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Abstract current solver. On the other hand, many unsatisfiable for-

) o mulas from Verification and Al Planning contain well over
In Al Planning, as well as Verification, a successful method 100,000 variables and can be proved unsatisfiable within a
is to compile the application into boolean satisfiability (SAT), few minutes (e.g., with Chaff\Moskewiczet al. 2001).
and solve it with state-of-the-art DPLL-based procedures. g yaises the question as to whether one can obtain general
There is a lack of formal understanding why this works measures oftructurein SAT encodings, and use them to

so well. Focussing on the Planning context, we identify a h . ical lexity. To thi d
form of problem structureoncerned with the symmetrical or characterize typical case complexity. To this end, our over-

asymmetrical nature of the cost of achieving the individual all goal in this paper is to identify general problem features
planning goals. We quantify this sort of structure with a sim- that characterize problem hardness in practice. We focus on
ple numeric parameter calleflsymRatip ranging between formulas from Planning. We view this as an entry point to
0 and 1. We show empirically thaisymRatiocorrelates similar studies in other areas.

strongly with SAT solver performance in a broad range of We focus on showing infeasibility. Precisely, we con-

IPIanning bergrllma(ks, (i:”C'”di”.g. the Sf/’m‘?]ins usedinthe 3rd  gjger the difficulty ofproving optimality of plansSAT-based
nternational Planning Competition. We then examine care- 1, anning Kautz & Selman 199pworks by iteratively incre-
fully craftedsynthetic planning domairthat allow to control menting a plan length bounkd and testing in each itera-
the amount of structure, and that are clean enough for a rigor- . ingap 'gth bou . Ing 1 er
ous analysis of the combinatorial search space. The domains 10N @ formula that is satisfiable iff there exists a plan viith
are parameterized by size and by a structure parameter steps. Our focus is on the last unsuccessful iteration. SAT-
so thatAsymRatids asymptotic td/n. The CNFs we exam- pased planning is currently state—of—the—art_ for flndmg op-
ine are unsatisfiable, encoding one planning step less thanthe  timal plans: e.g., Blackbox won the 1st prize for optimal
length of the optimal plan. We prove upper and lower bounds planners in the 4th International Planning Competition.
Leergtn[ti)ggétillgllgssce)i(é "’(‘)Sf gr;unr::ﬁilﬁg \c/):fi;/t\ylli sal(slfa::dk?jrg:)?s;heWith Formulate an intuition about what makes search perform
minimum AsymRatjowe prove exponential lower bounds, well or bad in practical examples. (B) Design some numeric
measure of that sort of problem structure. Show empirically

and identify minimal backdoors of size linear in the number . -
of variables. Withmaximum AsymRatjave identify loga- that the measure correlates with search performance in the

rithmic DPLL refutations (and backdoors), showing a dou- relevant examples. (C) Design synthetic domains that cap-
bly exponential gap between the two structural extreme cases.  ture the problem structure in a clean form. Analyze the be-
This provides a concrete insight into the practical efficiency havior of search, within the synthetic domains, in detail.
of modern SAT solvers. Step (C) is acase studyaimed at obtaining a deeper un-
derstanding of the structural phenomenon. There are many
. pitfalls in this “3-step strategy”. Numeric measures of struc-
Introduction ture that stably correlate with search performance are a rare
There has been a long interest in a better understanding find. Importantly, we didn’t execute steps (A), (B), and (C)
of what makes combinatorial problems from SAT and CSP~ as & sequence. The steps were heavily intertwined, forming
hard or easy. The most successful work in this area involves @ Process of increasingly accurate intuitions and results in a
random instance distributions with phase transition char- trial-and-error fashion over a long period of time.
acterizations (e.g.Qheeseman, Kanefsky, & Taylor 1991 Note that our approach is very different from identifying
Hogg, Huberman, & Williams 1995 However, the link of tractable classes. Step (C) may yield results on polynomial
these results to morstructuredinstances is less direct. A~ best-case or worst-case behavior, but these hold only for
random unsatisfiable 3-SAT instance from the phase transi- the synthetic domains looked at. Step (B) is satisfied with

tion region with 1,000 variables is beyond the reach of any empiricalcorrelations between structure and performance —
with the advantage of not being bound to syntactically iden-

Copyright © 2006, American Association for Artificial Intelli- tifiable tractable classes, which are typically too restrictive
gence (www.aaai.org). All rights reserved. for practical examples.



Our analysis method in step (C) is to prove upper and
lower bounds on the size of the best-case DPDhA\(s, Lo-
gemann, & Loveland 1962roof trees, i.e., on the number

1. With the above intuitionsAsymRaticshould be thought
of asa high-level measure of the degree of sub-problem in-
teractions It is an important open question whether more

of search nodes. We also investigate the best possible sets oflow-level (syntactic, ideally) measures can be found.
branching variables. Such variable sets were recently coined  We constructed two synthetic Planning domains: a simple

“backdoors” Williams, Gomes, & Selman 2003 In our
context, a backdoor is subset of the variables so that, for
every value assignment to these variables, unit propagation
(UP) yields an empty clause.That is, a smallest possible

transportation-kind of domain, and a stacking domain. Each
is characterized by a size parameterand by a structure
parameterk. In the “transportation” domain, for example,
one moves along the edges of a graph of a certain shape, and

backdoor encapsulates the best possible branching variablesthe goal is to visit some graph nodéa/hatnodes must be

for DPLL, a question of huge practical interest. Identifying
backdoors is also a technical device: we obtain our upper
bounds as a side effect of the proofs of backdoor properties.
In all considered formula classes, we determine a backdoor
subset of variables. We prove that the backdoorsnare
imal: no variable can be removed without losing the back-
door property. In small enough instances, we prove empiri-
cally that the backdoors are in fagptimal- of minimal size

We conjecture that the latter is true in general.

Goal Asymmetry

Observing that, in many benchmarks, the individual
goal facts correspond quite naturally to individual “sub-
problems” of the task, our intuitions are these. (1) Proving
plan optimality is hard if the optimal plan length (the number
of steps needed to solve the task) arises from complex inter-
actions between many sub-problems. (2) Proving plan opti-
mality is easy if the optimal plan length arises mostly from
a single sub-problem. We formalize both intuitions using
a view based on sub-problem “cost”, offering the possibility
tointerpolatebetween (1) and (2). We distinguisisyammet-
rical case— where the individual sub-problems are all (sym-
metrically) “cheap” — and aasymmetrical case where a
single sub-problem (asymmetrically) “dominates the overall
cost”. The asymmetrical case obviously corresponds to in-
tuition (2). The symmetrical case corresponds to intuition
(1) because, if each single sub-problem is cheap, but their

visited depends ok In both domainsAsymRatids asymp-
totic to % For increasingn, AsymRatiocconverges to O for
the lowest setting ok, while it converges to 1 for the high-
est setting ok. We also used our intuition about problem
structure to create @on-Planningexample that shows simi-
lar behavior, namely a structured version of the Pigeon Hole
problem, wherek controls how many holes one particular
“bad” pigeon needs.

Investigating the effect that the problem structure mod-
elled in our synthetic domains has on the corresponding
DPLL proofs, we found dramatic differences in DPLL proof
and backdoor size. In the symmetrical case, we could prove
exponential (im) lower bounds on the size of DPLL trees.
The backdoor sets in the symmetrical case are linear in the
total number of variables. With increasikgthe backdoors
become smaller. In the two planning domains, with maxi-
mumk — asymmetrical case — the backdoors arogérith-
mic size O(logn). UP immediately yields a contradiction
for one of the settings of each of the backdoor variables, so
the DPLL trees degenerate to lines, and the number of search
nodes is als®(logn).

To confirm that our quantification of problem structure,
AsymRatipcorrelates with SAT solver performance in prac-
tice (i.e., in more complex benchmarks than our synthetic
domains), we ran large-scale experiments in the six bench-
mark domains used in the 3rd International Planning Com-
petition (Long & Fox 2003 (IPC-3). This is a recent and

conjunction is costly, then that cost must be the result of widely used set of benchmarks, and is provided, by the IPC-
some sort of “competition for a resource” — an interaction 3 organizers, with instance generators. The latter are es-
between the sub-problems. One can interpolate between thesential for our experiments, where we generated and ex-
symmetrical and asymmetrical cases by measuring to what amined tens of thousands of instances in each dofnain.
extent any single sub-problem “dominates the overall cost”. We also ran the experiments in Blocksworld and Logis-
To turn these intuitions into a formal definition, it remains tics, two of the most classical Planning benchmarks. We
to define what precisely “cost” is, and what “dominating plotted the performance of a state-of-the-art SAT solver,
the overall cost” means. Various definitions are thinkable. namely, ZChaff floskewiczet al. 2001), as a function of
Our theoretical work (the synthetic domains and their anal- AsymRatio We were surprised ourselves by how clearly
ysis) is relevant for any definition. In our empirical work, the results came out. In most domains, a lasygymRatio
we chose to instantiate “cost” with the (optimal) number consistently results in planning CNFs that are a lot easier to
of steps needed, and “dominating the overall cost” with a solve.AsymRatidhus provides a useful indicator of typical
simple maximization and normalization operation: we ob- problem hardness in PlannidgThis is of course just a first
tain our parameteAsymRatidoy selecting the most costly ~ example of such an indicator; presumably, others exist.
goal fact, and dividing that cost by the cost of achieving the
conjunction ofall goals. AsymRatiaanges between 0 and 2For the domains used in the 4th International Planning Com-
- petition there are no random generators.

1in general, a backdoor is defined relative to an arbitrary poly- Swhile AsymRatiacan not be computed efficiently, there exists
nomial time “subsolver” procedure. The subsolver can solve some a variety of techniques to approximate plan len@hu(n & Furst
class of formulas that does not necessarily have a syntactic char- 1997 Bonet & Geffner 2001 Edelkamp 2001 Helmert 2004.
acterization. Our definition here instantiates the subsolver with the These can be used to approxim#@tsymRatio and predict SAT
widely used unit propagation procedure. solver performance. Exploring this is an open topic.



Related Work were proposed as a means to characterize phenomena rel-
The logarithmic backdoors in our synthetic examples nicely €vant for existing state-of-the-art solvers — which all make
reflect the recent (empirical) finding that many Planning Use of subsolvers whose c_:apabllmes (the_ solved classes of
CNFs contain exorbitantly small backdoors in the order of formulas) have no syntactic characterization. In particular,
10 out of 10000 variablesWilliams, Gomes, & Selman we will see that, in the formula families considered herein,
2003. In difference to these results, we also explain what there are no small cutsets; in fact, as we will exemplify, the
these backdoor variablese (what they correspond to inthe ~ constraint graphs of our formulas change only slightly with

original planning task), and how their interplay works. k, and are hardly suitable to capture what happens on the
Our ana|ysis of Synthetic examp|es is’ in Spirit’ similar to structural Scalle. Note that this reflects qu|te n|C.e|y the .h|d'

the work in proof complexity (e.g.(ook & Reckhow 1979 den” (not easily detectable) nature of structure in practice.

Haken 1985Buss & Pitassi 199 where formula families, In the next section, we provide some notation. Then a sec-

such as Pigeon Hole problems, have been the key to a bet-tion presents our empirical work dxsymRatias a measure

ter understanding of the length of resolution proofs. Gen- Of problem hardness in Planning benchmarks. Thereafter, a
erally speaking, the main difference is that, in proof com- section describes our synthetic domains and our analysis of
plexity, one fixes an example and investigates the behavior DPLL proofs, and another section concludes.

of different proof calculi. By contrast, we consider the sin- o

gle proof calculus DPLL, and modify thexamples Major Preliminaries

technical differences arise also due to the kinds of formu- we use the STRIPS formalism, using the terminology and
las considered — formulas from Planning vs. any kind of notationinitial state I, goal G, and actionsa with pre(a),
synthetic formula provoking a certain behavior — and, im-  add(a), del(a), with the standard syntax and semantics. By
portantly, the central goal of the research. Proof complexity planning tasksve mean instances of STRIPS.
is mostly about lower bounds (separating the power of proof ~ CNF formulas are sets of clauses, where each clause is a
systems). But, to understand real-world structure, and ex- set of literals. For a CNF formulé with variable sev, a
plain the good performance of SAT solvers, interesting for- variable subseB C V, and a value assignmeatto B, we
mula families withsmallDPLL trees are more revealing. say thata is UP-consistentf applying a to (the literals in)
There is some work on problem structure in the ICAPS ¢ and performing unit propagation on the resulting formula,
community. HoffmannZ003 investigates topological prop-  does not yield an empty clausé is a backdoorif it has
erties of certain wide-spread heuristic functions. Howe and no UP-consistent assignment. Thigeof a DPLL tree is

Dahlman 002 analyze planner performance from a per- the number of search nodes in it. The size of a resolution
spective of syntactic changes and computational environ- refutation is the number of clauses in it.

ments. Streeter and SmitRJ09 provide an analysis of We use two different methods to encode planning tasks as
search space surface in Job Shop scheduling. Obviously, all CNF formulas. In our empirical work, we use the original
these works are quite different from ours. Graphplan-basedncoding from BlackboxKautz & Sel-
There is alarge body of work on structure in the constraint man 1999, which we assume the reader is familiar with.
reasoning community, see for exampegnk, Cheeseman,  |n our formal analysis, to keep the formulas feasibly sim-
& Stutz 1997 Slaney & Walsh 2001Nudelmaret al. 2004 ple, we use a somewhat simplified version of that encoding.

Hulubei & Sullivan 2005 However, as far as we are aware, \We use variables On|y for the actions, tak|ng the fm'm,

all these works differ considerably from ours. In particular, 1 <t < b, whereb is the bound on the plan length. As in
all works we are aware of define “structure” on the level of ~ Bjackbox, there is an artificidlOOPaction for each facp,

the CNF formula/the CSP prOblem instance, rather than, as whose On|y precondition |p’ and whose On|y (add) effect
we do, on the level of the modelled application. Empirical s p. The NOOPs are treated just like normal actions in the
work on structure is mostly based on random problem distri- encoding. A variabla(t) is included in the CNF iffa is
butions, and theoretical analysis is mostly done in the con- presentatt. An actionais present at = 1 iff a's precondi-
text of identifying tractable classes. Still, one structural con- tjon is true in the initial statea is present at > 1 iff, for ev-
cept must be discussed in more detalltsets(eg DeChter erype pre(a), at least one actiod is present at — 1 with
199Q Dechter 2003 A cutset is a set of variables so that, pe add(a’)_ For each actiom present at a timé and for
once these variables are removed from the constraint graph eachp e pre(a), there is goreconditionclause of the form

— the undirected graph where nodes are variables and edgeS{ﬁa(t)yal(t —1),...,a(t—1)}, whereay,...,a are all ac-
indicate common membership in at least one clause — that tions present at— 1 with p € add(a;). For each goal fagj €
graph ha}s a property that enables efficie_nt reasoning)-an G, there is agoal clause{ay(b),...,a(b)}, whereay, ..., a
duced widthof at most a constant boutd(if b = 1 then the are all actions present athat haveg € add(a;). Finally, for
graph is cycle-free, i.e., can be viewed as a tree). Backdoors eachincompatiblepaira anda’ of actions present at a tinte
are a generalization of cutsets in the sense that any cutset isthere is amutexclause{—a(t), ~&(t)}. Here, a paim, & of

a backdoor relative to an appropriate subsolver. The differ- actions is called incompatible iff either both are not NOOPs,
ence is that cutsets have an “easy” syntactic characterization: or a is a NOOP for factp and p € del(a) (or vice versa) —
one can check in polytime if or if not a given set of variables i.e., our synthetic CNFs encode sequential planfiing.

is a cutset. One can, thus, use strategies looking for cutsets

to design search algorithms. Indeed, the “cutset” notionwas  4in our synthetic domains, there is no parallelism anyway, and
originally developed with that aim. Backdoors, by contrast, the mutex clauses have an effect only on the power of UP. We re-



Goal Asymmetry in Planning Benchmarks blocks must be transportehd arranged in stacks. Driver-

As said, we quantify goal asymmetry as follows. log is a version of Logistics with drivers, where drivers and
' trucks move on different (arbitrary) road maps. Freecell en-

Definition 1. Let P be a planning task with go&. For a codes the well-known solitaire card game where the task is

conjunctionC of facts, letcost(C) be the length of a shortest  tg re-order a random arrangement of cards, following certain

plan achievingC. Theasymmetry ratiof P is: stacking rules, using a number of “free cells” for intermedi-
maxcacostg) ate storage. Rovers and Satellite are simplistic encodings of

AsymRati¢P) := NASA space-applications. In Rovers, rovers move along in-
cos{A\gec 9) dividual road maps, and have to gather data about rock or
soil samples, take images, and transfer the data to a lander.
In Satellite, satellites must take images of objects, which in-
volves calibrating cameras, turning the right direction, etc.
Zenotravel is a version of Logistics where moving a vehicle
consumes fuel that can be re-plenished using a “refuel” op-
erator. Importantlywithin each of all these domains, decid-
ing bounded plan existence — the problem encoded by our
CNFs — isNP-hard (Helmert 2003. So our experiments
are on challenging, if not real-world realistic, problems.

To obtain a reliable picture of how a complex DPLL-
based SAT solver (ZChaff) typically behaves in CNF for-
_ . mulas generated from a domain, within each domain we
Hypothesis 1. Let &, be a set of planning tasks from the  generated and examined tens of thousands of instances —
same domain with the same size parameter values, and with precisely, 50000. We chose the instance size parameters

Note thak:osl(/\gee ), in this definition, is the optimal plan
length; to simplify notation, we will henceforth denote this
with m. Note also that, of course, a definition as simple as
Definition 1 can not be fail-safe. Imagine replaci@with

a single goab, and an additional action with precondition
G and add effect{g}: the (new) goal is then no longer a
set of “sub”-goals. However, in the benchmark domains that
are actuallyusedby researchers to evaluate their algorithms,
G is almost always composed of several goal facts, and the
single goal facts correspond quite naturally to different sub-
problems of the task.

the same optimal plan length ForP € Zp, let¢ (P, m—1) by testing the original IPC-3 instances, and selecting the
denote the Graphplan-based CNF encodingef1 action largest one for which we could compudsymRatiaeason-
steps. Then, ove#y, the hardness of proving(P,m—1) ably fast® E.g. in Driverlog we selected the instance in-
unsatisfiable is strongly correlated wiisymRatioP). dexed 10 out of 20, and, accordingly, generated random in-

First, note that, certainly, whether this hypothesis holds Stances with 6 road junctions, 2 drivers, 6 packages, and 3
or notdepends on the domaiin that sense it is a differ- trucks. In Blocksworld, we generated random tasks with 9
ent hypothesis for every domain. Second, note that the in- blocks, in Logistics we generated random tasks with 1 air-
stance size parameter values (nr. of vehicles for transporta- Plane, 8 cities with 2 locations each, and 8 packages. Ac-
tion, e.g.), together with the number of action steps encoded cording to the setup in Hypothesis(we also use the nota-

— the optimal plan length minus 1 — determine the size of tions), within each domain we separated the 50000 instances
the formula. Of course, formula size is typically correlated into sub-sets?ny with identical optimal plan lengtm. For

with SAT solver performance. Our hypothesis concerns per- €achP in a setZn, we computedAsymRatiéP), and ran
formance in formulas ofimilar size. Please note thatwe do ~ ZChaff(Moskewiczet al. 200 on the formulap (P,m— 1),
notwish to imply thatAsymRatids “the” parameter predict- ~ measuring the search tree size (nr. of backtracks). We plot-
ing SAT solver performance in Planning CNFs. There are, ted the latter againsissymRatidby dividing each#y, into
presumably, many important factors and interplay between 100 bins, withAsymRati¢P) € [0,0.01),...,(0.99,1]; we
them. Our (only) observation, below, is thasymRatio ~ took the mean value out of each bin, avoiding noise by skip-
works surprisingly well in a broad range of domains. ping bins with less than 100 elements. We were su'rpnsed

To test our hypothesis, as said, we ran large experi- ourselves by how clearly the results came out; see Figjure
ments in all STRIPS domains used in the 3rd International (Plots for medium values are almost identical.)

Planning Competitionlong & Fox 2003 (IPC-3), plus The plots are clearly supportive of Hypothesis Con-
Blocksworld and Logistics. The IPC-3 domains are Depots, sider for example Figuré (d), the Rovers domain. The
Driverlog, Freecell, Rovers, Satellite, and Zenotravel. De- three curves correspond to the classes of instances with op-

pots is a mixture between Blocksworld and Logistics, where timal plan length 8, 9, and 10, respectively (the entire dis-
tribution of optimal plan length is 5 ... 20, and 62% of the

mark that Graphplan detects the linear nature of the domains, so, 50000 instances lie in the shown classes). In each of the

there, both encodings have the same action mutexes. classes, the search tree size decreaspenentiallyover a

°A more stable approach would be to identify a hierarchy of |inear increase if\symRatio- note the logarithmic scale.
layers of “landmarks” foffmann, Porteous, & Sebastia 2Q0det From the relative positions of the different curves, one can
Go = G; iteratively, setGi.1 := Ugeg, Nageadd(a) Pre(@), until also nicely see the influence of optimal plan length/formula

Gi+1 is contained in the previous layers. One could then select

the largest landmark lay&; and defineAsymRatidased on that, . .
for example asnax-,cost(g) + i divided bycost(Ag.c ). This In Blocksworld, the decrease of tree size ofsymRatids

approach could not be fooled by replaci@gvith a single goal. It more noisy, and roughly "”?Qr except in the largest C.NFS
seems an overkill since, as said, typically the facts aiready cor- (encoding 24 steps), where it is stronger. In Depots, Driver-
respond naturally to different sub-problems. Exploring thisissuein —

more depth is an open topic. 6That computation was done by calls to Blackbox.

size — the longer the optimal plan, the larger the search tree.
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Figure 1: Mean search tree size of ZChaff, plotted agakssmRatig(log-plotted in (d)), in CNFs encoding instances from
the IPC-3 domains (except Satellite and Zenotravel, see text), Blocksworld, and Logistics. Curves for different8plusfets
50000 random instances in each domain: the subsets corresponding to the 3 most frequently occurring optimal plam lengths

06 0.65

(f) Logistics

140

log, and Logistics, the decrease is roughly linear in all
classes. In Freecell, the correlation is vague in the smaller
CNFs, but very clear in the largest ones. Note that there ’
are less data points (differeAsymRatiosalues) in Freecell

and Logistics than in the other domains. This is a domain
property: due to the particular semantics, more or less of
the m possibleAsymRatiovalues for a set’, actually ap-

255

100 -

pear in practice. Indeed, Satellite and Zenotravel are not e

shown in Figurel because there is hardhny difference in

AsymRatio the number of steps needed to achieve the in-

dividual goal facts is nearly constant. In fact, in Satellite, I R T

within each class”n, all instances havine same AsymRatio  Figyre 2: Size/depth ratio of ZChaff’s search trees, plotted
value. In Zenotravel, there are up to three different values zgainsiasymRatipin Rovers.

of AsymRatiawithin each£2,, but one of these values ac-

counts for almost all of the instances (99% and more). We

conclude that the degree AbymRatiovariance, and its cor- domains (except Satellite and Zenotravel), and for each of all

relation with performance, depends on the domain — just as these parameters, we found an at least linear decrease over

one would expect of a measure of problem structure. In six increasingAsymRatio Figure2 shows the size/depth ratio

of our eight domains, a— sometimes drastic — correlation can data for the Rovers domain, as an example. We find the re-

be observed. sults regarding size/depth ratio particularly interesting since
Beside the search tree size of ZChaff, we also measured they nicely reflect the wide-spread intuition that, as problem

the (maximum) search tree depth, the size of the identified Structure increases, UP can prune many branches early on

backdoors (the sets of variables branched upon), andithe ~ and so makes the search tree grow thinner.

tio between size and depth of the search freghe latter ~ We finally measured and compared the relative number of
gives an indication of how “broad” or “thin” the shape of  instances, ovehsymRatioin our eight domains as well as in
the search tree is — denoting depth withf the tree is full a domain of purely random instances generated using Rinta-

binary then the ratio i§29+* — 1)/d; if the tree is degener- ~ nen’s 004 “Model A" with 40 state variables. As already
ated to a line then the ratio {®d + 1)/d. For each of our mentioned, in Satellite and Zenotravel the distribution of in-
stances oveAsymRatidchas all (almost all) its weight in a
"Note that backdoors play a different role in ZChaff than in  Single point. In our other domains, most of the time the dis-
standard DPLL, due to the effects of clause learning, which may, tributions are roughly Gaussian, with a peak of around 50%
e.g., cause a choice variable to be switched by UP. of the instances at alssymRatiaf around 06, the other in-



stances distributed with maximum distance of arour2dob
both sides of the peak. More precisely, in the respectively
most inhabitated”y, class, Depots has 32% of the instances
at AsymRatid).56, Driverlog has 40% at.B5, Freecell has
51% at 083, Rovers has 67% at%) Blocksworld has 31%

at 0.6, and Logistics has 62% at@2. Now, by contrast, the
distribution generated with Rintanen’s method has a peak of
30% atAsymRatid.3 — the (roughly Gaussian) distribution
has its weight irsignificantly lower AsymRatio valuegve
take this to confirm the intuition that a highsymRatidis

not likely to occur in a purely random world — it is indeed
something that is typical fatructuredinstances onl§.

Analyzing Goal Asymmetry in Synthetic
Domains

We analyzed three classes of synthetic domains/CNF for-
mulas, called MAP, SBW, and SPH. MAP is a simple trans-
portation kind of domain, SBW is a block stacking domain.
SPH is a structured version of the Pigeon Hole problem.
Each of the domains/CNF classes is parameterized bysize
and structurék. In the planning domains, we use the simpli-

fied Graphplan-based encoding described earlier, and con-

sider CNFs that are one step short of a solution. We denote
the CNFs withMAPX, SBW, andSPH, respectively.

Due to space restrictions, we consider only MAP in de-
tail, and we omit all proofs. Full details and proofs are
available in a TR doffmann, Gomes, & Selman 20P6As
said, the aim of our analysis was to obtain a deeper under-
standing of the observed empirical correlation. We chose
the MAP and SBW domains because they are related to Lo-
gistics and Blocksworld, two of the most classical Planning
benchmarks. We chose SPH for its close relation to the for-
mulas considered in proof complexity. The reader will no-
tice that the synthetic domains avery simple. The rea-
sons for this are threefold. First, we wanted to capture the
intended intuitive problem structure in as clean a form as
possible, without “noise”. Second, even though the Plan-
ning tasks are quite simpléhe resulting CNF formulas are
complicated- e.g., much more complicated than the Pigeon
Hole formulas often considered in proof complexity. Third,
we identify provably minimabackdoors. To do so, one has
to take account of every tiny detail of the effects of unit prop-
agation. The respective proofs are quite involved for our
simple domains already — for MAP, e.g., they occupy 9 pages
in the TR, featuring myriads of interleaved case distinctions.
To analyze more complicated domains, one probably has to
sacrifice precision.

We emphasize once more that the design of our domains
is, to a large extent, independent of the precise quantifica-
tion we used to turn our intuitions about “the degree of sub-
problem interactions” into a numberAsymRatip namely.
The domains are relevant for any formal definition of the
same sort of intuitive problem structure. The same is true
for the analysis of the corresponding search spaces.

8The correlation ofAsymRatiowith search tree size, depth,
size/depth ratio and backdoor size is also present in the random
instances, with a little more variance.

MAP

In the MAP domain, one moves on the road map graph, pa-
rameterized by, shown in Figure3 (a) and (b). The avail-
able actions take the formovex-y, wherex is connected to

y with an edge in the graph. The preconditioq &-x}, the
add effect is{at-y, visitedy}, and the delete effect iat-x}.
Initially one is located at°. The goal is to visit a number
of locations.Whatlocations must be visited depends on the
value ofk € {1,3,...,2n—3}. If k=1 then the goal is to
visit each of{L},... L}. For each increase &by 2, the
goal on the_;-branch goes up by two steps, and the highest-
indexed of the other goals is skipped. Fo& 2n— 3, we

get the goalL2"3,1.1}1.° We refer tok = 1 as thesymmet-
rical case and tok = 2n— 3 as theasymmetrical casesee
Figure3 (a) and (b), respectively.

The length of a shortest plan is2 1 independently ok;
our CNFs encoder?— 2 stepsAsymRatias ﬁ Figure3
(c) and (d) illustrate that the setting bfhas a quite drastic
effect on backdoor size. We will detail this below. First,
observe that the setting &fhas only very little impact on
the size and shape of the constraint graph (the undirected
graph where nodes are variables and edges indicate common
membership in at least one clause), illustrated in Figure
(e) and (f): from (e) to (f), three edges within the outmost
circle disappear (one of these is visible on the left side of the
pictures, just below the middle) and one new edge within the
outmost circle is added. In general, between formiasX
andMAF¥, K’ > k, there isno differenceexcept thak/ — k
goal clauses are skipped, and that the content of the goal
clause for the_;-branch changes. Precisely, the number of
clauses iMMAP is 3n® +27n? — 73n4-39— (k+1)/2. The
number of variables is 16 — 33n+ 14, irrespectively ok.

It even holds that, also irrespectively kffor any constant

b, theb-cutset size ilMAPX is a square function in. This

can be seen as follows. The constraint graph contains, at
each time step ¥t < 2n-— 2, largecliquesof variables,

for example the & variables corresponding to moves to or
from LO, which are fully connected due to the mutex clauses.
From a clique of sizé, one has to remove- 1— b nodes in
order to get to an induced width ofd b <| — 1. Since the
mentioned cliques are disjoint, this shows the claim.

The hidden structure in our formulas does not affect the
size ofb-cutsets. Idoesaffect the size of DPLL refutations,
and backdoors. First, we proved that, in the symmetrical
case, the DPLL trees are large.

Theorem 1 (MAP symmetrical case, DPLL LB). Every
DPLL refutation of MAR must have size exponential in n.

The proof of Theorenil proceeds by a “reduction” of
MAP! to a variant of the Pigeon Hole problem. A reduc-
tion here is a function thatansforms a resolution refuta-
tion of MAR into a resolution refutation of the Pigeon Hole.
Obviously, given a reduction function from formula class A
into formula class B, a lower bound on the size of resolu-
tion refutations of B is also valid for A, modulo the maximal

9Fork=2n—1, MAP,L‘ contains an empty clause: no supporting
action for the goal is present at the last time step.



3
L} L% PR Ll}‘
4
N/ )
LO
6

(a) goals symmetrical case

L%n—3

(b) goals asymmetrical case (d) backdoor asymmetrical case (f) constraint graph asymmetrical case

Figure 3: Goals, backdoors, and constraint graphs in MAP. In (a) and (b), goal locations are indicated in bold face, for
the symmetrical case (a), and the asymmetrical case (b). In (c), (d), (e), and=#, In (c) and (d), the horizontal axis
indicates branches in the map, and the vertical axis indicates time steps; abbreviations: “NAN@®@*at-L°(1), “MV-i”

for moveLO-Lil, “NV-i” for NOOPvisitedL}, and “MV-23” for moveLf-Lf. In (e) and (f), the variables at growing time steps

lie on circles with growing radius, edges indicate common membership in at least one clause.

size increase induced by the reduction. We define a reduc-  The proof of Theoreni by reduction to the Pigeon Hole

tion function fromMAR} into the onto functional Pigeon ~ problem makes intuitive sense: clearly, trying to visit the
Hole problem of PHR,. This is the standard Pigeon Hole N goal locations in not enough time is a Pigeon Hole style
— wheren+ 1 pigeons must be assignedndoles — plus situation. However, the proof does not tell us very much
“onto” clauses saying that at least one pigeon is assigned to about what is actually going on inside a DPLL procedure

each hole,and ‘functional”clauses saying that every pigeon {1l XA J9 Shed Tre 1971 20 (48, we Ivesianiee
is assigned to at most one hole. Every resolution refutation 9 P :

of of PHR, must have sizexp(Q)(- ")} (Razborov We identified the following backd_oor:
2004. Our reduction proceeds bglo%i(gtl)s)etting many vari- MARTB := {moveL®-Li(t) |t € T.2<i < n) U
: {NOOPRuvisitedL(t) [t e T,3<i<n} U

ables inMAP? to 0 or 1, and identifying other variables (re- {NOOPat-Lo(1)} U

namingx andy to a new variable).1® We prove that such {movel%-L1(t) [t e T\ {2n—5,2n—3}}
operations do not increase the size of a resolution refutation. ! o

The reduced formula is a “temporal” version of the onto Pi- Here;T = {3,5,...,2n—3}. Compare Figuré (c).

geon Hole problem; we call @T PHR,. It is similar to the Theorem 2 (MAP symmetrical case, BD).MAP!B is a
standard (onto) Pigeon Hole problem except that now the packdoor for MAE.

“holes” are time steps, in analogy to Planning encodings. . . .
e 9y g g Obviously, the size oMAPB is ©(n?).1* For the proof

We prove that, from a resolution refutation@f PHR, one . - , .
can construct a resolution refutation @fPHR, by replac- 10 Theorem2, first note that, in the encodingny pair of

ing each resolution step with at ma®t+ n new resolution ~ MOVve actions is incompatible So if one move action is
steps. This proves the claim for general resolution, which S€t to 1 at a time step, then all other move actions at that
suffices since DPLL corresponds to a restricted form of res- Step are forced out by UP over the mutex clauses — the time
olution (e.g., seeBeame, Kautz, & Sabharwal 2004 The step is “occupied” (this is relevant also in the asymmetrical
same is true for DPLL with clause learning, as done in the ¢aS€ below). Now, to see the basic proof ar%urrlent, assume
ZChaff solver we use in our experiments. for the moment thablAP!B containsall moveL%-L}(t) and
- NOORuvisited-L1(t) variables, for 1< i < nandt € T. As-

OFor example, we set aNOORat variables to 0. Such avari-  signing values to all these variables results, by UP, in a sort
able will never be setto 1 in an optimal plan; similar intuitonsare —
behind all the made operations. 1 Remember that the total number of variables is @$0?).



of goal regression. In the last time step of the encoding,
2n—2, the goal clauses formconstraints requiring to either
visit a locationL?, or to have visited it earlier already (i.e., to
achieve it via a NOOP). Examining the interactions between
moves andNOORs att = 2n— 3, one sees that, if all these
are set, then at least— 1 goal constraints will, by UP, be
transported down tb= 2n— 4. Iterating the argument over
then—2time step$ € T, one gets 2 goal constraints at 2:

two noded.! must be visited within the first two time steps.
It is easy to see, then, that branching oM®ORat-L%(1)
yields an empty clause in either case. What makes identi
fying a non-redundan{minimal) backdoor difficult is that

DPLL procedures. On the other hand, the formulas are non-
trivial in two important respects. First, they do have non-
constant backdoors and are not just solved by unit propa-
gation. Secondjndingthe logarithmic backdoors requires,
at least, a non-trivial branching heuristic — thwerstcase
DPLL refutations oMAP?"-2 are still exponential im.

Let us have a closer look at how the logarithmic back-
doors arise. The proof of Theorefruses the following two
properties of UP, ilMAP2"-3:

(1) If one sets a variablmoveLl 2-Li (i) to 1, then at all time

stepsj < i a move variable is set to 1 by UP.

UP is, in a variety of subtleties, slightly more powerful than (2) If one sets a variablmoveL-L} (i) to 0, then at all time

just performing the outlined “regressiontAPIB contains
hardly any variables for brandh= 1. So att = 2 one gets
only a single goal constraint, achieving which isn’t a prob-
lem. We perform an intricate case distinction about the pre-
cise pattern of time steps that are occupied after the regres-
sion, taking account of, e.g., such subtleties as the possibil-
ity to achievevisitedL1 by moving in from L% above In
the end, one can show that UP enforces commitments to ac-
commodate also the @ovel%-L! actions that weren't ac-
commodated in the regression. For this, there is not enoug
room left.

We conjecture that the backdoor identified in Theo2zm
is also a minimum size (i.e., an optimal) backdoor; rfior
4 we verified this empirically, by enumerating all smaller
variable set$? As said, the backdoor is minimal.

Theorem 3 (MAP symmetrical case, BD minimality). Let
B’ be a subset of MATB obtained by removing one variable.
The number of UP-consistent assignments 'tdsBalways
greater thar0, and at leas{n— 3)! forn > 3.

To prove this theorem, one figures out how wrong things
can go when a variable is missing in the proof of Theoem

Intuitively, the backdoor in the symmetrical case has
square size becausdranches are involved ah2- 2 steps.
One would expect that, in the asymmetrical case, a DPLL
refutation involving only branch 1 could yield a backdoor of
linear size inn. It turns out one can do much better. Us-
ing the convention that stands for.%, the backdoors we
identify have the form (compare Figuggd)):

MARP-3B:=
{moveL?2.L.2-1(2' — 1) | 1<i < [logpn]}.

Theorem 4 (MAP asymmetrical case, BD).MAP?"—3B is
a backdoor for MAR"3,

The size oMAR2"3B is [logzn]. We conjecture that this
is optimal, which we verified empirically far < 8.

Theorem 5 (MAP asymmetrical case, BD minimality).
Let B be a subset of MAIPP3B obtained by removing one
variable. There is exactly one UP-consistent assignment to
B.

We consider it particularly interesting that tMeAR2"—3
formulas havdogarithmic backdoors. This shows, on the
one hand, that these formulas are (potentially) easy for

h

12Enumerating variable sets in small enough examples was also
our method to find the backdoors in the first place.

stepsj > i a move variable is set to 1 by UP.

Both properties are caused by the “tightness” of branch 1,
i.e., by UP over the precondition clauses of the actions mov-
ing along that branch. Other than what one may think at first
sight, the two properties by themselves am enough to
determine the log-sized backdoor. The properties just form
the foundation of a subtle interplay between the different
settings of the backdoor variables, exploiting exponentially
growing UP implication chains on branch 1. The interplay is
best explained with an example. Foe 8, the backdoor is
{moveL?-L}(1), moveL2-L3(3), moveL$-L{(7)}. Figure4
contains an illustration.

[\S]
w mV—L% —L?

o — mv-1? —L}

—

2

Figure 4: The workings of the optimal backdoor MAP3.
Arrows indicate moves on the;-branch forced to 1 by
UP. Direction— means towardk13, < means towards.
When only a single open step is lefhovel%-L} is forced
to 1 at that step by UP, yielding an empty clause.

Consider the first (lowest) variable in the backdoor,
movelL%-L1(1). If one sets this to 0, then property (2) ap-
plies: only 13 of the 14 available steps are left to move to-
wards the goal locatioh}3; UP recognizes this, and forces
moves toward&}® at all steps X t < 14. Since = 1 is the
only remaining time step not occupied by a move action, UP
over theL} goal clause setsiovel%-L1(1) to 1, yielding a
contradiction to the precondition clause of the move setto 1
at time 2. SanoveL%-L}(1) must be set to 1.

Consider the second variable in the backdoor,
movel?-L3(3). Say one sets this to 0. By property
(2) this forces moves at all steps<dt < 14. So the goal
for L3 must be achieved by an action at step 3. But we
have committed tanovelL?-L} at step 1. This forces us to



move back td. at step 2 and to move 10} at step 3. But
then the move forced in earlier at 4 becomes impossible.
It follows that we must assigmovel?-L3(3) to 1. With
property (1), this implies that, by UP, all time steps below
3 get occupied with move actions. (Precisely, in our case
here,movelL1-L3(2) is also set to 1.)

Consider the third variable in the backdoor,
moveL$-L!(7). If we set this to 0, then by property
(2) moves are forced in by UP at the time steps 8< 14.

So, to achieve theL% goal at step 7, we have to take
three steps to move back fromL3 to L% steps 4, 5, and

6. A move tol} is forced in at step 7, in contradiction
to the move at 8 forced in earlier. Finally, if we assign
moveL8-L!(7) to 1, then by property (1) moves are forced
in by UP at all steps below 7. We neséven steps to move
back from L! to L°, and an eighth step to getltg. But we
have only the 7 steps 8.,14 available, so the goal fd:r%

is unachievable.

The key to the logarithmic backdoor size is that, to
achieve thé.1 goal, we have to move back frol locations
we committed to earlier (as indicated in bold face above for
t = 3 andt = 7). We committed to move th}, and the UP
propagations force us to move back, thereby occupyiag 2
steps in the encoding. This yields the possibility to double
the value ot between variables.

Proving Theorend is a matter of figuring out what can go
wrong in the proof to Theorem, after removing one vari-
able. Note that the DPLL tree fol AP?"~2 actuallydegen-
erates to a line if one processes thRIAP>"~3B variables
from t = 1 upwards, then, for every variable, assigning 0
immediately yields an empty clause in UP.

Corollary 1 (MAP asymmetrical case, DPLL UB). For
MAP2"—3 there is a DPLL refutation of siz2+ [logpn] + 1.

Besides small backdoors, (nearly) degenerated DPLL
trees are also typical in structured examples, as the empir-
ical results summarized in the previous section (specifically,
Figure2) show. Note that we have now showmleublyex-
ponential gap between the sizes of the best-case DPLL refu-
tations in the symmetrical case and the asymmetrical case.

It would be interesting to determine what the optimal
backdoors are in general, i.e. M1AP,41‘ particularly at what
point the backdoors become logarithmic. Such an investi-
gation turns out to be extremely difficult — for interesting
combinations oh andk it is practically impossible to find
the optimal backdoors empirically, and so get a start into
the theoretical investigation. We developed an enumeration
program that exploits symmetries in the planning task to cut

100000 |

10000 |

1000 |

100 |
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Figure 5: Search tree size of ZChaff in MAP, log-plotted
against, for different settings ok.

SBW

This is a block-stacking domain, wittacking restrictions
on what blocks can be stacked onto what other blocks. The
blocks are initially all located side-by-side on a talileThe
goal is to bring all blocks onto another talijethat has only
space for a single block; so tmeblocks must be arranged
in a single stack on top df. The parametek, 0 < k < n,
defines the amount of restrictions. There lafbad” blocks
by,...,bx andn—k “good” blocksgs, . ..,gn_k. Eachby;, i >
1, can only be stacked ontp_1; b; can be stacked ontg
and anyg;. Theg; can be stacked any, and ontd.
Independently ok, the optimal plan length is: move
actions stack one block onto another block or a table.
AsymRatids % if k=0, and'ﬁ‘ otherwise. In the symmetri-
cal casek = 0, we identify backdoors of siZ®(n®) — linear
in the total number of variables. In the asymmetrical case,
k=n-2, there ar®(logn) DPLL refutations and (minimal)
backdoors.

SPH

Finally, we constructed aon-Planningexample that also
exhibits similar asymmetric structure and DPLL behavior.
We modified the Pigeon Hole problem. In d&PH formu-

las, like in the standard Pigeon Hole problem, the task is to
assignn+ 1 pigeons tan holes. The difference is that there
is now one “bad” pigeon that requirdsholes, anck — 1
“good” pigeons that can share a hole with the bad pigeon.
The remainingh— k+ 1 pigeons are normal, i.e., need ex-
actly one hole each. The rangelois between 1 and — 1.
Independently ok, n+ 1 holes are needed overall. Apart
from identifying minimal backdoors for all combinations of
k andn, for k = n—1 we identify anO(n) DPLL refuta-

down on the number of variable sets to be enumerated. Even tion. With results by Buss and Pitas$b@7), this implies an

with that, the enumeration didn’t scale up far enough. We
leave this topic for future work.

To conclude our analysis, Figubeshows the behavior of
ZChaff in MAP. As expected, we get exponential scaling for
the symmetrical case= 1, and polynomial scaling for the
asymmetrical caske= 2n— 3. If we fix a value ofn in Fig-
ure5 (consider the intersections of the curves with a vertical
line) we observe a strong correlation wilsymRatio just
like in the Planning benchmarks from FigureThis directly
connects our formal analysis to our empirical results.

exponential complexity gap to= 1.

Conclusion

Modern DPLL-based SAT solvers are very efficient in
“structured” CNFs encoding applications from Planning and
Verification. We defined a concrete notion of what “struc-
ture” is, in Planning, and we revealed empirically that this
structure indeed often governs performance, in practical ex-
amples. Our analytical results provide a detailed case study
of how this phenomenon arises. In particular, we show that



the phenomenon can make an (even doubly) exponential dif-
ference.

From a purely practical point of view, our research may
inspire the development of novel search heuristics. The
very different forms of the backdoors in the symmetrical
and asymmetrical cases suggest to approximate AsymRa-
tio, and choose a specialized branching heuristic depending
on the outcome. Similarly, the use of symmetry detection
and exploitation techniques (e.Rifitanen 2003Sabharwal
2005) seems particularly relevant with low AsymRatio, and
could be done dependent on this. Most importantly maybe,
with some more work, approximated AsymRatio could, at
least within some fixed domain of interest, probably be made
a successful runtime predictor, which is useful in various sit-
uations (like, making a priori decisions).

From a more principled point of view, our results promote
the formal understanding of what is relevant for search per-
formance in practical examples. Such an understanding is,
we believe, of great importance in itself, and should be given
more attention in the field. We do not claim that the pre-
sented results “solve” this issue in an exhaustive way. Quite
differently, we hope and believe that our approach will in-
spire similar investigations of other forms of practical prob-
lem structure, and that this will make our understanding of
what'’s going on inside search more mature.
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