under any linear transformation
r′ = pr + q, where p > 0 and q ∈ < (r′ is the shaped
reward and ρ the shaping reward). This property still holds
for a finite horizon problem or with an average reward cri-
terion. In the case of an indefinite horizon problem (e.g., in
probabilistic planning), the optimal policy may change, be-
ing attracted by (respectively avoiding) looping behaviors if

q has a large positive (resp. negative) value. This leaves us
with the possibility of tuning p, which (1) has no influence
on the speed of convergence of a value function estimator,
and (2) is equivalent in a policy gradient algorithm to tuning
the learning step size (α in FPG).

Potential-based Shaping A more useful result (Ng,
Harada, and Russell 1999) for classical MDPs is that, given
a potential function Φ(s) that maps states into numbers, and
ρ(s, a, s′) = γΦ(s′) − Φ(s), the transform r′(s, a, s′) =
r(s, a, s′) + ρ(s, a, s′) is policy invariant. This extends to
undiscounted MDPs with one absorbing state sabs (finite or
indefinite horizon problems with a total reward criterion, i.e.,
γ = 1) and if all policies are proper, i.e., if sabs is reached
with probability 1.

The reader accustomed to heuristic search will have
thought “heuristic” when reading “potential function”
above. Indeed it is not difficult to see that the two approaches
– reward shaping by Φ vs. initialization of Q-values by Φ –
are similar for Q-value based algorithms, and even equiv-
alent for Q-learning or sarsa (Wiewiora 2003). Note how-
ever that this equivalence is limited since it does not apply
to algorithms like FPG that are not based on learning of Q-
values. This notwithstanding, we can often exploit the cor-
respondence potential/heuristic function in such algorithms
as well. We do so herein for FPG.

Reward Definition for Probabilistic Planning In proba-
bilistic planning, i.e., when trying to maximize the probabil-
ity to reach a goal state – here, without minimizing any cost
–, a typical reward function will distinguish three reward val-
ues depending on whether the next state is (i) a success state
(rsucc), (ii) a failure state (rfail), or (iii) any other state (ro).
With this scheme, as there is typically no guarantee on the
plan length, the default reward should be ro = 0. Then,
since a trajectory may end with success or failure, or may
never end, the expected cumulative reward for a state s is:

V (s) = rsucc.P r(succeed|s) + rfail.P r(fail|s) (2)
+ 0.P r(never end|s).

In problems where an absorbing (/terminal) state is al-
ways attained (e.g., because of limited resources or time),
we have, for all state s, Pr(never end|s) = 0 and
Pr(succeed|s) + Pr(fail|s) = 1, so that Equation 2 can
be rewritten: V (s) = [rsucc − rfail].P r(succeed|s) + rfail,
implying the constraint [rsucc − rfail] > 0. Otherwise, when-
ever infinite executions are possible, a non zero failure re-
ward rfail is either useless or detrimental, so that a sensible
rewarding scheme is rfail = 0 and rsucc > 0, the criterion at
hand being V (s) = rsucc.P r(succeed|s).

Application to our Setting
To apply Ng et al.’s potential-based shaping in our proba-
bilistic planning setting, a first requirement is that our prob-
lem have a finite or indefinite horizon, which is ensured by
defining a maximum plan length. Then, an issue is that we
have multiple absorbing states. This is solved by observ-
ing that this situation is equivalent to rewriting the planning
problem in such a way that success and failure states are not

absorbing, but all lead to a single absorbing state. In prac-
tice, it is more convenient to simply ensure that all success
and failure states are mapped to the same potential value:
∀s ∈ (Ssucc

⋃
Sfail), Φ(s) = Φabs.

Then, a first remark regarding the heuristic (/potential)
function is that it does not need to be admissible for the
shaping to be policy invariant. Admissibility may be a re-
quirement depending on the resolution algorithm, though. A
more important issue is that some heuristic functions known
in planning are actually pseudo-heuristic functions whose
value depends not only on the current state, but also on past
states and actions. Indeed, landmark heuristics are computed
based on events that have occurred since the beginning of
the current trajectory. As a result, the corresponding shaped
reward r′ is non-Markovian (Thiébaux et al. 2006).2 Two
interesting open questions are whether this reward shap-
ing is policy invariant and, if so, which MDP solution al-
gorithms still work. An encouraging property suggesting
that policy invariance holds is that, in this particular case,
the cumulative shaping reward over a complete trajectory
only depends on the start and end states: ρ(s0, a0, s1) +
· · ·+ ρ(sK , aK , sabs) = r(sabs) + Φ(sabs)− Φ(s0), where
r(sabs) = rsucc or rfail.

Application to FPG In our setting, all executions ter-
minate in finite time, so that the reward for the terminal
states only have to verify: rsucc − rfail > 0. At the end
of a trajectory, the accumulated shaping reward is always
[Φ(sabs)−Φ(s0)], always indicating a progress towards the
goal. We have decided to compensate for this phenomenon
(i.e., to ensure that a failing trajectory gets zero reward) by
setting rfail = −[Φ(sabs)− Φ(s0)].

A second point is that OLPOMDP does not optimize a cu-
mulative reward, but a (biased) long-term average reward.
To properly maximize a success probability with FPG, a so-
lution is then to (i) set β = 1 and (ii) reset the eligibility
vector after reaching an absorbing state. However, in our
implementation we stick to the default biased approach as
experiments show that it is more efficient in practice (it fa-
cilitates credit assignment).

Landmarks Heuristic Functions
Starting with the basic notion of landmarks and the mech-
anism we use to find them, we herein explain the original
LAMA heuristic function as well as two variants we de-
signed, improving on various aspects of that function.

Landmarks and Orderings
Given a probabilistic planning task T , a landmark is a lit-
eral that must be true at some point on every successful
trajectory, i.e., on every path leading from the initial state
s0 to a state that satisfies the goal G. This definition is
the straightforward generalization of the original proposal

2The problem is an NMRDP and can therefore be turned back
into an MDP by extending the state with information about past
events. From this point of view, the original state is just a partial
observation of the extended state, and it is a good thing that FPG
relies on an algorithm that is valid for POMDPs.

made in classical planning (Hoffmann, Porteous, and Sebas-
tia 2004). The heuristic functions we design herein are, in-
deed, entirely based on classical planning, i.e., we re-use
and extend existing classical planning techniques to obtain
our reward shaper to be used in FPG. Precisely, we start from
the techniques implemented in LAMA, one of the winners of
the 2008 planning competition, whose main novel contribu-
tion is a heuristic function hLM based on landmarks (Richter,
Helmert, and Westphal 2008).

LAMA’s pre-processor automatically identifies a set L of
landmarks as well as a setO of ordering constraints between
them.3 Each of the latter constraints has one of three possi-
ble types: l1 <n l2 (“natural”), l1 <gn l2 (“greedy neces-
sary”), l1 <r l2 (“reasonable”). We do not have the space to
explain in detail how these are derived. LAMA guarantees
the following properties:
(A) l1 <n l2 =⇒ l2 is not true initially, and if a plan

adds l2 at time t ≥ 1, then l1 must be true at some time
t′ < t. For example, in Logistics, to have a package
at the airport of its destination city, we must previously
have had it at the airport of its (different) origin city.

(B) l1 <gn l2 =⇒ l2 is not true initially, and if a plan
first adds l2 at time t ≥ 1, then l1 must be true at time
t − 1. For example, in Blocksworld, to stack block b
onto block b′ we must be holding b.

(C) l1 <r l2 =⇒ if a plan achieves l2 strictly be-
fore l1, then achieving l1 will involve deleting l2, and
re-achieving l2 later. For example, in Blocksworld,
“on(B,C)” <r“on(A,B)”.

In addition, LAMA guarantees (D) that the transitive hull of
the orderings is irreflexive, i.e., there are no cycles.

Note the methodological difference between l1 <n l2 and
l1 <gn l2 orders vs. l1 <r l2 orders. (A) and (B) guar-
antee that natural respectively greedy necessary orders are
strictly sound, i.e., every solution plan is guaranteed to make
l1 true strictly before it makes l2 true. By contrast, reason-
able orders l1 <r l2 are optional in the sense that (C) does
not hinder the plan from violating the order (and paying the
cost of achieving l2 twice). As we will see, the distinction
between sound and optional orders is of relevance for cer-
tain properties of LAMA’s heuristic function; it is especially
important for admissible heuristics (Karpas and Domshlak
2009) which cannot take into account optional orders.4

We run LAMA on the “all-outcomes determinization”
(Yoon, Fern, and Givan 2007), T D, of the probabilistic plan-
ning task T . T D inserts one deterministic action for every
possible outcome of every action in T . It is obvious that
any landmark in T D is also a landmark in T , and that any

3LAMA allows “disjunctive” landmarks, where one of a set of
literals must be true in any plan. Our techniques also handle this.
For simplicity, we consider only single-literal landmarks here.

4Importantly, (A), (B) require l2 to be false in the initial state.
l1 <n l2 and l1 <gn l2 orders where l2 is initially true can be
meaningful for heuristics if l2 may be deleted at some point (e.g.
l2=on(b, b′) and l1=holding(b)); but clearly they cannot be strictly
sound. One can even construct examples where l1 <gn l2 and, on
every plan, l2 can only be true in states strictly preceding l1, so
every plan violates the order in a strong sense. It remains future
work to see if such orders may be useful for satisficing planning.

ordering l1 <X l2, X ∈ {n, gn, r} that is valid in T ac-
cording to (A)–(C) as applies, is valid in the same sense in
T as well (where “plan” in (A)–(C) translates into “success-
ful trajectory”). The reason for this is simply that (A)–(C)
are statements on the set of successful trajectories, and every
such trajectory for T corresponds to a successful trajectory
for T D. The question then is how we can turn this informa-
tion into a heuristic function.

LAMA Heuristic: hLM

LAMA’s heuristic is hLM(s, π) := |L \ (aLM(s, π) \
rLM(s, π))| counting the landmarks that are either not “ac-
cepted” (aLM(s, π)) or that are accepted but “required again”
(rLM(s, π)). s is the evaluated state and π is the sequence of
states traversed by the plan. LAMA defines aLM(s, π) :=

{l ∈ L | s |= l, l← = ∅} π = 〈s0〉
aLM(p, π)∪ π = 〈. . . , p, s, . . . 〉
{l ∈ L | s |= l,∀l′ ∈ l← : l′ ∈ aLM(p, π)}

(3)

where l← is the set of landmarks l′ ordered before l. A land-
mark is accepted if it is true, and all its predecessors were
accepted beforehand already; an accepted landmark remains
accepted. The set rLM(s, π) is the union of false-goal:

{l ∈ L | s 6|= l, G |= l} (4)

and of open-prerequisite:

{l ∈ L | s 6|= l,∃l′ ∈ l→gn : l′ 6∈ aLM(s, π)} (5)

where l→gn denotes the set of landmarks l′ such that (l <gn
l′) ∈ O. Both rules capture landmarks l that are currently
false and that have a reason to become true again. In (4),
the reason is simply because l is a top-level goal. In (5), the
reason is another landmark l′ that is not yet accepted and
that requires l to be true immediately beforehand.

While these definitions seem sensible at first sight, we will
see now that they have a number of shortcomings; we will
also see how to address those.

Improved LAMA Heuristic: hiLM

Consider the mechanics by which landmarks are accepted.
This basically says that the plan must comply with the orders
O. But what does it mean to “comply with” O? LAMA
assumes that “l1 is true strictly before l2” for each order l1 <
l2. That does correspond to the meaning (A), (B) of <n and
<gn orders. But it does not correspond to the meaning (C)
of reasonable orders l1 <r l2: (C) allows us to achieve l1
and l2 simultaneously, and l2 may be true in the initial state;
l1 <r l2 makes sense in both cases.5 Hence a trajectory π
should be considered compliant if, for every l1 <r l2 ∈ O,
l1 is true at least as early as l2. Then:

Proposition 1 Assume guarantees (A)–(D). There exist a
task T and a compliant trajectory π ending in state s so
that s |= G and hLM(s, π) > 0.

5We remark that (C) also allows pathological cases, like l <r l.
LAMA does not return such orders.

A simple example proving Proposition 1 is a Blocksworld
task where a size-k goal stack is already assembled in
the initial state. This task has k − 1 goals of the form
“on(bi, bi+1)”, with a reasonable order between each con-
secutive pair. The definition of aLM(s, π) forces us to leave
this stack untouched for k − 1 steps before all goals are ac-
cepted. Similar examples can be constructed based on ac-
tions that achieve literals with a <r order within a single
effect. Both can happen in LAMA.

Note that the observed phenomenon affects the quality of
hLM far beyond “only” goal states. It may cause estima-
tion errors throughout the search space, starting at the ini-
tial state. We fix this in an improved heuristic hiLM(s) :=
|L \ (aiLM(s, p) \ riLM(s, π))| where aiLM(s, π) :=
{l ∈ L | s |= l, π = 〈s0〉

∀l′ ∈ l← : l′ ∈ aiLM(s, π)}
aLM(p, π)∪ π = 〈. . . , p, s, . . . 〉
{l ∈ L | s |= l,∀l′ ∈ l← : l′ ∈ aLM(p, π) ∪ aLM(s, π)}

(6)

This definition recurses, in each case, onto itself to allow
newly accepted landmarks to be ordered with respect to each
other. This recursion terminates due to guarantee (D). As-
suming for the moment that riLM(s, π) = rLM(s, π) (this
will be modified further below), we get:

Proposition 2 Assume guarantees (A)–(D). For any task T
and compliant trajectory π ending in state s so that s |= G,
we have hiLM(s, π) = 0.

This is because, in s, all landmarks will be accepted.6
Since <r orders are optional, Proposition 2 is the

strongest result of this form that we can get, for this kind of
heuristic. The opposite of Proposition 2, i.e. that the heuris-
tic value is non-zero for non-goal states, trivially holds for
both hLM and hiLM due to the false-goal rule.

We next note that hLM is also overly restrictive about
marking landmarks as required again. First, consider this
new rule doomed-goal:
{l ∈ L | s |= l, G |= l,∃l′ ∈ l→gn! : l′ 6∈ aLM(s, π)} (7)

where l→gn! denotes the set of landmarks l′ such that (l <gn
l′) ∈ O and l′ is inconsistent with l. In this case, l is a
currently satisfied goal, but one of its successors has not
yet been achieved, and in the process of doing so l will
be deleted. Clearly, we can add doomed-goal into the
definition of riLM(s, π) without invalidating Proposition 2.
We remark that, while the doomed-goal rule may appear
a bit artificial, it is actually omnipresent at least in the
Blocksworld. In some probabilistic versions used in the
competition, “hand-empty” is a goal. The heuristic then os-
cillates by 1 between every two states because LAMA con-
siders “hand-empty” to be dealt with whenever it is true.
This behavior stops when using doomed-goal, which cor-
rectly determines that having achieved “hand-empty” is use-
less if we need to consume it for arranging additional blocks.

We finally use the rule required-ancestor:
6An alternative way of guaranteeing this is to disallow (and not

generate) l1 <r l2 if l1 and l2 can become true at the same time.
However, such orders can be useful for heuristic estimation. We
get back to this when discussing future work in the conclusion.

{l ∈ L|s 6|= l,∃l′ ∈ l→gn : l′ ∈ riLM(s, π)}∪
{l ∈ L|s |= l, G |= l,∃l′ ∈ l→gn! : l′ ∈ riLM(s, π)} (8)

This rule induces a kind of transitive closure, stating that, if
landmark l′ is required again, then so are the predecessors
needed to establish l′ (again we rely on (D) for the recursion
to terminate). Clearly, this does not invalidate Proposition 2
since, to fire, i.e. to include any new literals, this rule re-
quires one of the other rules to fire in the first place. We re-
mark that the rule slightly abuses the meaning of<gn orders,
by using them as if l1 was always needed to establish l2 –
a constraint termed “necessary order” (Hoffmann, Porteous,
and Sebastia 2004) – whereas by (B) they are guaranteed to
be needed only when l2 is established for the first time. This
abuse appears to be rather harmless, especially in the light
that necessary orders are frequent in planning benchmarks,
and <gn orders (like, the need to hold a block before stack-
ing it onto another one) are indeed often necessary.

Markovian LAMA Heuristic: hmLM

All heuristics proposed thus far in the literature based on
detecting landmarks and orders in a pre-process (Richter,
Helmert, and Westphal 2008; Karpas and Domshlak 2009)
are pseudo-heuristics, or “non-Markovian” in the sense that
they depend on the history of a state, not only on the state
itself.7 One might get the impression that such heuristics
are necessarily not Markovian. However, that is actually not
the case. Given our previous observations regarding policy
invariance, this is of potential importance.

We experiment with a simple Markovian variant hmLM,
defined by hLM(s) := |rmLM(s)| where rmLM(s) :=

{l ∈ L | s 6|= l, G |= l}∪
{l ∈ L | s 6|= l,∃l′ ∈ l→gn : l′ ∈ rmLM(s)}∪

{l ∈ L | s |= l, G |= l,∃l′ ∈ l→gn! : l′ ∈ rmLM(s)}
(9)

This heuristic starts at the unsatisfied goals and then uses
the <gn orders to identify additional literals that will still
have to be made true. Note that this inherits from required-
ancestor the “abuse” of <gn orders as necessary orders.
Note also that the <n orders returned by LAMA are not
suitable for use in rmLM(s) because they refer to long-term
(more than 1 step) dependencies. Consider the situation
where l1 <gn l2, l2 <gn l3, l1 <n l3, and achieving li in-
volves deleting li−1. If we are in a state where l3 ∈ rmLM(s)
and s |= l2, then using the order l1 <n l3 will overlook
the intermediate literal l2 and will wrongly conclude that we
still need to achieve l1.
Proposition 3 Assume guarantees (A)–(D). For any task T
and state s, we have that s |= G if and only if hmLM(s) = 0.

So, apart from the fact that the heuristic now depends
only on the current state, we get a stronger validity prop-
erty regarding goal states, that does not force us to comply
with reasonable orders. The downside is, of course, that we
bought this validity improvement at the cost of not actually
making any use of reasonable orders.

7The LM-cut heuristic (Helmert and Domshlak 2009) is also
derived based on a form of landmarks, but a very different one that
detects disjunctive action landmarks anew for every evaluated state.

Experiments
We implemented the new landmarks heuristics hiLM and
hmLM in C++, within the non-temporal IPC version of FPG.8
We also implemented the original LAMA heuristic function
hLM. All these functions rely on creating the all-outcomes
determinization of the PPDDL task at hand, and calling
LAMA in order to compute the landmarks and orderings.
These are then parsed into FPG, and the heuristics are com-
puted internally (i.e. not by calling LAMA). We also imple-
mented a pipe-based interface to FF that allows to retrieve
the relaxed plan heuristic hFF for any given state (without
having to re-start FF for every single state which would of
course be wasteful). Finally, FPG already contained the op-
tion to shape rewards by counting goals, denoted hG.

The experiments where run on a Core2Quad CPU at
2.4 GHz, using a single core, with a learning time of 10 min-
utes (memory is not an issue for FPG; we allowed 1GB). We
measure performance in terms of the success rate of the pol-
icy computed by FPG within these resources, with the men-
tioned variants of the reward shaping and with no shaping
at all. We use a subset of the IPPC benchmarks 2004–2008.
The rationale for choosing the subset was to use only those
domains where LAMA found a significant number of land-
marks and orderings; some domains we could not consider
due to difficulties with LAMA’s parser. We ended up using
Blocksworld (IPPC 2006), Exploding-Blocksworld (IPPC
2006), Schedule (IPPC 2006), Zenotravel (IPPC 2006), and
Triangle-Tireworld (IPPC 2008). We also ran experiments
on the classical Gripper domain (IPC 1998) – this is inter-
esting in that it provides a test bed for which we know the
heuristics are highly informative.

FPG has a number of search parameters that can have –
and did have in our experiments – a large impact on perfor-
mance: the learning rate α, the eligibility discount factor β,
the goal reward rsucc, and a constantH by which the rewards
obtained from the heuristic function are scaled. We experi-
mented with 12 configurations of these parameters in total,
comprising 3 different settings of β (0.85, 0.9, 0.95), 3 set-
tings of rsucc (1000, 100, 10), 3 settings of H (100, 10, 1),
and 4 settings of α (0.0001 as well as 3 versions where α
becomes larger respectively smaller over time). While per-
formance varies a lot over these configurations, the results
are largely inconclusive (understanding the impact of the pa-
rameters would entail much broader experimentation), and
their analysis would not serve our primary goal of evaluating
the different heuristic functions. We hence show only sum-
mary results in terms of the minimum, average, and maxi-
mum success rate across the 12 parameter settings.

Before looking at the success rates, let us first provide
some data confirming our initial intuitions why landmarks
counting may be a good idea (why this “glitters”, in the
terms of the title). Consider first Table 2, which gives the

8When finishing up this paper, we noticed that our implementa-
tion of hiLM differs from its definition herein in that it’s missing the
recursion onto aLM(s, π) in the bottom case of Equation 6. Thus
Proposition 2 does not hold for the implemented version in case
there are actions whose effect contains two landmarks l1, l2 with
l1 <r l2. In the benchmarks used here, such actions do not occur.

(#atoms, #actions) hG hLM hiLM hmLM hFF FF
bw 08 (89, 1224) 8 19 20 20 16 20
bw 12 (181, 3900) 10 22 23 23 19 48

ebw 05 (52, 90) 5 13 13 13 10 16
ebw 08 (106, 216) 6 15 15 15 12 16
ebw 10 (152, 330) 7 23 25 25 16 30
grip 12 (68, 100) 12 25 25 25 25 35
grip 16 (88, 132) 16 33 33 33 33 47

sched 07 (102, 83) 0 7 7 0 7 16
sched 09 (275, 242) 0 9 9 0 9 24
sched 11 (198, 227) 0 11 11 0 11 –
t-tire 02 (49, 33) 1 4 4 4 4 4
t-tire 04 (153, 107) 1 4 4 4 8 8
t-tire 06 (313, 221) 1 4 4 4 12 12
zeno 03 (98, 1208) 2 12 12 12 16 18
zeno 05 (114, 1788) 2 11 11 11 14 16

Table 2: Initial distance to the goal.

initial state distance estimate computed by each heuristic,
as well as the FF plan length as a kind of “ideal qual-
ity measure”.9 We see that, as expected, in all examples
tested the heuristic values obtained by counting landmarks
are much more informed than those obtained by counting
goals. The landmarks heuristics are most often equally
strong, with a slight advantage for our two new versions in
the two Blocksworld-based domains. Interestingly, in the
Blocksworld domains, the landmarks heuristics are much
stronger than hFF; in the other domains, as one would ex-
pect, the much more costly hFF heuristic usually domi-
nates.10

– hG hLM hiLM hmLM hFF

bw 08 7916 6303 6442 6115 4702 2419
bw 12 2454 1314 1339 1880 1722 828

ebw 05 61791 66941 14966 23316 13858 4950
ebw 08 30733 31491 5881 4025 6283 2826
ebw 10 23216 24041 6783 13500 6100 2593
grip 12 36438 28545 21538 21411 21227 4771
grip 16 35003 20805 15772 15587 15473 3953

sched 07 31941 33324 26908 26083 29731 3158
sched 09 7666 8312 6208 7216 7647 1395
sched 11 9766 10464 8825 8425 9165 1545
t-tire 02 81066 80850 63798 60073 59522 6303
t-tire 04 28325 27533 20405 20774 21523 3428
t-tire 06 13766 13783 8878 9074 9438 1923
zeno 03 8718 8552 6495 5080 5040 2695
zeno 05 6105 6214 4983 3837 4036 2084

Table 3: Average number of simulation steps per second.

Do the more informed heuristics cost us a lot more com-
putation time? Table 3 provides the answer, in terms of the
rate at which FPG generates nodes, i.e., the average number
of simulation steps per second. The result is largely a con-
firmation of our initial intuitions – counting landmarks does

9The real “ideal measure” would be the expected number of
steps to the goal. This is not known for many of the tested bench-
marks. Classical plan length is a viable alternative since the heuris-
tics are classical too. That said, it would be better to compare to
optimal plan length, where known; we will do in future work.

10There is no value for FF in Schedule 11 because, there, FF ac-
tually runs out of time while trying to solve the determinized plan-
ning task – which is quite interesting in itself because this task is
fairly small and, as we will see, the goal in this task can be feasibly
reached by random walks, so this task is an interesting challenge to
heuristics for classical planning.

not induce a big computational overhad. In most cases, the
generation rate when counting landmarks is at about 70%
of that when counting goals. The only notable exception
to this are the Blocksworlds (landmarks cause basically no
overhead in the basic version, but reduce the generation rate
to around 20% in Exploding-Blocksworld). Looking at the
behavior of hFF, the speed comparison is impressively in fa-
vor of landmarks, by factors of at least 2 and up to almost 10.
This is especially significant in the light of Table 2, which
shows that – as far as initial states are concerned – the qual-
ity gap between these heuristics is not so large.

Having pointed out all these fairly good news (for land-
marks heuristics), the time has come for us to bring up the
bad news. Table 4 shows the success rates of FPG, with
all forms of reward shaping tested. In each table entry, we
show the minimum/average/maximum success rate, i.e., the
percentage of times (out of 100 test executions) that execut-
ing the policy lead to a goal state within 10000 steps. For
readability, the average rates are shown in boldface.

The most striking observation in Table 4 is – that there
is not much to observe! For a start, look only at the av-
erage values, for the trivial hG compared to the quite non-
trivial landmarks and hFF heuristics. In classical planning,
the performance difference between these heuristics is huge.
Not so here: the maximum difference that arises anywhere
is 38% in Zenotravel 05 between hG and hLM – to the advan-
tage of hG. So the non-trivial heuristics don’t buy us much.
Worse, the only cases where any of them fares convincingly
better than trivial goal counting are Blocksworld and Grip-
per. Since Gripper is not actually a probabilistic domain,
this reduces to a single “good case”. The final straw, as far
as landmarks are concerned, is that this good case pertains
only to hFF. (Unless one counts the 77% average of hiLM vs.
the 65% average of hG in Blocksworld 08 as a significant
improvement; but we’re not quite that desparate yet.)

There is no “gold” to be found here. Why? Answering
this question with confidence would require much more de-
tailed experiments testing particular hypotheses. What we
can offer at this point are some speculative intuitions.

The results are easiest to understand for hFF in Triangle-
Tireworld. The relaxed plan always chooses the shortest
path to the goal location, enticing the learner to prefer the
same route. However, the domain is designed in a way
making this route (particularly in the initial state) very dan-
gerous. This leads to the dramatically bad performance of
hFF. The landmarks heuristics do better here not because
they are more clever about the danger but because they are
less good at capturing the structure of the determinized plan-
ning problem and hence provide a weaker guidance to the
learner. This results in more random walk, and thus in a
better chance to find a safe route. A contrasting behavior
can be observed in Gripper, where hFF is very good and
hence is a comparatively very reliable guidance. It is a mys-
tery to us why none of the heuristics yields an advantage in
Zenotravel, where the heuristics are fairly good quality. As
for Schedule, judging from the inability of FF to solve the
largest instance, it seems that the heuristics are very bad even
in the determinized version of this domain, so their failure
to provide good guidance on the probabilistic version makes

– hG hLM hiLM hmLM hFF

bw 08 0/ 9/100 0/65/100 2/70/100 4/77/100 3/72/100 1/83/100
bw 12 0/ 0/ 0 0/ 0/ 4 0/ 0/ 1 0/ 0/ 0 0/ 0/ 0 0/24/ 92

ebw 05 0/48/ 64 0/29/ 57 0/28/ 60 0/ 0/ 0 0/ 6/ 48 0/26/ 56
ebw 08 0/ 0/ 0 20/55/ 69 46/55/ 66 0/36/ 65 0/22/ 70 55/62/ 67
ebw 10 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0
grip 12 15/91/100 51/91/100 43/95/100 37/92/100 52/89/100 46/92/100
grip 16 0/64/100 0/68/100 9/73/100 10/67/100 0/61/100 40/89/100

sched 07 49/78/ 92 56/82/ 98 42/75/ 90 51/77/ 91 64/78/ 91 43/68/ 80
sched 09 2/24/ 56 10/31/ 67 1/22/ 41 0/18/ 42 0/21/ 59 12/28/ 57
sched 11 0/ 7/ 16 4/ 8/ 16 0/ 7/ 23 0/ 6/ 14 0/ 4/ 11 4/ 8/ 14
t-tire 02 88/95/ 99 21/80/ 98 11/70/ 98 15/69/100 9/77/ 99 8/60/ 97
t-tire 04 14/56/ 86 5/49/ 83 9/56/ 80 6/53/ 82 43/61/ 77 0/31/ 80
t-tire 06 0/17/ 40 0/26/ 64 0/30/ 53 1/25/ 48 0/18/ 50 0/ 0/ 1
zeno 03 9/65/100 16/78/100 10/45/100 17/54/100 14/55/100 16/77/100
zeno 05 11/62/100 10/69/100 7/31/100 9/43/ 99 12/44/ 99 8/58/100

Table 4: Minimum/average/maximum success rate.

sense. Comparing the two Blocksworld versions, we can
make a speculation that is perhaps valid more generally:

Rewards should be given conservatively.

The two domains are similar, but Exploding-Blocks is more
dangerous which is not reflected at the determinized level.
The heuristics, in particular hFF, capture the basic structure
fairly well and lead to good improvements in the basic do-
main, but not in the dangerous one. A possible explanation
is that the heuristics provide too much flawed feedback to
the learner (similar to, but less extreme than, what we ob-
served for hFF in Triangle-Tireworld). The goal counting is
“conservative” in that it gives a reward only when part of the
mission has actually been accomplished. In other words, it
may be better to provide little feedback that is reliable, than
to provide a lot of feedback that is noisy.

Conclusion
Given our (speculative) observations regarding “conserva-
tive advice”, we believe it would be interesting to investigate
the impact of noisy advice in a clear-cut artificial setting. A
hand-crafted search space could compare two heuristic func-
tions, of which the conservative one gives correct advice but
only in X% of the cases (in the other cases the heuristic value
does not change), while the noisy heuristic gives advice all
of the time but is wrong in Y% of the cases. It seems that this
kind of setting could also lend itself to theoretical analysis.

The grand challenge remains to extend classical planning
heuristics in a way so that they can take into account the
probabilistic structure of the task at hand – this would be the
only way to make them more conservative in domains like
Exploding-Blocksworld and Triangle-Tireworld.

We finally remark that our analysis of the LAMA heuristic
is a contribution in itself. The new versions of the heuristic
would be worth trying out in classical planning. We note
that the possible improvements don’t stop at what we did
for hiLM herein. As mentioned, <n and <gn orders where
the right hand side is initially true remain to be explored.
Further, reasonable orders l1 <r l2 allow an additional kind
of reasoning not yet put to use: if l2 is true and accepted, but
l1 is required again, then l2 is required again, too; this can be

applied transitively to literals ordered <r behind l2. (Hence,
in particular, l1 <r l2 where both l1 and l2 are initially true
may be useful for heuristic estimation.)

References
Baxter, J.; Bartlett, P.; and Weaver, L. 2001. Experiments with
infinite-horizon, policy-gradient estimation. JAIR 15:351–381.
Buffet, O., and Aberdeen, D. 2009. The factored policy-gradient
planner. AI 173(5-6):722–747.
Dorigo, M., and Colombetti, M. 1994. Robot shaping: developing
autonomous agents through learning. AI 71(2):321–370.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In Proc.
ICAPS’09.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered land-
marks in planning. JAIR 22:215–278.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning with
landmarks. In Proc. IJCAI’09.
Matarić, M. 1994. Reward functions for accelerated learning. In
Proc. ICML’94.
Ng, A.; Harada, D.; and Russell, S. 1999. Policy invariance
under reward transformations: Theory and application to reward
shaping. In Proc. ICML’99.
Randløv, J. 2000. Shaping in reinforcement learning by changing
the physics of the problem. In Proc. ICML’00.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
revisited. In Proc. AAAI’08, 975–982.
Szepesvári, C. 2009. Reinforcement learning algorithms for
MDPs. Technical report.
Thiébaux, S.; Gretton, C.; Slaney, J.; Price, D.; and Kabanza, F.
2006. Decision-theoretic planning with non-Markovian rewards.
JAIR 25:17–74.
Wiewiora, E. 2003. Potential-based shaping and Q-value initial-
ization are equivalent. JAIR 19:205–208.
Williams, R. 1992. Simple statistical gradient-following algo-
rithms for connectionnist reinforcement learning. ML 8(3):229–
256.
Yoon, S.; Fern, A.; and Givan, B. 2007. FF-Replan: a baseline
for probabilistic planning. In Proc. ICAPS’07.

