
Delete Relaxation and Traps in General Two-Player Zero-Sum Games

Thorsten Rauber and Denis Müller and Peter Kissmann and Jörg Hoffmann
Saarland University, Saarbrücken, Germany

{s9thraub, s9demue2}@stud.uni-saarland.de, {kissmann, hoffmann}@cs.uni-saarland.de

Abstract

General game playing (GGP) is concerned with constructing
players that can handle any game describable in a pre-defined
language reasonably well. Nowadays, the most common ap-
proach is to make use of simulation based players using UCT.
In this paper we consider the alternative, i.e., an Alpha-Beta
based player. In planning, delete relaxation heuristics have
been very successful for guiding the search toward the goal
state. Here we propose evaluation functions based on delete
relaxation for two-player zero-sum games.
In recent years it has been noted that UCT cannot easily cope
with shallow traps, while an Alpha-Beta search should be
able to detect them. Thus, a question that arises is how com-
mon such traps are in typical GGP benchmarks. An empiri-
cal analysis suggests that both cases, relatively few traps and
a high density of traps, can occur. In a second set of experi-
ments we tackle how well the Alpha-Beta based player using
the proposed evaluation function fares against a UCT based
player in these benchmarks. The results suggest that (a) in
most games with many traps Alpha-Beta outperforms UCT,
(b) in games with few traps both players can be on par, (c)
the evaluation functions provide an advantage over a blind
heuristic in a number of the evaluated games.

Introduction
Game playing has always been an important topic in artifi-
cial intelligence. The most well-known achievements are
likely the successes of specialized game players such as
DeepBlue (Campbell, Hoane, and Hsu 2002) in Chess or
Chinook (Schaeffer et al. 1992) in Checkers, defeating the
human world-champions in the respective games. However,
these specialized players have deviated far from the original
idea of a general problem solver (Newell and Simon 1963).

In 2005 this idea was picked up again, by introducing a
new competition for promoting research in general game
playing (Genesereth, Love, and Pell 2005). Here the players
are not supposed to play only a single game on world-class
level, but rather to be able to handle any game that can be
described in a given language and play it reasonably well.
Most research in this area has been invested in deterministic
games of full information.

After early successes of players based on Alpha-Beta
search with automatically generated evaluation functions
(e.g., (Clune 2007; Schiffel and Thielscher 2007)), a new
trend dominates the field: the use of UCT (Kocsis and

Szepesvári 2006). This is a simulation-based approach, i.e.,
lots of games are simulated and the achieved rewards prop-
agated toward the root of a partial game-tree, in order to de-
cide on the best move to take. Since 2007 all winners of the
international competition have made use of this technique
(e.g., (Björnsson and Finnsson 2009; Méhat and Cazenave
2011)). However, for certain games it has been shown that
UCT is not always the best choice. One property that is dif-
ficult to handle by that approach is the presence of shallow
traps (Ramanujan, Sabharwal, and Selman 2010), i.e., states
from which the opponent has a winning strategy of short
length. While Alpha-Beta can identify such traps, UCT typ-
ically can not, at least if the branching factor is high enough
or the possible playouts within the trap are long enough.

The basic setting of general game playing is comparable
to that of action planning. There the aim also is to implement
solvers that can handle any planning task describable in the
given language. The current trend in planning is in heuris-
tic search, where the heuristics are automatically generated
at run-time. One successful approach is based on delete re-
laxation, e.g., the FF heuristic (Hoffmann and Nebel 2001).
In the delete relaxed setting, anything that once was true re-
mains true. The length of a plan (i.e., a solution) for a delete
relaxed planning task can then be used as an estimate for the
length of a plan in the original setting.

In this paper we propose new evaluation functions for
general game playing based on the length estimates derived
by delete relaxation heuristics and apply these evaluation
functions in an Alpha-Beta implementation. Furthermore,
we empirically evaluate a number of games to get an idea
of their trap density. In the experimental results we will
see that our Alpha-Beta based player indeed outperforms a
UCT based player in most tasks that contain a large amount
of shallow traps and is on-par in several of the games with
fewer traps. Additionally, the use of the evaluation function
brings a real advantage over a blind heuristic in a number of
the evaluated games.

Background
In this section we provide the necessary background on gen-
eral game playing, UCT search, traps in games and delete
relaxation heuristics as they are used in planning. We as-
sume the reader to be familiar with the basics of Alpha-Beta
search, so that we skip an introduction.



General Game Playing
The main idea of general game playing (GGP) is to imple-
ment players that play any game that can be described by
the given language reasonably well. The current setting as it
was introduced for the first international competition in 2005
(Genesereth, Love, and Pell 2005) allows for a wide range
of games: single-player puzzles or two- and multi-player
games, which can be, among others, turn-taking or with si-
multaneous moves, zero-sum or more general rewards, co-
operative, etc. In all settings the goal for each player is to
maximize its own reward. Furthermore, all these games are
finite, discrete, deterministic, and all players have full infor-
mation.

In this paper we consider only the case of strictly turn-
taking two-player zero-sum games. The two players are de-
noted Max (the starting player) and Min. As possible out-
comes we allow only win (here denoted 1), loss (denoted
−1), and draw (denoted 0) from the Max player’s point of
view. Basically, our definition of a game is an extension
of the multi-agent STRIPS setting (Brafman and Domshlak
2008) to adversarial agents:
Definition 1. A game is a tuple ΠG =
〈V,AMax , AMin , I, G,R〉, where V is the set of state
variables or facts, AMax and AMin are the actions of the
Max and Min player, respectively, I is the initial state in
form of a complete assignment to V , G is the termination
criterion in form of a partial assignment to V , and R is a
function assigning a reward in {−1, 0, 1} to each terminal
state. Similar to planning, an action a is of the form
〈prea, adda, dela〉, where prea is the precondition, adda
the list of add-effects, and dela the list of delete-effects.

Note that this definition deviates from the commonly used
game description language GDL (Love, Hinrichs, and Gene-
sereth 2008), where the effects of an action specify all facts
that are true in the successor state, which together with the
closed world assumption results in a full state specification.
Definition 2. For a game ΠG = 〈V,AMax , AMin , I, G,R〉,
the semantics are defined by means of a transition system
ΘG = 〈S,L, T, I, S−1g , S0

g , S
1
g〉, where S = SMax ∪ SMin

is the finite set of all states, SMax the set of states where
Max has to move and SMin the set of states where Min has
to move. L = LMax ∪ LMin is a finite set of labels with
LMax = AMax and LMin = AMin . T = TMax ∪ TMin is a
set of transitions consisting of TMax ⊆ SMax×LMax×SMin

and TMin ⊆ SMin × LMin × SMax . Precisely, (s, l, s′) ∈
TMax if l is applicable in s (i.e., if s ∈ SMax , l ∈ LMax ,
prel ⊆ s), and s′ ∈ SMin is the resulting successor state
(i.e., if s′ = (s \dela)∪adda); similar for TMin . I ∈ SMax

is the initial state. S−1g ⊆ S is the set of terminal states
lost for Max, S0

g ⊆ S the set of terminal draw states, and
S1
g ⊆ S the set of terminal states won by Max, i.e., s ∈ Srg if
G ⊆ s and R(s) = r. The Max player tries to maximize the
reward while Min tries to minimize it.

Upper Confidence Bounds Applied to Trees
The upper confidence bounds (UCB1) algorithm (Auer,
Cesa-Bianchi, and Fischer 2002) is used in the area of multi-
armed bandits and aims at maximizing the expected reward.

The upper confidence bounds applied to trees (UCT) algo-
rithm (Kocsis and Szepesvári 2006) is an extension of this to
tree based searches. It treats every internal node as a multi-
armed bandit (where the different arms correspond to the
possible actions to take) and tries to learn which actions are
preferable. UCT consists of four phases: selection, expan-
sion, simulation, and backpropagation.

In the selection phase nodes stored in the UCT tree are
evaluated and a path is followed until a leaf of that tree is
reached. The evaluation works as follows. Let s be the state
represented by a node, a1, . . . , an the actions applicable in
state s, s1, . . . , sn the corresponding successor states, n(s)
the number of times state s was reached, n(s, a) the number
of times that action a was chosen in state s, and δ(s) the
average reward achieved when starting in state s. The UCT
value for the different actions is defined as

UCT (s, ai) = δ(si) + C

√
log n(s)

n(s, ai)
. (1)

In our two-player setting, if s ∈ SMax , we can use this di-
rectly and select the action achieving the highest UCT value;
if s ∈ SMin , we use the negation of δ(si) in equation (1)
and still select the action achieving the highest UCT value.
The constant C is used to set the amount of exploration or
exploitation: With a small value the algorithm will tend to
exploit the knowledge already generated by mainly follow-
ing the most promising actions, while with a high value the
algorithm will tend to explore different areas, often selecting
actions that lead to less promising successors.

If a state contains some unexplored successors, instead of
evaluating the UCT formula one of the unexplored succes-
sors will be selected randomly. This assures that the formula
is evaluated only if initial values for all successors are set.

The expansion phase starts when a leaf node of the UCT
tree has been reached. In that case the leaf node will be
expanded, the successor added to the tree, and the simulation
phase starts.

In the simulation phase a Monte-Carlo run is started,
which chooses among the applicable actions of the current
state at random until a terminal state is reached.

When this happens, the backpropagation starts. This up-
dates the average rewards and counters of all states visited
during the selection phase. As soon as all nodes are updated
the selection phase starts over at the root of the UCT tree.

When an actual action is to be performed and we are the
Max (Min) player, the action leading to the successor with
highest (smallest) average will be selected and the corre-
sponding successor node will become the new root of the
UCT tree. If it is not our turn to move in the current state,
we wait for the action chosen by the opponent and take the
corresponding successor as the new root. Afterwards the
search starts over at the new root node.

Traps in Games
In some games such as Go traditional Alpha-Beta based
players are clearly inferior to UCT based players like MoGo
(Gelly and Silver 2008). In others like Chess, however, the
Alpha-Beta based players are on a level beyond any human



world-champion and clearly outperform UCT based players.
One explanation for this behavior was provided by Ramanu-
jan, Sabharwal, and Selman (2010), who noticed that Chess
contains shallow traps while Go does not.

A state s is called at risk if for the current player p there
is a move m so that the corresponding successor s′ is a state
in which the opponent of p has a winning strategy. If the
winning strategy has a maximum of k moves, we call state
s′ a level-k search trap for p.

A trap is considered to be shallow if it can be identified
by Alpha-Beta search. Due to its exhaustive nature, this is
the case if its depth-limit is at least k+ 1. Such a player can
avoid falling into the trap by using a move different from m
in state s. Typically, traps of level 3–7 are considered to be
shallow. UCT often cannot identify such traps as it spends
a lot of time exploring states much deeper than the level of
the trap, in areas it considers promising.

In a subsequent study Ramanujan, Sabharwal, and Sel-
man (2011) created a synthetic game in which they could
manually set the density of traps. With this they found that
without any traps, UCT was much better than Minimax.
With only few traps in the state space UCT was still bet-
ter than Minimax. However, the higher the density of traps
the worse UCT performed in comparison to Minimax.

Delete Relaxation Heuristics
The setting in planning is similar to ours, with the exception
that planning allows only for a single agent. Additionally,
the aim of this agent is to reach a terminal state in as few
steps as possible. Other than that, especially the handling of
actions is the same in both formalisms.

The delete relaxation corresponds to the idea of ignoring
the delete effects. That means, everything that once was true
will remain true forever. This allows the calculation of a fix-
point of those facts that can become true at any point in the
future and of those actions that may be applicable at some
point in the future.

One way to do so is by means of the relaxed planning
graph (RPG). The RPG consists of alternating layers of facts
and actions. The first layer contains all those facts currently
true. Then follows a layer with all the actions that are ap-
plicable based on those facts. The next layer contains all
facts true in the previous layers and the ones added by the
actions of the previous layer. This continues until a fixpoint
is reached or all facts of a specified goal state are present in
the last generated layer. Instead of generating the full RPG,
it often suffices to store, for each action and each fact, the
first layer it appeared in.

The optimal relaxation heuristic h+ gives the minimal
number of actions needed to reach a given goal state from
the current state in the relaxed setting, which is an admissi-
ble (i.e., not overestimating) heuristic for the original non-
relaxed search problem. As this is NP-hard to calculate ap-
proximations are used, e.g., the FF heuristic (Hoffmann and
Nebel 2001). After generating the RPG, it marks all facts
of the specified goal. Then it works in a backpropagation
manner through the RPG, starting at the last generated layer.
For each marked fact newly added in this layer it marks an
action that adds it. Given these newly marked actions it

marks all facts in their preconditions. This continues un-
til the first layer of the RPG is reached. At that point, the
marked actions correspond to a solution plan of the relaxed
task, and their number is returned as an approximation of the
h+ heuristic.

Delete Relaxation in GGP
In order to evaluate non-terminal states we propose the fol-
lowing new approach based on delete relaxation heuristics.
Similar to automated planning, we can define the delete re-
laxation of a game:
Definition 3. For a game ΠG = 〈V,AMax , AMin , I, G,R〉,
we denote its delete relaxation as Π+

G =

〈V,A+
Max , A

+
Min , I, G,R〉 where A+

Max =
{〈prea, adda, ∅〉 | 〈prea, adda, dela〉 ∈ AMax} (simi-
lar for A+

Min ).
Given a state s, we use the FF heuristic (Hoffmann and

Nebel 2001) operating on the full set of actions A+ =
A+

Max ∪ A
+
Min to estimate the number of moves needed to

reach a state with reward 1, denoted as lwin(s), and to esti-
mate the number of moves needed to reach a state with re-
ward −1, denoted as llose(s). Each of these values is set to
∞ if no corresponding terminal state is reachable anymore.
We define the evaluation function h1(s) of state s as

h1(s) =


1 if lwin(s) 6=∞ and llose(s) =∞
−1 if lwin(s) =∞ and llose(s) 6=∞
0 if lwin(s) =∞ and llose(s) =∞

llose(s)−lwin (s)
max(llose(s),lwin (s))

otherwise.

If only one player’s winning goal states cannot be reached
anymore we treat the state as being won by the opponent.
Otherwise the quotient results in a value in [−1, 1]. If it
takes more moves to reach a lost state the Max player seems
to have a higher chance to win, so that the evaluation will
be greater than 0; otherwise the Min player seems to have a
better chance, resulting in a value smaller than 0.

Figure 1: Example state of the game Breakthrough.

Example 1. As an example we take the game Breakthrough.
In this game, white starts with two rows of pawns at the bot-
tom and black with two rows of pawns at the top. The pawns
may only be moved forward, vertically or diagonally, and
can capture the opponent’s pawns diagonally. The goal of
each player is to reach the other side of the board with one
of their pawns. Consider the state given in Figure 1. Assume
that white is the Max player and black the Min player, and
in the current state it is white’s turn to move.



In the following we will evaluate the states reached by
applying the two different capturing moves. The first one
captures with the most advanced white pawn, resulting in
state s1, the second one captures with the least advanced
white pawn, resulting in state s2. In s1 white needs at least
one more move, while black needs at least 3 more moves, so
that h1(s1) = (3 − 1)/3 = 0.67, indicating an advantage
for the white player. In s2 the white player will need at least
two moves and the black player at least four moves to win
the game, so that h1(s2) = (4−2)/4 = 0.5, which indicates
a smaller advantage for the white player compared to s1.

An alternative is to take the mobility into account. A pre-
vious approach (Clune 2007) used the mobility directly: The
author compared the number of moves of both players, nor-
malized over the maximum of possible moves of both play-
ers. While this seems to work well in several games, it bears
the danger of sacrificing own pieces in games like Check-
ers where capturing is mandatory: In such games, bringing
the mobility of the opponent to as small a value as possible
typically means restricting the opponent to a capture move.

Thus, we do not inspect the mobility in the current state
but rather try to identify how many moves remain relevant
for achieving a goal. In order to do so we first calculate a
full fixpoint of the RPG, i.e., we generate the RPG until no
new facts or no new actions are added to it. Only the actions
in that graph can become applicable at some time in the fu-
ture. Now, starting at the facts describing a player’s won
states, we perform backward search in the RPG, identifying
all actions of that player that may lie on a path to those facts.
These actions we call relevant.

Let nMax ,rel(s) be the number of relevant actions of the
Max player in state s and nMin,rel(s) the number of relevant
actions of the Min player in state s. Similarly, let nMax be
the total number of actions of the Max player and nMin the
total number of actions of the Min player. Then we define
another evaluation function h2 for state s as follows:

h2(s) =
nMax ,rel(s)

nMax
− nMin,rel(s)

nMin

This assumes that a player has a higher chance of winning if
the fraction of still relevant actions is higher for this player
than for the opponent.

Example 2. Consider again the Breakthrough example from
Figure 1 and the two successor states s1 and s2. In Break-
through, all moves advance a pawn to the opponent’s back
row, so that any move that can still be performed at some
point is relevant. We distinguish between the (left/right)
border cells, where the players have two possible moves,
and the inner cells, where the players have three possi-
ble moves. Initially, both players have 80 relevant actions
(both can reach 10 border cells and 20 inner cells). In s1,
the white player can reach three border cells, and five in-
ner cells, resulting in a total of 21 relevant moves. The
black player can still reach three border cells and three in-
ner cells, resulting in a total of 15 relevant moves. Thus,
h2(s1) = 21/80−15/80 = 6/80, giving a slight advantage
for white. In s2, the white player can reach three border
cells and four inner cells, resulting in a total of 18 relevant

moves. The black player can still reach four border cells
and six inner cells, resulting in a total of 26 relevant moves.
Thus, h2(s2) = 18/80 − 26/80 = −8/80, indicating a
slight advantage for black.

As a third option, we combine these two evaluation func-
tions to a new function h1+2(s) = w1h1(s) + w2h2(s).
Learning weights w1 and w2, especially ones optimized for
the game at hand, remains future work; in this paper we use
a uniform distribution, i.e., w1 = w2 = 0.5.

Implementation Details
We implemented an Alpha-Beta based player and a UCT
based player as well as the new evaluation functions on top
of the FF planning system (Hoffmann and Nebel 2001). In
this section, we provide some details on the extensions over
basic Alpha-Beta and UCT players that we additionally im-
plemented.

Alpha-Beta
In our Alpha-Beta implementation we make use of iterative
deepening (Korf 1985), searching to a fixed depth in each
iteration and evaluating the non-terminal leaf nodes based
on our evaluation function. Between iterations we increase
the depth limit by one.

In addition we implemented several extensions found in
the literature, among them the use of a transposition table
and approaches to order the moves based on results in the
transposition table and from previous iterations, which is
supposed to result in stronger pruning.

As soon as the evaluation time is up and the player must
decide which action to take, the current iteration stops. If it
is not this player’s turn, nothing has to be done. Otherwise,
in case of being the Max (Min) player the action leading to
the successor with highest (smallest) value is chosen. The
successor reached by the chosen action is taken as the new
root of the graph and Alpha-Beta continues.

Quiescence Search On top of this we implemented quies-
cence search, which tries to circumvent the so called hori-
zon effect. The basic idea is to distinguish between noisy
and quiet states, where a state is considered to be noisy in
case of tremendous changes in the game with respect to the
previous state. As soon as our normal Alpha-Beta search
reaches the depth limit we check whether the current state is
noisy, and if so, we will switch into quiescence search and
continue until we reach a terminal state, a quiet state, or the
predefined depth limit of quiescence search.

Our idea for deciding if a state is noisy is to check if the
number of moves has drastically changed. Thus, we defined
and tested the following criteria:

Applicable actions In each state compute, for the current
player, the number of the currently applicable actions and
compare it to the value of the previous state where it was
this player’s turn.

Possible actions In each state compute, for the current
player, the number of actions that might still be possi-
ble to take later in the game (found by building the RPG



fixpoint, similar to our evaluation function h2) and com-
pare it to the value of the previous state where it was this
player’s turn.

In preliminary tests we found that the applicable actions
criterion works better than the possible actions criterion. An
explanation for this is the overhead induced by computing
the RPG fixpoint.

For deciding if a state is noisy, apart from the criterion to
check we also need a threshold for deciding if that change
corresponds to a noisy state. If the change in the correspond-
ing criterion is greater than the given threshold we consider
it to be noisy. We tested threshold values between 5% and
50% and came to the conclusion that 30% is the best value
wrt. the applicable actions criterion.

While for some games other values would be better, recall
that we consider domain-independent approaches here, so
that we cannot choose the most appropriate value for each
game in advance. It remains future work to find intelligent
ways for adapting this value at run-time depending on the
properties of the currently played game.

UCT

For UCT, instead of a tree we generate a graph by using a
hash function, similar to the transposition table in Alpha-
Beta. In the expansion phase, if we generate a successor
state that is already stored in the hash table we take the cor-
responding existing search node as the child node. While
some implementations might make use of parent pointers,
thus effectively updating nodes not really visited, we propa-
gate the reached results only along the path of actually vis-
ited nodes.

Another extension concerns the use of a Minimax-like
scheme in the UCT graph. Similar to the approach pro-
posed by Winands and Björnsson (2011), we mark a node
in the UCT graph as solved if it corresponds to a terminal
state. During the backpropagation phase we check for every
encountered node whether all successors have already been
solved. If that is the case, we can mark this node as solved
as well and set its value in the Minimax fashion based on
the values of its successors. Furthermore, if we are in con-
trol in a node and at least one successor is marked as solved
and results in a win for us, we mark this node as solved as
well and set its value to a win for us. In the selection phase
we go through the UCT graph as usual, but stop at solved
states and can start the backpropagation phase immediately.
Overall, this approach is supposed to bring us the advantage
that the values converge much faster and that the runs can
become shorter and only within the UCT graph, which pre-
vents the numerous expansions in the simulation phase.

Experimental Results
In this section we start by describing the games we consid-
ered in our experiments. Next we point out some insights on
traps in those games, along with an empirical evaluation of
the trap densities. Finally, we present results of running our
Alpha-Beta versions against UCT on that set of games.

Benchmark Games
In the following we will outline the games we used in our
experiments.

Breakthrough consists of a Chess-like board, where the
two rows closest to a player are fully filled with pawns of
their color. The moves of the pawns are similar to Chess,
with the exception that they can always move diagonally.
The goal is to bring one pawn to the opponent’s side of the
board or to capture all opponent’s pawns.

Chomp consists of a bar of chocolate with the piece in
the bottom left corner being poisoned. The moves of the
players are to bite at a specified position that still holds a
piece of chocolate. The result is that all pieces to the top-
right of this are eaten. The player eating the poisoned piece
loses the game.

Chinese Checkers is normally played on a star-like grid.
In the two-player version we can omit the home bases of
the other four players, so that the board becomes diamond-
shaped. In each move the players may only move forward
(or do nothing), and perform single or double jumps. Each
player has three pieces and must move them to the other side
of the board, consisting of 5× 5 cells. If no player is able to
do so in 40 moves the game ends in a draw.

Clobber is played on a rectangular board. The pieces are
initially placed alternatingly, filling the entire board. A move
consists of moving a piece of the own color to a (horizontally
or vertically) adjacent cell with a piece of the opponent’s
color on it. That piece is captured and replaced by the moved
piece of the active player. The last player able to perform a
move wins.

Connect Four is a classical child’s game. The play-
ers take turns putting a piece of their color in one of the
columns, where it falls as far to the bottom as possible. The
goal is to achieve a line of four pieces of the own color. If
the board gets fully filled without one player winning, the
game ends in a draw.

Gomoku is played on a square board, where the players
take turns placing pieces on empty cells. The first player
to achieve a line of five or more pieces of the own color
wins the game; if the board is fully filled without any player
winning it is a draw.

Knightthrough is very similar to Breakthrough, but here
the pieces are knights instead of pawns. The moves are the
same as in Chess, with the exception that they may only ad-
vance toward the opponent, never move back.

Nim consists of a number of stacks of matches. In each
move, a player may remove any number of matches from
one of the stacks. The player to take the last match wins the
game.

Sheep and Wolf is played on a Chess-like board, where,
similar to Checkers, only half the board is used. The sheep
start on every second cell on one side, the wolf in the mid-
dle on the other side. The wolf moves first. The sheep may
move only forward to a diagonally adjacent cell, while the
wolf may move forward or backward to a diagonally adja-
cent cell. The goal of the sheep is to surround the wolf so
that it cannot move any more; the goal of the wolf is to either
block the sheep or to get behind them.



without trap depth
Game traps 0 1 2 3 4 5 6 7

Breakthrough (8x8) 662 (119) 0 83 0 114 0 141 ? ?
Chinese Checkers 904 (101) 3 5 6 7 4 17 7 47

Chomp (10x10) 14 (14) 4 0 687 0 32 0 263 0
Clobber (4x5) 121 (121) 515 0 23 0 64 0 277 0

Connect Four (7x6) 625 (85) 0 263 0 50 0 28 0 34
Nim (11,12,15,25) 469 (32) 0 40 0 102 0 44 0 345
Nim (12,12,20,20) 435 (41) 0 50 0 98 0 32 0 385

Sheep & Wolf (8x8) 882 (193) 0 11 0 11 0 22 0 74

Table 1: Trap search results for 1000 randomly sampled
states, searching for traps of depth up to 7 (exception:
Breakthrough only up to 5). The numbers are the depths
of the deepest traps found in each state. Additionally, we
give the number of states without traps, and for how many of
those we can prove that they already are lost anyway (given
in parantheses).

Traps in the Benchmark Games
We implemented an algorithm that evaluates games for get-
ting an idea of the density of traps in those games. To do so,
we first randomly choose the depth in which to find a state,
and then perform a fully random game until this depth. The
reached state will be the root of a Minimax tree, which we
use to decide whether or not the state is at risk. If we can
prove that the state is already lost anyway, there cannot be
any trap. Otherwise, if we find some successor state that is
provably lost, the root node is at risk, and the lost successor
states correspond to traps. The depth of a trap is then the
depth of the Minimax tree needed for proving it a lost state.

Table 1 displays the results of performing this approach
for 1000 different sampled states and searching for traps of
a depth of at most 7. For some games generating the full
Minimax subtrees is not feasible. This is true for Gomoku
and larger versions of Clobber. For Breakthrough this holds
as well, but the algorithm finished when searching only for
traps of depth 5 or less. In some games a state is at risk
by several traps of different depths; the table gives only the
depth of the deepest trap the algorithm identified.

Even though the algorithm did not work out for Gomoku,
we assume it to contain a large number of shallow traps of
at least depth 3. Whenever a player achieves a situation with
a line of three pieces in the own color and the two cells on
both sides of that line are empty, the opponent is in a state at
risk. If the next move is not next to the line of three, a trap is
reached as the player may then place a fourth piece adjacent
to the existing line so that the adjacent cell on both sides is
empty, which is an obvious win. Due to the large branching
factor (the default board size is 15 × 15) and the possibility
to continue playing for a long time without actually playing
one of the finishing moves these traps are hard to detect by
UCT, even though they are rather shallow.

In Connect Four the number of shallow traps is likely
much smaller than in Gomoku. While it is enough to have
a line of two pieces to create a state at risk it is further re-
quired that the two cells to each side of such a line must be
immediately playable. As such, the surrounding board must
be sufficiently filled with pieces. Additionally, a vertical line

can not be seen to create a serious threat, as only one side
of such a line remains open and due to the small branching
factor UCT should have no trouble identifying it.

Situations of zugzwang, for which Connect Four is
known, might also be considered as traps. However, these
traps are not shallow as they typically result in filling sev-
eral columns until the actual move to end the game can be
played.

From the results in Table 1 we can see that most traps
are of depth 1, which means that there is a line of 3 pieces
of the opponent which it can finish in its next move – this
can hardly be considered a serious trap, as it will be easily
identified by UCT.

In Breakthrough we expected to be confronted with a
large number of shallow traps. In a situation where an op-
ponent’s pawn is three cells from the current player’s side
and it is the last chance to take that pawn clearly is a state
at risk. While Alpha-Beta will have no trouble identifying
this as the game will be lost in five more steps, UCT again
has to cope with a rather large branching factor and the fact
that the game can continue for a long time if the simulations
do not move the pawn that threatens to end the game. How-
ever, from the gathered results it seems that traps of depth
5 or less are not as common as we expected, at least in the
8×8 version of the game; only a third of all evaluated states
contained such a trap.

For Knightthrough we expect that it contains a rather
high density of shallow traps. Here a knight may be six cells
from the opponent’s side in order to need only three more
own moves to reach it, so that states at risk can occur much
earlier in the game.

The branching factor of Knightthrough is a bit higher than
that of Breakthrough, but the length of the game typically is
shorter, as the pieces can move up to two cells closer to the
opponent’s side. As such, the difficulty to identify traps for
UCT might be similar to that in Breakthrough played on a
board of the same size.

The game Nim is easily solved by mathematical methods
(Bouton 1901). A winning strategy consists of reacting di-
rectly to the opponent’s moves. The idea is to encode the
stacks as binary numbers and then calculate the bitwise ex-
clusive or of these numbers. If the result is different from
0. . . 0 in the initial state the game is won for the starting
player. In fact, the winning player can always counter an
opponent’s move in such a way that the result will be 0. . . 0.
This means that each state is at risk for the supposedly win-
ning player, as a wrong move immediately means that the
opponent can follow the same strategy and then ensure a
win. However, this results in arbitrarily long games, so that
we cannot expect to find many shallow traps easily identified
by Alpha-Beta search.

From the results we can see that slightly more than half of
the explored states contain traps of a depth of 7 or less. The
somewhat surprisingly large number of shallow traps may
be explained by the fact that in the tested cases we have only
four stacks with relatively few matches, so that the endgame
can be reached after only few steps in case of random play.

In Chomp every state is at risk: The player to move may
choose to take the poisoned piece and thus immediately lose



the game, which corresponds to a trap of depth 0. Alter-
natively a player may decide to take the piece horizontally
or vertically adjacent to the poisoned one. In such a situa-
tion the opponent can then take all remaining non-poisoned
pieces. This corresponds to a trap of depth 2. However, both
situations can hardly be considered as serious threats: In the
second case, the branching factor and the maximal depth are
rather small. From the evaluation results we see that these
are the most common traps and they are the deepest ones for
nearly 70% of the evaluated states.

For Clobber it is hard to find a general criterion for the
presence of traps, so we used only our evaluation of sampled
states. In our implementation of this game, a player can al-
ways give up and thus lose the game. This explains why we
have so many traps of depth 0, which we can disregard as
no player should fall for them. Traps of depth 2 are uncom-
mon, starting with depth 4 they become much more common
again (though in half the cases the states at risk that contain
such a trap also contain one of depth 6). Finally, a quarter of
all evaluated states contains a trap of depth 6. This high den-
sity of shallow traps might be due to the fact that the game
is rather short (it typically ends after slightly more than ten
moves); for larger boards (e.g., 5 × 6) we expect the situa-
tion to change and the number of shallow traps to decrease
significantly in the early game (the first 8–10 moves).

s

s

s

s

w

a b c d e f g h

1

2

3

4

5

Figure 2: Relevant part of a state at risk in Sheep and Wolf.

For Sheep and Wolf consider the situation depicted in
Figure 2. The sheep are to move next and the state is at risk.
If the sheep on b2 is moved to a3 the wolf cannot be stopped
from reaching cell c3. From there only one sheep is left that
might stop it from going to b2 or d2, so that the wolf will
win. If instead the sheep on c1 would have been moved to
d2, the sheep could still win the game. Similar situations
also exist with the wolf being closer to the sheep. However,
our evaluation of sample states shows that such shallow traps
are rather rare throughout the game. In total we found only
118 states at risk, and 74 of those had traps of depth 7.

Chinese Checkers requires to have all own pieces on the
other side of the board in order to win. This means that
for a trap of depth 7 or less all pieces must be placed in
such a way that at most four own moves and/or jumps are
required to reach the goal area. Thus, for most parts we are
not confronted with any shallow traps.

Results for the Alpha-Beta Based Player
Here we provide results for running our Alpha-Beta players
against the UCT player. All experiments were conducted
on machines equipped with two Intel Xeon E5-2660 CPUs
with 2.20 GHz and 64 GB RAM. Both processes were run
on the same machine using one core each. We allowed a

Game α
β
(0

)
vs

.U
C

T

U
C

T
vs

.
α
β
(0

)

α
β
(h

1
)

vs
.U

C
T

U
C

T
vs

.
α
β
(h

1
)

α
β
(h

1
+

2
)

vs
.U

C
T

U
C

T
vs

.
α
β
(h

1
+

2
)

Q
α
β
(h

1
)

vs
.U

C
T

U
C

T
vs

.
Q
α
β
(h

1
)

Breakthrough (6x6) -0.22 -0.10 0.92 -1.00 0.80 -0.80 0.72 -0.90
Breakthrough (8x8) 0.30 -0.24 0.92 -1.00 0.94 -0.96 0.94 -0.94

Chinese Checkers 0.00 0.00 0.08 -0.18 0.03 0.00 0.32 -0.05
Chomp (10x10) -1.00 0.64 -1.00 0.70 -1.00 0.50 -1.00 0.62

Clobber (4x5) 0.64 0.88 0.92 0.88 0.94 0.88 1.00 0.74
Clobber (5x6) -0.92 0.94 -0.88 0.86 -0.88 0.94 -0.86 0.90

Connect Four (7x6) -1.00 1.00 -0.86 0.75 -1.00 0.48 -0.91 0.70
Gomoku (8x8) -0.98 0.98 0.44 0.33 0.69 0.21 0.50 0.49

Gomoku (15x15) 0.46 -0.24 1.00 -1.00 1.00 -0.98 1.00 -1.00
Knightthrough (8x8) 0.82 -0.82 0.72 -0.74 0.76 -0.82 0.70 -0.56

Nim (11,12,15,25) 0.70 -0.68 0.00 0.00 -0.04 0.06 -0.18 -0.12
Nim (12,12,20,20) 0.76 -0.78 0.04 -0.14 0.24 0.00 0.24 -0.34

Sheep & Wolf (8x8) 0.18 -1.00 0.04 -0.98 0.32 -1.00 0.12 -0.98

Table 2: Average rewards for the tested games using Alpha-
Beta (six left columns) and Alpha-Beta with quiescence
search (last two columns).

fixed amount of 10s for each move and performed a total of
200 runs for each game: 100 runs with UCT playing as Min
player, and 100 runs with UCT as Max player.

Table 2 shows the average rewards achieved when run-
ning Alpha-Beta with heuristic h1 (denoted αβ(h1)) and
h1+2 (denoted αβ(h1+2)), as well as quiescence search with
heuristic h1 (denoted Qαβ(h1)). As the results of quies-
cence search with heuristic h1+2 are very similar we omit
those. Additionally, we used a blind heuristic (denoted
αβ(0)), assigning each non-terminal state a value of 0, in
order to show that our heuristics actually provide additional
information over the basic trap detection inherent in Alpha-
Beta search.

From these results we can make some observations. First
of all, for the two evaluation functions and the two Alpha-
Beta versions, the differences are surprisingly small. For the
heuristics this might be explained by the fact that h1 is a part
of h1+2. For quiescence search a possible explanation might
be that the benefit of increased depth in some parts results in
shallower depth in others due to the fixed time-out, so that
overall both searches perform similar.

Second, the additional information of the new evalua-
tion function provides a significant advantage in the games
Breakthrough and Gomoku. While the players using the
evaluation functions consistently win especially on larger
boards, the player with the blind heuristic performs much
worse. Obviously our heuristics are good enough for these
games to prevent creating situations from which the player
cannot recover, i.e., falling into traps deeper than the depth
of the Alpha-Beta search tree. For the smaller version of
Clobber and for Connect Four the advantage of using our
evaluation functions is not as big but still noticeable. How-
ever, in the game of Nim the blind heuristic performs much
better – here the evaluation functions are clearly misleading.

For Gomoku we note that while Alpha-Beta using the
evaluation functions and UCT achieve similar results on the
small 8×8 sized board, on the traditional 15×15 board UCT
fails completely. Here we see that a likely higher number of



shallow traps together with a large branching factor and the
possibility of long playouts results in an immense decrease
in performance of UCT. An inverse observation can be made
for Clobber: while Alpha-Beta fares reasonably well on a
board of size 4 × 5, the density of shallow traps is likely
smaller on the larger board of size 5 × 6, resulting in an
advantage for UCT.

Considering Connect Four, we note that even though the
game is closely related to Gomoku, Alpha-Beta fares much
worse. As pointed out before, in Connect Four the num-
ber of shallow traps is rather small, so that the chances of
UCT falling for one are decreased. Concerning Chomp,
even though every state is a state at risk, we can ignore traps
of depth 0 and 2. Other than these, the trap density is rather
small. In the end, this results in bad performance of the
Alpha-Beta players compared to the UCT player.

Not all games with few shallow traps are bad for our
Alpha-Beta players with the evaluation function: In Chinese
Checkers and Nim they are still on-par with UCT. Finally,
Sheep and Wolf gives a rather surprising result. The num-
ber of shallow traps is not overly high, the branching factor
is comparatively small and the length of the game is clearly
limited by the size of the board (at worst, all sheep must
be moved to the other side). It is quite easy to come up
with a strategy where the Min player (the sheep) wins the
game. Obviously, our UCT player cannot identify such a
strategy while the Alpha-Beta player can, so that the UCT
player wins less than half the games when playing as Min,
while Alpha-Beta consistently wins.

Related Work on Evaluation Functions for
GGP

While most state-of-the art players nowadays make use of
UCT, there has been some research in the use of evaluation
functions for GGP.

When the current form of GGP was introduced in 2005,
the first successful players made use of Alpha-Beta with au-
tomatically generated evaluation functions. The basic idea
was to identify features of the game at hand (e.g., game
boards, cells, movable pieces). By taking order relations
into account, it is possible to evaluate distances of pieces to
their goal locations (where the order relations describe the
connection of the cells of a game board) or the difference in
number of pieces of the players (where the order relations
describe the increase/decrease of pieces, e.g., when one is
captured) (see, e.g., (Kuhlmann, Dresner, and Stone 2006;
Clune 2007)).

Another way to evaluate states was used by Fluxplayer
(Schiffel and Thielscher 2007): This uses fuzzy logic to
evaluate how well the goal conditions are already satisfied.
In a setting with a simple conjunction of facts, as we as-
sume in this paper, this pretty much corresponds to a goal-
counting heuristic. Additionally they also took identified
features and order relations into account to improve this
evaluation function. They do so by using different weights,
e.g., taking a fact’s distance to its goal value into account
instead of only a satisfied/unsatisfied status.

A more recent approach (Michulke and Schiffel 2012)

considers a so-called fluent graph, which captures some con-
ditions for a fact to become true, but for each action consid-
ers only one of the preconditions as necessary for achiev-
ing one of its effects. Based on this graph an estimate on
the number of moves needed for achieving a fact is cal-
culated, which is again used for weighing the fuzzy logic
formulas, similar to the previous approach in Fluxplayer.
A similar graph, the so called justification graph, has been
used in planning for calculating the efficient LM-Cut heuris-
tic (Helmert and Domshlak 2009), though there the graph is
used to calculate disjunctive action landmarks.

While in principle it should be possible to use our pro-
posed heuristics (or other planning based distance estimates)
in a similar way, it is not clear how useful this might be. The
fuzzy logic based approach of Fluxplayer makes sense when
applied in the original GDL setting, which allows for arbi-
trary Boolean formulas with conjunctions and disjunctions,
at least when rolling out axioms. In our setting, however, we
allow only conjunctions of variables in the goal descriptions.
One way to emulate the Fluxplayer approach in our setting
would be to calculate the required distance for each of the
goal variables, and then combine those results to calculate
an actual value of the evaluation function. If this improves
the results is not immediately clear and remains as future
work.

Conclusion
In this paper we have proposed new evaluation functions for
general two-player zero-sum games inspired by successful
heuristics used in automated planning, which are based on
ignoring delete lists. By taking the difference in plan lengths
for reaching won/lost states and the factor of still relevant ac-
tions into account, we ended up with a heuristic with which
an Alpha-Beta based player is able to consistently defeat a
basic UCT player on games with a large amount of traps.
It also copes rather well in some of the games having only
few shallow traps, where UCT typically is expected to work
well.

In addition to these new evaluation functions we also pro-
vided some insight into the presence of traps in a set of GGP
benchmarks. The observation here is that basically all those
games contain some shallow traps, though for several games
the density is rather small, which is a factor explaining the
success of UCT players in the GGP setting.

In the future we will adapt further heuristics to two-player
games. One approach that comes to mind is the use of
abstractions. For some extensive games such an approach
has yielded pathological behavior (Waugh et al. 2009), i.e.,
worse play when refining an abstraction, and it will be inter-
esting to see if such behavior can also occur in our setting.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2–3):235–256.
Björnsson, Y., and Finnsson, H. 2009. Cadiaplayer: A
simulation-based general game player. IEEE Transactions
on Computational Intelligence and AI in Games 1(1):4–15.



Bouton, C. L. 1901. Nim, a game with a complete mathe-
matical theory. Annals of Mathematics 3(2):35–39.
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Rin-
tanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E., eds., Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS’08), 28–35. AAAI Press.
Campbell, M.; Hoane, Jr., A. J.; and Hsu, F.-H. 2002. Deep
Blue. Artificial Intelligence 134(1–2):57–83.
Clune, J. 2007. Heuristic evaluation functions for general
game playing. In Howe, A., and Holte, R. C., eds., Proceed-
ings of the 22nd National Conference of the American As-
sociation for Artificial Intelligence (AAAI-07), 1134–1139.
Vancouver, BC, Canada: AAAI Press.
Gelly, S., and Silver, D. 2008. Achieving master level play
in 9 x 9 computer go. In Fox, D., and Gomes, C., eds.,
Proceedings of the 23rd National Conference of the Ameri-
can Association for Artificial Intelligence (AAAI-08), 1537–
1540. Chicago, Illinois, USA: AAAI Press.
Genesereth, M. R.; Love, N.; and Pell, B. 2005. General
game playing: Overview of the AAAI competition. AI Mag-
azine 26(2):62–72.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
Monte-Carlo planning. In Fürnkranz, J.; Scheffer, T.;
and Spiliopoulou, M., eds., Proceedings of the 17th Euro-
pean Conference on Machine Learning (ECML 2006), vol-
ume 4212 of Lecture Notes in Computer Science, 282–293.
Springer-Verlag.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Kuhlmann, G.; Dresner, K.; and Stone, P. 2006. Automatic
heuristic construction in a complete general game player. In
Gil, Y., and Mooney, R. J., eds., Proceedings of the 21st Na-
tional Conference of the American Association for Artificial
Intelligence (AAAI-06), 1457–1462. Boston, Massachusetts,
USA: AAAI Press.
Love, N. C.; Hinrichs, T. L.; and Genesereth, M. R. 2008.
General game playing: Game description language spec-
ification. Technical Report LG-2006-01, Stanford Logic
Group.
Méhat, J., and Cazenave, T. 2011. A parallel general game
player. KI 25(1):43–47.
Michulke, D., and Schiffel, S. 2012. Distance features
for general game playing agents. In Filipe, J., and Fred,
A. L. N., eds., Proceedings of the 4th International Con-

ference on Agents and Artificial Intelligence (ICAART’12),
127–136. Vilamoura, Algarve, Portugal: SciTePress.
Newell, A., and Simon, H. 1963. GPS, a program that sim-
ulates human thought. In Feigenbaum, E., and Feldman, J.,
eds., Computers and Thought. McGraw-Hill. 279–293.
Ramanujan, R.; Sabharwal, A.; and Selman, B. 2010. On
adversarial search spaces and sampling-based planning. In
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds., Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS’10), 242–245.
AAAI Press.
Ramanujan, R.; Sabharwal, A.; and Selman, B. 2011. On
the behavior of UCT in synthetic search spaces. In Proceed-
ings of the ICAPS Workshop on Monte-Carlo Tree Search:
Theory and Applications (MCTS’11).
Schaeffer, J.; Culberson, J.; Treloar, N.; Knight, B.; Lu, P.;
and Szafron, D. 1992. A world championship caliber check-
ers program. Artificial Intelligence 53(2–3):273–289.
Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. In Howe, A., and Holte, R. C.,
eds., Proceedings of the 22nd National Conference of the
American Association for Artificial Intelligence (AAAI-07),
1191–1196. Vancouver, BC, Canada: AAAI Press.
Waugh, K.; Schnizlein, D.; Bowling, M. H.; and Szafron,
D. 2009. Abstraction pathologies in extensive games. In
Sierra, C.; Castelfranchi, C.; Decker, K. S.; and Sichman,
J. S., eds., Proceedings of the 8th International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS’09), 781–788. Budapest, Hungary: IFAAMAS.
Winands, M. H. M., and Björnsson, Y. 2011. αβ-based
play-outs in monte-carlo tree search. In Cho, S.-B.; Lucas,
S. M.; and Hingston, P., eds., Proceedings of the 2011 IEEE
Conference on Computational Intelligence and Games (CIG
2011), 110–117. Seoul, South Korea: IEEE.


