
Structure and Problem Hardness: Goal Asymmetry and DPLL Proofs in
SAT-Based Planning

Jörg Hoffmann
Max Planck Institute for CS

Saarbr̈ucken, Germany

Carla Gomes
Cornell University
Ithaca, NY, USA

Bart Selman
Cornell University
Ithaca, NY, USA

Abstract

In AI Planning, as well as Verification, a successful method
is to compile the application into boolean satisfiability (SAT),
and solve it with state-of-the-art DPLL-based procedures.
There is a lack of formal understanding why this works
so well. Focussing on the Planning context, we identify a
form of problem structureconcerned with the symmetrical or
asymmetrical nature of the cost of achieving the individual
planning goals. We quantify this sort of structure with a sim-
ple numeric parameter calledAsymRatio, ranging between
0 and 1. We show empirically thatAsymRatiocorrelates
strongly with SAT solver performance in a broad range of
Planning benchmarks, including the domains used in the 3rd
International Planning Competition. We then examine care-
fully craftedsynthetic planning domainsthat allow to control
the amount of structure, and that are clean enough for a rigor-
ous analysis of the combinatorial search space. The domains
are parameterized by sizen, and by a structure parameterk,
so thatAsymRatiois asymptotic tok/n. The CNFs we exam-
ine are unsatisfiable, encoding one planning step less than the
length of the optimal plan. We prove upper and lower bounds
on the size of the best possible DPLL refutations, under dif-
ferent settings ofk, as a function ofn. We also identify the
best possible sets of branching variables (backdoors). With
minimum AsymRatio, we prove exponential lower bounds,
and identify minimal backdoors of size linear in the number
of variables. Withmaximum AsymRatio, we identify loga-
rithmic DPLL refutations (and backdoors), showing a dou-
bly exponential gap between the two structural extreme cases.
This provides a concrete insight into the practical efficiency
of modern SAT solvers.

Introduction
There has been a long interest in a better understanding
of what makes combinatorial problems from SAT and CSP
hard or easy. The most successful work in this area involves
random instance distributions with phase transition char-
acterizations (e.g., (Cheeseman, Kanefsky, & Taylor 1991;
Hogg, Huberman, & Williams 1996)). However, the link of
these results to morestructuredinstances is less direct. A
random unsatisfiable 3-SAT instance from the phase transi-
tion region with 1,000 variables is beyond the reach of any
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current solver. On the other hand, many unsatisfiable for-
mulas from Verification and AI Planning contain well over
100,000 variables and can be proved unsatisfiable within a
few minutes (e.g., with Chaff (Moskewiczet al. 2001)).
This raises the question as to whether one can obtain general
measures ofstructure in SAT encodings, and use them to
characterize typical case complexity. To this end, our over-
all goal in this paper is to identify general problem features
that characterize problem hardness in practice. We focus on
formulas from Planning. We view this as an entry point to
similar studies in other areas.

We focus on showing infeasibility. Precisely, we con-
sider the difficulty ofproving optimality of plans. SAT-based
planning (Kautz & Selman 1999) works by iteratively incre-
menting a plan length boundb, and testing in each itera-
tion a formula that is satisfiable iff there exists a plan withb
steps. Our focus is on the last unsuccessful iteration. SAT-
based planning is currently state-of-the-art for finding op-
timal plans: e.g., Blackbox won the 1st prize for optimal
planners in the 4th International Planning Competition.

Our overall approach can be described as follows. (A)
Formulate an intuition about what makes search perform
well or bad in practical examples. (B) Design some numeric
measure of that sort of problem structure. Show empirically
that the measure correlates with search performance in the
relevant examples. (C) Design synthetic domains that cap-
ture the problem structure in a clean form. Analyze the be-
havior of search, within the synthetic domains, in detail.

Step (C) is acase studyaimed at obtaining a deeper un-
derstanding of the structural phenomenon. There are many
pitfalls in this “3-step strategy”. Numeric measures of struc-
ture that stably correlate with search performance are a rare
find. Importantly, we didn’t execute steps (A), (B), and (C)
as a sequence. The steps were heavily intertwined, forming
a process of increasingly accurate intuitions and results in a
trial-and-error fashion over a long period of time.

Note that our approach is very different from identifying
tractable classes. Step (C) may yield results on polynomial
best-case or worst-case behavior, but these hold only for
the synthetic domains looked at. Step (B) is satisfied with
empiricalcorrelations between structure and performance –
with the advantage of not being bound to syntactically iden-
tifiable tractable classes, which are typically too restrictive
for practical examples.



Our analysis method in step (C) is to prove upper and
lower bounds on the size of the best-case DPLL (Davis, Lo-
gemann, & Loveland 1962) proof trees, i.e., on the number
of search nodes. We also investigate the best possible sets of
branching variables. Such variable sets were recently coined
“backdoors” (Williams, Gomes, & Selman 2003). In our
context, a backdoor is asubset of the variables so that, for
every value assignment to these variables, unit propagation
(UP) yields an empty clause.1 That is, a smallest possible
backdoor encapsulates the best possible branching variables
for DPLL, a question of huge practical interest. Identifying
backdoors is also a technical device: we obtain our upper
bounds as a side effect of the proofs of backdoor properties.
In all considered formula classes, we determine a backdoor
subset of variables. We prove that the backdoors aremin-
imal: no variable can be removed without losing the back-
door property. In small enough instances, we prove empiri-
cally that the backdoors are in factoptimal- of minimalsize.
We conjecture that the latter is true in general.

Goal Asymmetry

Observing that, in many benchmarks, the individual
goal facts correspond quite naturally to individual “sub-
problems” of the task, our intuitions are these. (1) Proving
plan optimality is hard if the optimal plan length (the number
of steps needed to solve the task) arises from complex inter-
actions between many sub-problems. (2) Proving plan opti-
mality is easy if the optimal plan length arises mostly from
a single sub-problem. We formalize both intuitions using
a view based on sub-problem “cost”, offering the possibility
to interpolatebetween (1) and (2). We distinguish asymmet-
rical case– where the individual sub-problems are all (sym-
metrically) “cheap” – and anasymmetrical case– where a
single sub-problem (asymmetrically) “dominates the overall
cost”. The asymmetrical case obviously corresponds to in-
tuition (2). The symmetrical case corresponds to intuition
(1) because, if each single sub-problem is cheap, but their
conjunction is costly, then that cost must be the result of
some sort of “competition for a resource” – an interaction
between the sub-problems. One can interpolate between the
symmetrical and asymmetrical cases by measuring to what
extent any single sub-problem “dominates the overall cost”.
To turn these intuitions into a formal definition, it remains
to define what precisely “cost” is, and what “dominating
the overall cost” means. Various definitions are thinkable.
Our theoretical work (the synthetic domains and their anal-
ysis) is relevant for any definition. In our empirical work,
we chose to instantiate “cost” with the (optimal) number
of steps needed, and “dominating the overall cost” with a
simple maximization and normalization operation: we ob-
tain our parameterAsymRatioby selecting the most costly
goal fact, and dividing that cost by the cost of achieving the
conjunction ofall goals. AsymRatioranges between 0 and

1In general, a backdoor is defined relative to an arbitrary poly-
nomial time “subsolver” procedure. The subsolver can solve some
class of formulas that does not necessarily have a syntactic char-
acterization. Our definition here instantiates the subsolver with the
widely used unit propagation procedure.

1. With the above intuitions,AsymRatioshould be thought
of asa high-level measure of the degree of sub-problem in-
teractions. It is an important open question whether more
low-level (syntactic, ideally) measures can be found.

We constructed two synthetic Planning domains: a simple
transportation-kind of domain, and a stacking domain. Each
is characterized by a size parameter,n, and by a structure
parameter,k. In the “transportation” domain, for example,
one moves along the edges of a graph of a certain shape, and
the goal is to visit some graph nodes.Whatnodes must be
visited depends onk. In both domains,AsymRatiois asymp-
totic to k

n. For increasingn, AsymRatioconverges to 0 for
the lowest setting ofk, while it converges to 1 for the high-
est setting ofk. We also used our intuition about problem
structure to create anon-Planningexample that shows simi-
lar behavior, namely a structured version of the Pigeon Hole
problem, wherek controls how many holes one particular
“bad” pigeon needs.

Investigating the effect that the problem structure mod-
elled in our synthetic domains has on the corresponding
DPLL proofs, we found dramatic differences in DPLL proof
and backdoor size. In the symmetrical case, we could prove
exponential (inn) lower bounds on the size of DPLL trees.
The backdoor sets in the symmetrical case are linear in the
total number of variables. With increasingk, the backdoors
become smaller. In the two planning domains, with maxi-
mumk – asymmetrical case – the backdoors are oflogarith-
mic size, O(logn). UP immediately yields a contradiction
for one of the settings of each of the backdoor variables, so
the DPLL trees degenerate to lines, and the number of search
nodes is alsoO(logn).

To confirm that our quantification of problem structure,
AsymRatio, correlates with SAT solver performance in prac-
tice (i.e., in more complex benchmarks than our synthetic
domains), we ran large-scale experiments in the six bench-
mark domains used in the 3rd International Planning Com-
petition (Long & Fox 2003) (IPC-3). This is a recent and
widely used set of benchmarks, and is provided, by the IPC-
3 organizers, with instance generators. The latter are es-
sential for our experiments, where we generated and ex-
amined tens of thousands of instances in each domain.2

We also ran the experiments in Blocksworld and Logis-
tics, two of the most classical Planning benchmarks. We
plotted the performance of a state-of-the-art SAT solver,
namely, ZChaff (Moskewiczet al. 2001), as a function of
AsymRatio. We were surprised ourselves by how clearly
the results came out. In most domains, a largerAsymRatio
consistently results in planning CNFs that are a lot easier to
solve.AsymRatiothus provides a useful indicator of typical
problem hardness in Planning.3 This is of course just a first
example of such an indicator; presumably, others exist.

2For the domains used in the 4th International Planning Com-
petition there are no random generators.

3While AsymRatiocan not be computed efficiently, there exists
a variety of techniques to approximate plan length (Blum & Furst
1997; Bonet & Geffner 2001; Edelkamp 2001; Helmert 2004).
These can be used to approximateAsymRatio, and predict SAT
solver performance. Exploring this is an open topic.



Related Work
The logarithmic backdoors in our synthetic examples nicely
reflect the recent (empirical) finding that many Planning
CNFs contain exorbitantly small backdoors in the order of
10 out of 10000 variables (Williams, Gomes, & Selman
2003). In difference to these results, we also explain what
these backdoor variablesare (what they correspond to in the
original planning task), and how their interplay works.

Our analysis of synthetic examples is, in spirit, similar to
the work in proof complexity (e.g., (Cook & Reckhow 1979;
Haken 1985; Buss & Pitassi 1997)) where formula families,
such as Pigeon Hole problems, have been the key to a bet-
ter understanding of the length of resolution proofs. Gen-
erally speaking, the main difference is that, in proof com-
plexity, one fixes an example and investigates the behavior
of different proof calculi. By contrast, we consider the sin-
gle proof calculus DPLL, and modify theexamples. Major
technical differences arise also due to the kinds of formu-
las considered – formulas from Planning vs. any kind of
synthetic formula provoking a certain behavior – and, im-
portantly, the central goal of the research. Proof complexity
is mostly about lower bounds (separating the power of proof
systems). But, to understand real-world structure, and ex-
plain the good performance of SAT solvers, interesting for-
mula families withsmallDPLL trees are more revealing.

There is some work on problem structure in the ICAPS
community. Hoffmann (2005) investigates topological prop-
erties of certain wide-spread heuristic functions. Howe and
Dahlman (2002) analyze planner performance from a per-
spective of syntactic changes and computational environ-
ments. Streeter and Smith (2005) provide an analysis of
search space surface in Job Shop scheduling. Obviously, all
these works are quite different from ours.

There is a large body of work on structure in the constraint
reasoning community, see for example (Frank, Cheeseman,
& Stutz 1997; Slaney & Walsh 2001; Nudelmanet al. 2004;
Hulubei & Sullivan 2005). However, as far as we are aware,
all these works differ considerably from ours. In particular,
all works we are aware of define “structure” on the level of
the CNF formula/the CSP problem instance, rather than, as
we do, on the level of the modelled application. Empirical
work on structure is mostly based on random problem distri-
butions, and theoretical analysis is mostly done in the con-
text of identifying tractable classes. Still, one structural con-
cept must be discussed in more detail:cutsets(e.g. (Dechter
1990; Dechter 2003)). A cutset is a set of variables so that,
once these variables are removed from the constraint graph
– the undirected graph where nodes are variables and edges
indicate common membership in at least one clause – that
graph has a property that enables efficient reasoning: anin-
duced widthof at most a constant boundb (if b = 1 then the
graph is cycle-free, i.e., can be viewed as a tree). Backdoors
are a generalization of cutsets in the sense that any cutset is
a backdoor relative to an appropriate subsolver. The differ-
ence is that cutsets have an “easy” syntactic characterization:
one can check in polytime if or if not a given set of variables
is a cutset. One can, thus, use strategies looking for cutsets
to design search algorithms. Indeed, the “cutset” notion was
originally developed with that aim. Backdoors, by contrast,

were proposed as a means to characterize phenomena rel-
evant for existing state-of-the-art solvers – which all make
use of subsolvers whose capabilities (the solved classes of
formulas) have no syntactic characterization. In particular,
we will see that, in the formula families considered herein,
there are no small cutsets; in fact, as we will exemplify, the
constraint graphs of our formulas change only slightly with
k, and are hardly suitable to capture what happens on the
structural scale. Note that this reflects quite nicely the “hid-
den” (not easily detectable) nature of structure in practice.

In the next section, we provide some notation. Then a sec-
tion presents our empirical work onAsymRatioas a measure
of problem hardness in Planning benchmarks. Thereafter, a
section describes our synthetic domains and our analysis of
DPLL proofs, and another section concludes.

Preliminaries
We use the STRIPS formalism, using the terminology and
notation initial state I, goal G, and actionsa with pre(a),
add(a), del(a), with the standard syntax and semantics. By
planning taskswe mean instances of STRIPS.

CNF formulas are sets of clauses, where each clause is a
set of literals. For a CNF formulaφ with variable setV, a
variable subsetB⊆ V, and a value assignmenta to B, we
say thata is UP-consistentif applying a to (the literals in)
φ , and performing unit propagation on the resulting formula,
does not yield an empty clause.B is a backdoorif it has
no UP-consistent assignment. Thesizeof a DPLL tree is
the number of search nodes in it. The size of a resolution
refutation is the number of clauses in it.

We use two different methods to encode planning tasks as
CNF formulas. In our empirical work, we use the original
Graphplan-basedencoding from Blackbox (Kautz & Sel-
man 1999), which we assume the reader is familiar with.
In our formal analysis, to keep the formulas feasibly sim-
ple, we use a somewhat simplified version of that encoding.
We use variables only for the actions, taking the forma(t),
1≤ t ≤ b, whereb is the bound on the plan length. As in
Blackbox, there is an artificialNOOPaction for each factp,
whose only precondition isp, and whose only (add) effect
is p. The NOOPs are treated just like normal actions in the
encoding. A variablea(t) is included in the CNF iffa is
presentat t. An actiona is present att = 1 iff a’s precondi-
tion is true in the initial state;a is present att > 1 iff, for ev-
ery p∈ pre(a), at least one actiona′ is present att−1 with
p ∈ add(a′). For each actiona present at a timet and for
eachp∈ pre(a), there is apreconditionclause of the form
{¬a(t),a1(t−1), . . . ,al (t−1)}, wherea1, . . . ,al are all ac-
tions present att−1 with p∈ add(ai). For each goal factg∈
G, there is agoal clause{a1(b), . . . ,al (b)}, wherea1, . . . ,al
are all actions present atb that haveg∈ add(ai). Finally, for
eachincompatiblepaira anda′ of actions present at a timet,
there is amutexclause{¬a(t),¬a′(t)}. Here, a paira, a′ of
actions is called incompatible iff either both are not NOOPs,
or a is a NOOP for factp and p∈ del(a′) (or vice versa) –
i.e., our synthetic CNFs encode sequential planning.4

4In our synthetic domains, there is no parallelism anyway, and
the mutex clauses have an effect only on the power of UP. We re-



Goal Asymmetry in Planning Benchmarks
As said, we quantify goal asymmetry as follows.

Definition 1. Let P be a planning task with goalG. For a
conjunctionC of facts, letcost(C) be the length of a shortest
plan achievingC. Theasymmetry ratioof P is:

AsymRatio(P) :=
maxg∈Gcost(g)
cost(

∧
g∈Gg)

Note thatcost(
∧

g∈Gg), in this definition, is the optimal plan
length; to simplify notation, we will henceforth denote this
with m. Note also that, of course, a definition as simple as
Definition 1 can not be fail-safe. Imagine replacingG with
a single goalg, and an additional action with precondition
G and add effect{g}: the (new) goal is then no longer a
set of “sub”-goals. However, in the benchmark domains that
are actuallyusedby researchers to evaluate their algorithms,
G is almost always composed of several goal facts, and the
single goal facts correspond quite naturally to different sub-
problems of the task.5

Hypothesis 1. Let Pm be a set of planning tasks from the
same domain with the same size parameter values, and with
the same optimal plan lengthm. ForP∈Pm, let φ(P,m−1)
denote the Graphplan-based CNF encoding ofm−1 action
steps. Then, overPm, the hardness of provingφ(P,m−1)
unsatisfiable is strongly correlated withAsymRatio(P).

First, note that, certainly, whether this hypothesis holds
or not depends on the domain; in that sense it is a differ-
ent hypothesis for every domain. Second, note that the in-
stance size parameter values (nr. of vehicles for transporta-
tion, e.g.), together with the number of action steps encoded
– the optimal plan length minus 1 – determine the size of
the formula. Of course, formula size is typically correlated
with SAT solver performance. Our hypothesis concerns per-
formance in formulas ofsimilar size. Please note that we do
notwish to imply thatAsymRatiois “the” parameter predict-
ing SAT solver performance in Planning CNFs. There are,
presumably, many important factors and interplay between
them. Our (only) observation, below, is thatAsymRatio
works surprisingly well in a broad range of domains.

To test our hypothesis, as said, we ran large experi-
ments in all STRIPS domains used in the 3rd International
Planning Competition (Long & Fox 2003) (IPC-3), plus
Blocksworld and Logistics. The IPC-3 domains are Depots,
Driverlog, Freecell, Rovers, Satellite, and Zenotravel. De-
pots is a mixture between Blocksworld and Logistics, where

mark that Graphplan detects the linear nature of the domains, so,
there, both encodings have the same action mutexes.

5A more stable approach would be to identify a hierarchy of
layers of “landmarks” (Hoffmann, Porteous, & Sebastia 2004): set
G0 := G; iteratively, setGi+1 :=

⋃
g∈Gi

⋂
a:g∈add(a) pre(a), until

Gi+1 is contained in the previous layers. One could then select
the largest landmark layerGi and defineAsymRatiobased on that,
for example asmaxg∈Gi cost(g)+ i divided bycost(

∧
g∈Gg). This

approach could not be fooled by replacingG with a single goal. It
seems an overkill since, as said, typically the facts inG already cor-
respond naturally to different sub-problems. Exploring this issue in
more depth is an open topic.

blocks must be transportedandarranged in stacks. Driver-
log is a version of Logistics with drivers, where drivers and
trucks move on different (arbitrary) road maps. Freecell en-
codes the well-known solitaire card game where the task is
to re-order a random arrangement of cards, following certain
stacking rules, using a number of “free cells” for intermedi-
ate storage. Rovers and Satellite are simplistic encodings of
NASA space-applications. In Rovers, rovers move along in-
dividual road maps, and have to gather data about rock or
soil samples, take images, and transfer the data to a lander.
In Satellite, satellites must take images of objects, which in-
volves calibrating cameras, turning the right direction, etc.
Zenotravel is a version of Logistics where moving a vehicle
consumes fuel that can be re-plenished using a “refuel” op-
erator. Importantly,within each of all these domains, decid-
ing bounded plan existence — the problem encoded by our
CNFs — isNP-hard (Helmert 2003). So our experiments
are on challenging, if not real-world realistic, problems.

To obtain a reliable picture of how a complex DPLL-
based SAT solver (ZChaff) typically behaves in CNF for-
mulas generated from a domain, within each domain we
generated and examined tens of thousands of instances –
precisely, 50000. We chose the instance size parameters
by testing the original IPC-3 instances, and selecting the
largest one for which we could computeAsymRatioreason-
ably fast.6 E.g. in Driverlog we selected the instance in-
dexed 10 out of 20, and, accordingly, generated random in-
stances with 6 road junctions, 2 drivers, 6 packages, and 3
trucks. In Blocksworld, we generated random tasks with 9
blocks, in Logistics we generated random tasks with 1 air-
plane, 8 cities with 2 locations each, and 8 packages. Ac-
cording to the setup in Hypothesis1 (we also use the nota-
tions), within each domain we separated the 50000 instances
into sub-setsPm with identical optimal plan lengthm. For
eachP in a setPm, we computedAsymRatio(P), and ran
ZChaff(Moskewiczet al. 2001) on the formulaφ(P,m−1),
measuring the search tree size (nr. of backtracks). We plot-
ted the latter againstAsymRatioby dividing eachPm into
100 bins, withAsymRatio(P) ∈ [0,0.01), . . . , [0.99,1]; we
took the mean value out of each bin, avoiding noise by skip-
ping bins with less than 100 elements. We were surprised
ourselves by how clearly the results came out; see Figure1.
(Plots for medium values are almost identical.)

The plots are clearly supportive of Hypothesis1. Con-
sider for example Figure1 (d), the Rovers domain. The
three curves correspond to the classes of instances with op-
timal plan length 8, 9, and 10, respectively (the entire dis-
tribution of optimal plan length is 5 . . . 20, and 62% of the
50000 instances lie in the shown classes). In each of the
classes, the search tree size decreasesexponentiallyover a
linear increase inAsymRatio– note the logarithmic scale.
From the relative positions of the different curves, one can
also nicely see the influence of optimal plan length/formula
size – the longer the optimal plan, the larger the search tree.
In Blocksworld, the decrease of tree size overAsymRatiois
more noisy, and roughly linear except in the largest CNFs
(encoding 24 steps), where it is stronger. In Depots, Driver-

6That computation was done by calls to Blackbox.
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Figure 1: Mean search tree size of ZChaff, plotted againstAsymRatio(log-plotted in (d)), in CNFs encoding instances from
the IPC-3 domains (except Satellite and Zenotravel, see text), Blocksworld, and Logistics. Curves for different subsetsPm of
50000 random instances in each domain: the subsets corresponding to the 3 most frequently occurring optimal plan lengthsm.

log, and Logistics, the decrease is roughly linear in all
classes. In Freecell, the correlation is vague in the smaller
CNFs, but very clear in the largest ones. Note that there
are less data points (differentAsymRatiovalues) in Freecell
and Logistics than in the other domains. This is a domain
property: due to the particular semantics, more or less of
them possibleAsymRatiovalues for a setPm actually ap-
pear in practice. Indeed, Satellite and Zenotravel are not
shown in Figure1 because there is hardlyanydifference in
AsymRatio: the number of steps needed to achieve the in-
dividual goal facts is nearly constant. In fact, in Satellite,
within each classPm all instances havethe same AsymRatio
value. In Zenotravel, there are up to three different values
of AsymRatiowithin eachPm, but one of these values ac-
counts for almost all of the instances (99% and more). We
conclude that the degree ofAsymRatiovariance, and its cor-
relation with performance, depends on the domain – just as
one would expect of a measure of problem structure. In six
of our eight domains, a – sometimes drastic – correlation can
be observed.

Beside the search tree size of ZChaff, we also measured
the (maximum) search tree depth, the size of the identified
backdoors (the sets of variables branched upon), and thera-
tio between size and depth of the search tree.7 The latter
gives an indication of how “broad” or “thin” the shape of
the search tree is – denoting depth withd, if the tree is full
binary then the ratio is(2d+1−1)/d; if the tree is degener-
ated to a line then the ratio is(2d + 1)/d. For each of our

7Note that backdoors play a different role in ZChaff than in
standard DPLL, due to the effects of clause learning, which may,
e.g., cause a choice variable to be switched by UP.
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Figure 2: Size/depth ratio of ZChaff’s search trees, plotted
againstAsymRatio, in Rovers.

domains (except Satellite and Zenotravel), and for each of all
these parameters, we found an at least linear decrease over
increasingAsymRatio. Figure2 shows the size/depth ratio
data for the Rovers domain, as an example. We find the re-
sults regarding size/depth ratio particularly interesting since
they nicely reflect the wide-spread intuition that, as problem
structure increases, UP can prune many branches early on
and so makes the search tree grow thinner.

We finally measured and compared the relative number of
instances, overAsymRatio, in our eight domains as well as in
a domain of purely random instances generated using Rinta-
nen’s (2004) “Model A” with 40 state variables. As already
mentioned, in Satellite and Zenotravel the distribution of in-
stances overAsymRatiohas all (almost all) its weight in a
single point. In our other domains, most of the time the dis-
tributions are roughly Gaussian, with a peak of around 50%
of the instances at anAsymRatioof around 0.6, the other in-



stances distributed with maximum distance of around 0.2 on
both sides of the peak. More precisely, in the respectively
most inhabitatedPm class, Depots has 32% of the instances
at AsymRatio0.56, Driverlog has 40% at 0.55, Freecell has
51% at 0.83, Rovers has 67% at 0.5, Blocksworld has 31%
at 0.6, and Logistics has 62% at 0.62. Now, by contrast, the
distribution generated with Rintanen’s method has a peak of
30% atAsymRatio0.3 – the (roughly Gaussian) distribution
has its weight insignificantly lower AsymRatio values.We
take this to confirm the intuition that a highAsymRatiois
not likely to occur in a purely random world – it is indeed
something that is typical forstructuredinstances only.8

Analyzing Goal Asymmetry in Synthetic
Domains

We analyzed three classes of synthetic domains/CNF for-
mulas, called MAP, SBW, and SPH. MAP is a simple trans-
portation kind of domain, SBW is a block stacking domain.
SPH is a structured version of the Pigeon Hole problem.
Each of the domains/CNF classes is parameterized by sizen
and structurek. In the planning domains, we use the simpli-
fied Graphplan-based encoding described earlier, and con-
sider CNFs that are one step short of a solution. We denote
the CNFs withMAPk

n , SBWk
n , andSPHk

n, respectively.
Due to space restrictions, we consider only MAP in de-

tail, and we omit all proofs. Full details and proofs are
available in a TR (Hoffmann, Gomes, & Selman 2006). As
said, the aim of our analysis was to obtain a deeper under-
standing of the observed empirical correlation. We chose
the MAP and SBW domains because they are related to Lo-
gistics and Blocksworld, two of the most classical Planning
benchmarks. We chose SPH for its close relation to the for-
mulas considered in proof complexity. The reader will no-
tice that the synthetic domains arevery simple. The rea-
sons for this are threefold. First, we wanted to capture the
intended intuitive problem structure in as clean a form as
possible, without “noise”. Second, even though the Plan-
ning tasks are quite simple,the resulting CNF formulas are
complicated– e.g., much more complicated than the Pigeon
Hole formulas often considered in proof complexity. Third,
we identifyprovably minimalbackdoors. To do so, one has
to take account of every tiny detail of the effects of unit prop-
agation. The respective proofs are quite involved for our
simple domains already – for MAP, e.g., they occupy 9 pages
in the TR, featuring myriads of interleaved case distinctions.
To analyze more complicated domains, one probably has to
sacrifice precision.

We emphasize once more that the design of our domains
is, to a large extent, independent of the precise quantifica-
tion we used to turn our intuitions about “the degree of sub-
problem interactions” into a number –AsymRatio, namely.
The domains are relevant for any formal definition of the
same sort of intuitive problem structure. The same is true
for the analysis of the corresponding search spaces.

8The correlation ofAsymRatiowith search tree size, depth,
size/depth ratio and backdoor size is also present in the random
instances, with a little more variance.

MAP

In the MAP domain, one moves on the road map graph, pa-
rameterized byn, shown in Figure3 (a) and (b). The avail-
able actions take the formmove-x-y, wherex is connected to
y with an edge in the graph. The precondition is{at-x}, the
add effect is{at-y,visited-y}, and the delete effect is{at-x}.
Initially one is located atL0. The goal is to visit a number
of locations.Whatlocations must be visited depends on the
value ofk ∈ {1,3, . . . ,2n−3}. If k = 1 then the goal is to
visit each of{L1

1, . . . ,L
1
n}. For each increase ofk by 2, the

goal on theL1-branch goes up by two steps, and the highest-
indexed of the other goals is skipped. Fork = 2n− 3, we
get the goal{L2n−3

1 ,L1
2}.9 We refer tok = 1 as thesymmet-

rical case, and tok = 2n−3 as theasymmetrical case, see
Figure3 (a) and (b), respectively.

The length of a shortest plan is 2n−1 independently ofk;
our CNFs encode 2n−2 steps;AsymRatiois k

2n−1. Figure3
(c) and (d) illustrate that the setting ofk has a quite drastic
effect on backdoor size. We will detail this below. First,
observe that the setting ofk has only very little impact on
the size and shape of the constraint graph (the undirected
graph where nodes are variables and edges indicate common
membership in at least one clause), illustrated in Figure3
(e) and (f): from (e) to (f), three edges within the outmost
circle disappear (one of these is visible on the left side of the
pictures, just below the middle) and one new edge within the
outmost circle is added. In general, between formulasMAPk

n

andMAPk′
n , k′ > k, there isno differenceexcept thatk′− k

goal clauses are skipped, and that the content of the goal
clause for theL1-branch changes. Precisely, the number of
clauses inMAPk

n is 3n3 +27n2−73n+39− (k+1)/2. The
number of variables is 16n2−33n+14, irrespectively ofk.
It even holds that, also irrespectively ofk, for any constant
b, theb-cutset size inMAPk

n is a square function inn. This
can be seen as follows. The constraint graph contains, at
each time step 2≤ t ≤ 2n− 2, largecliquesof variables,
for example the 2n variables corresponding to moves to or
from L0, which are fully connected due to the mutex clauses.
From a clique of sizel , one has to removel −1−b nodes in
order to get to an induced width of 1≤ b≤ l −1. Since the
mentioned cliques are disjoint, this shows the claim.

The hidden structure in our formulas does not affect the
size ofb-cutsets. Itdoesaffect the size of DPLL refutations,
and backdoors. First, we proved that, in the symmetrical
case, the DPLL trees are large.

Theorem 1 (MAP symmetrical case, DPLL LB). Every
DPLL refutation of MAP1n must have size exponential in n.

The proof of Theorem1 proceeds by a “reduction” of
MAP1

n to a variant of the Pigeon Hole problem. A reduc-
tion here is a function thattransforms a resolution refuta-
tion of MAP1

n into a resolution refutation of the Pigeon Hole.
Obviously, given a reduction function from formula class A
into formula class B, a lower bound on the size of resolu-
tion refutations of B is also valid for A, modulo the maximal

9Fork= 2n−1,MAPk
n contains an empty clause: no supporting

action for the goal is present at the last time step.
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Figure 3: Goals, backdoors, and constraint graphs in MAP. In (a) and (b), goal locations are indicated in bold face, for
the symmetrical case (a), and the asymmetrical case (b). In (c), (d), (e), and (f),n = 4. In (c) and (d), the horizontal axis
indicates branches in the map, and the vertical axis indicates time steps; abbreviations: “NA-0” forNOOP-at-L0(1), “MV-i”
for move-L0-L1

i , “NV-i” for NOOP-visited-L1
i , and “MV-23” for move-L2

1-L3
1. In (e) and (f), the variables at growing time steps

lie on circles with growing radius, edges indicate common membership in at least one clause.

size increase induced by the reduction. We define a reduc-
tion function fromMAP1

n into the onto functional Pigeon
Hole problem, o f PHPn. This is the standard Pigeon Hole
– wheren+ 1 pigeons must be assigned ton holes – plus
“onto” clauses saying that at least one pigeon is assigned to
each hole, and “functional” clauses saying that every pigeon
is assigned to at most one hole. Every resolution refutation
of o f PHPn must have sizeexp(Ω( n

(log(n+1))2 )) (Razborov
2004). Our reduction proceeds by first setting many vari-
ables inMAP1

n to 0 or 1, and identifying other variables (re-
namingx andy to a new variablez).10 We prove that such
operations do not increase the size of a resolution refutation.
The reduced formula is a “temporal” version of the onto Pi-
geon Hole problem; we call itoTPHPn. It is similar to the
standard (onto) Pigeon Hole problem except that now the
“holes” are time steps, in analogy to Planning encodings.
We prove that, from a resolution refutation ofoTPHPn, one
can construct a resolution refutation ofo f PHPn by replac-
ing each resolution step with at mostn2 + n new resolution
steps. This proves the claim for general resolution, which
suffices since DPLL corresponds to a restricted form of res-
olution (e.g., see (Beame, Kautz, & Sabharwal 2004)). The
same is true for DPLL with clause learning, as done in the
ZChaff solver we use in our experiments.

10For example, we set allNOOP-at variables to 0. Such a vari-
able will never be set to 1 in an optimal plan; similar intuitions are
behind all the made operations.

The proof of Theorem1 by reduction to the Pigeon Hole
problem makes intuitive sense: clearly, trying to visit the
n goal locations in not enough time is a Pigeon Hole style
situation. However, the proof does not tell us very much
about what is actually going on inside a DPLL procedure
run onMAP1

n . To shed more light on this, we investigated
the best choices of branching variables for such a procedure.
We identified the following backdoor:

MAP1
n B := {move-L0-L1

i (t) | t ∈ T,2≤ i ≤ n} ∪
{NOOP-visited-L1

i (t) | t ∈ T,3≤ i ≤ n} ∪
{NOOP-at-L0(1)} ∪
{move-L0-L1

1(t) | t ∈ T \{2n−5,2n−3}}
Here,T = {3,5, . . . ,2n−3}. Compare Figure3 (c).

Theorem 2 (MAP symmetrical case, BD).MAP1
n B is a

backdoor for MAP1n .

Obviously, the size ofMAP1
n B is Θ(n2).11 For the proof

to Theorem2, first note that, in the encoding,any pair of
move actions is incompatible. So if one move action is
set to 1 at a time step, then all other move actions at that
step are forced out by UP over the mutex clauses – the time
step is “occupied” (this is relevant also in the asymmetrical
case below). Now, to see the basic proof argument, assume
for the moment thatMAP1

n B containsall move-L0-L1
i (t) and

NOOP-visited-L1
i (t) variables, for 1≤ i ≤ n andt ∈ T. As-

signing values to all these variables results, by UP, in a sort

11Remember that the total number of variables is alsoΘ(n2).



of goal regression. In the last time step of the encoding,
2n−2, the goal clauses formn constraints requiring to either
visit a locationL1

i , or to have visited it earlier already (i.e., to
achieve it via a NOOP). Examining the interactions between
moves andNOOPs att = 2n−3, one sees that, if all these
are set, then at leastn− 1 goal constraints will, by UP, be
transported down tot = 2n−4. Iterating the argument over
then−2 time stepst ∈T, one gets 2 goal constraints att = 2:
two nodesL1

i must be visited within the first two time steps.
It is easy to see, then, that branching overNOOP-at-L0(1)
yields an empty clause in either case. What makes identi-
fying a non-redundant(minimal) backdoor difficult is that
UP is, in a variety of subtleties, slightly more powerful than
just performing the outlined “regression”.MAP1

n B contains
hardly any variables for branchi = 1. So att = 2 one gets
only a single goal constraint, achieving which isn’t a prob-
lem. We perform an intricate case distinction about the pre-
cise pattern of time steps that are occupied after the regres-
sion, taking account of, e.g., such subtleties as the possibil-
ity to achievevisited-L1

1 by moving in fromL2
1 above. In

the end, one can show that UP enforces commitments to ac-
commodate also the 2move-L0-L1

i actions that weren’t ac-
commodated in the regression. For this, there is not enough
room left.

We conjecture that the backdoor identified in Theorem2
is also a minimum size (i.e., an optimal) backdoor; forn≤
4 we verified this empirically, by enumerating all smaller
variable sets.12 As said, the backdoor is minimal.

Theorem 3 (MAP symmetrical case, BD minimality). Let
B′ be a subset of MAP1n B obtained by removing one variable.
The number of UP-consistent assignments to B′ is always
greater than0, and at least(n−3)! for n≥ 3.

To prove this theorem, one figures out how wrong things
can go when a variable is missing in the proof of Theorem2.

Intuitively, the backdoor in the symmetrical case has
square size becausen branches are involved at 2n−2 steps.
One would expect that, in the asymmetrical case, a DPLL
refutation involving only branch 1 could yield a backdoor of
linear size inn. It turns out one can do much better. Us-
ing the convention thatL0

1 stands forL0, the backdoors we
identify have the form (compare Figure3 (d)):

MAP2n−3
n B :=
{move-L2i−2

1 -L2i−1
1 (2i −1) | 1≤ i ≤ dlog2ne}.

Theorem 4 (MAP asymmetrical case, BD).MAP2n−3
n B is

a backdoor for MAP2n−3
n .

The size ofMAP2n−3
n B is dlog2ne. We conjecture that this

is optimal, which we verified empirically forn≤ 8.

Theorem 5 (MAP asymmetrical case, BD minimality).
Let B′ be a subset of MAP2n−3

n B obtained by removing one
variable. There is exactly one UP-consistent assignment to
B′.

We consider it particularly interesting that theMAP2n−3
n

formulas havelogarithmic backdoors. This shows, on the
one hand, that these formulas are (potentially) easy for

12Enumerating variable sets in small enough examples was also
our method to find the backdoors in the first place.

DPLL procedures. On the other hand, the formulas are non-
trivial in two important respects. First, they do have non-
constant backdoors and are not just solved by unit propa-
gation. Second,finding the logarithmic backdoors requires,
at least, a non-trivial branching heuristic – theworst-case
DPLL refutations ofMAP2n−3

n are still exponential inn.
Let us have a closer look at how the logarithmic back-

doors arise. The proof of Theorem4 uses the following two
properties of UP, inMAP2n−3

n :

(1) If one sets a variablemove-Li−1
1 -Li

1(i) to 1, then at all time
stepsj < i a move variable is set to 1 by UP.

(2) If one sets a variablemove-Li−1
1 -Li

1(i) to 0, then at all time
stepsj > i a move variable is set to 1 by UP.

Both properties are caused by the “tightness” of branch 1,
i.e., by UP over the precondition clauses of the actions mov-
ing along that branch. Other than what one may think at first
sight, the two properties by themselves arenot enough to
determine the log-sized backdoor. The properties just form
the foundation of a subtle interplay between the different
settings of the backdoor variables, exploiting exponentially
growing UP implication chains on branch 1. The interplay is
best explained with an example. Forn = 8, the backdoor is
{move-L0-L1

1(1), move-L2
1-L3

1(3), move-L6
1-L7

1(7)}. Figure4
contains an illustration.
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Figure 4: The workings of the optimal backdoor forMAP13
8 .

Arrows indicate moves on theL1-branch forced to 1 by
UP. Direction→ means towardsL13

1 ,← means towardsL0.
When only a single open step is left,move-L0-L1

2 is forced
to 1 at that step by UP, yielding an empty clause.

Consider the first (lowest) variable in the backdoor,
move-L0-L1

1(1). If one sets this to 0, then property (2) ap-
plies: only 13 of the 14 available steps are left to move to-
wards the goal locationL13

1 ; UP recognizes this, and forces
moves towardsL13

1 at all steps 2≤ t ≤ 14. Sincet = 1 is the
only remaining time step not occupied by a move action, UP
over theL1

2 goal clause setsmove-L0-L1
2(1) to 1, yielding a

contradiction to the precondition clause of the move set to 1
at time 2. Somove-L0-L1

1(1) must be set to 1.
Consider the second variable in the backdoor,

move-L2
1-L3

1(3). Say one sets this to 0. By property
(2) this forces moves at all steps 4≤ t ≤ 14. So the goal
for L1

2 must be achieved by an action at step 3. But we
have committed tomove-L0-L1

1 at step 1. This forces us to



move back toL0 at step 2 and to move toL1
2 at step 3. But

then the move forced in earlier at 4 becomes impossible.
It follows that we must assignmove-L2

1-L3
1(3) to 1. With

property (1), this implies that, by UP, all time steps below
3 get occupied with move actions. (Precisely, in our case
here,move-L1

1-L2
1(2) is also set to 1.)

Consider the third variable in the backdoor,
move-L6

1-L7
1(7). If we set this to 0, then by property

(2) moves are forced in by UP at the time steps 8≤ t ≤ 14.
So, to achieve theL1

2 goal at step 7, we have to take
three steps to move back fromL3

1 to L0: steps 4, 5, and
6. A move toL1

2 is forced in at step 7, in contradiction
to the move at 8 forced in earlier. Finally, if we assign
move-L6

1-L7
1(7) to 1, then by property (1) moves are forced

in by UP at all steps below 7. We needseven steps to move
back from L7

1 to L0, and an eighth step to get toL1
2. But we

have only the 7 steps 8, . . . ,14 available, so the goal forL1
2

is unachievable.
The key to the logarithmic backdoor size is that, to

achieve theL1
2 goal, we have to move back fromLt

1 locations
we committed to earlier (as indicated in bold face above for
t = 3 andt = 7). We committed to move toLt

1, and the UP
propagations force us to move back, thereby occupying 2∗ t
steps in the encoding. This yields the possibility to double
the value oft between variables.

Proving Theorem5 is a matter of figuring out what can go
wrong in the proof to Theorem4, after removing one vari-
able. Note that the DPLL tree forMAP2n−3

n actuallydegen-
erates to a line: if one processes theMAP2n−3

n B variables
from t = 1 upwards, then, for every variable, assigning 0
immediately yields an empty clause in UP.
Corollary 1 (MAP asymmetrical case, DPLL UB). For
MAP2n−3

n , there is a DPLL refutation of size2∗dlog2ne+1.
Besides small backdoors, (nearly) degenerated DPLL

trees are also typical in structured examples, as the empir-
ical results summarized in the previous section (specifically,
Figure2) show. Note that we have now shown adoublyex-
ponential gap between the sizes of the best-case DPLL refu-
tations in the symmetrical case and the asymmetrical case.

It would be interesting to determine what the optimal
backdoors are in general, i.e. inMAPk

n , particularly at what
point the backdoors become logarithmic. Such an investi-
gation turns out to be extremely difficult — for interesting
combinations ofn andk it is practically impossible to find
the optimal backdoors empirically, and so get a start into
the theoretical investigation. We developed an enumeration
program that exploits symmetries in the planning task to cut
down on the number of variable sets to be enumerated. Even
with that, the enumeration didn’t scale up far enough. We
leave this topic for future work.

To conclude our analysis, Figure5 shows the behavior of
ZChaff in MAP. As expected, we get exponential scaling for
the symmetrical casek = 1, and polynomial scaling for the
asymmetrical casek = 2n−3. If we fix a value ofn in Fig-
ure5 (consider the intersections of the curves with a vertical
line) we observe a strong correlation withAsymRatio, just
like in the Planning benchmarks from Figure1. This directly
connects our formal analysis to our empirical results.
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Figure 5: Search tree size of ZChaff in MAP, log-plotted
againstn, for different settings ofk.

SBW
This is a block-stacking domain, withstacking restrictions
on what blocks can be stacked onto what other blocks. The
blocks are initially all located side-by-side on a tablet1. The
goal is to bring all blocks onto another tablet2, that has only
space for a single block; so then blocks must be arranged
in a single stack on top oft2. The parameterk, 0≤ k≤ n,
defines the amount of restrictions. There arek “bad” blocks
b1, . . . ,bk andn−k “good” blocksg1, . . . ,gn−k. Eachbi , i >
1, can only be stacked ontobi−1; b1 can be stacked ontot2
and anygi . Thegi can be stacked anyg j , and ontot2.

Independently ofk, the optimal plan length isn: move
actions stack one block onto another block or a table.
AsymRatiois 1

n if k = 0, andk
n otherwise. In the symmetri-

cal case,k = 0, we identify backdoors of sizeΘ(n3) – linear
in the total number of variables. In the asymmetrical case,
k= n−2, there areO(logn) DPLL refutations and (minimal)
backdoors.

SPH
Finally, we constructed anon-Planningexample that also
exhibits similar asymmetric structure and DPLL behavior.
We modified the Pigeon Hole problem. In ourSPHk

n formu-
las, like in the standard Pigeon Hole problem, the task is to
assignn+1 pigeons ton holes. The difference is that there
is now one “bad” pigeon that requiresk holes, andk− 1
“good” pigeons that can share a hole with the bad pigeon.
The remainingn− k+ 1 pigeons are normal, i.e., need ex-
actly one hole each. The range ofk is between 1 andn−1.
Independently ofk, n+ 1 holes are needed overall. Apart
from identifying minimal backdoors for all combinations of
k and n, for k = n− 1 we identify anO(n) DPLL refuta-
tion. With results by Buss and Pitassi (1997), this implies an
exponential complexity gap tok = 1.

Conclusion
Modern DPLL-based SAT solvers are very efficient in
“structured” CNFs encoding applications from Planning and
Verification. We defined a concrete notion of what “struc-
ture” is, in Planning, and we revealed empirically that this
structure indeed often governs performance, in practical ex-
amples. Our analytical results provide a detailed case study
of how this phenomenon arises. In particular, we show that



the phenomenon can make an (even doubly) exponential dif-
ference.

From a purely practical point of view, our research may
inspire the development of novel search heuristics. The
very different forms of the backdoors in the symmetrical
and asymmetrical cases suggest to approximate AsymRa-
tio, and choose a specialized branching heuristic depending
on the outcome. Similarly, the use of symmetry detection
and exploitation techniques (e.g. (Rintanen 2003; Sabharwal
2005)) seems particularly relevant with low AsymRatio, and
could be done dependent on this. Most importantly maybe,
with some more work, approximated AsymRatio could, at
least within some fixed domain of interest, probably be made
a successful runtime predictor, which is useful in various sit-
uations (like, making a priori decisions).

From a more principled point of view, our results promote
the formal understanding of what is relevant for search per-
formance in practical examples. Such an understanding is,
we believe, of great importance in itself, and should be given
more attention in the field. We do not claim that the pre-
sented results “solve” this issue in an exhaustive way. Quite
differently, we hope and believe that our approach will in-
spire similar investigations of other forms of practical prob-
lem structure, and that this will make our understanding of
what’s going on inside search more mature.
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