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Abstract

When it comes to learning control knowledge for planning,
most works focus on “how to do it” knowledge which is then
used to make decisions regarding which actions should be
applied in which state. We pursue the opposite approach of
learning “how to not do it” knowledge, used to make deci-
sions regarding which actions should not be applied in which
state. Our intuition is that “bad actions” are often easier
to characterize than “good” ones. An obvious application,
which has not been considered by the few prior works on
learning bad actions, is to use such learned knowledge as
action pruning rules in heuristic search planning. Fixing a
canonical rule language and an off-the-shelf learning tool, we
explore a novel method for generating training data, and im-
plement rule evaluators in state-of-the-art planners. The ex-
periments show that the learned rules can yield dramatic sav-
ings, even when the native pruning rules of these planners,
i.e., preferred operators, are already switched on.

Introduction
Learning can be applied to planning in manifold ways
(see (Celorrio et al. 2012) for a recent overview). To
name a few, existing approaches include learning of ac-
tion models (e.g., (Walsh and Littman 2008)), learning to
predict planner performance (e.g., (Roberts and Howe 2009;
Cenamor, de la Rosa, and Fernández 2013)), learning macro
actions (e.g., (Botea et al. 2005; Newton et al. 2007; Coles
and Smith 2007)), learning to improve a heuristic (e.g.,
(Yoon, Fern, and Givan 2008; Xu, Fern, and Yoon 2009;
Virseda, Borrajo, and Alcázar 2013)), learning which heuris-
tic to use when (Domshlak, Karpas, and Markovitch 2012),
and learning portfolio configurations (e.g., (Núñez, Borrajo,
and López 2012; Seipp et al. 2012)).

The approach we pursue here is the venerable (i.e., old)
idea of learning control knowledge, in the sense of “domain-
dependent information about the structure of plans”. That
approach has a long tradition, focusing almost entirely on
“how to do it” knowledge, mostly learning representations
of closed-loop action-selection policies or open-loop macro
actions. Learned policies are often used for search-free plan
generation (e.g., (Khardon 1999; Martin and Geffner 2000;
Yoon, Fern, and Givan 2002; Fern, Yoon, and Givan 2006;
Gretton 2007; Xu, Fern, and Yoon 2010; de la Rosa et
al. 2011; Srivastava, Immerman, and Zilberstein 2012)),

while learned macros are typically integrated into com-
plete heuristic search algorithms (e.g., (Botea et al. 2005;
Newton et al. 2007; Coles and Smith 2007)). However,
recentwork has also used learned policies for macro gen-
eration during search (e.g., (Yoon, Fern, and Givan 2008;
de la Rosa et al. 2011)).

In this work, we pursue an alternative approach of learn-
ing “how to not do it” knowledge. Consider, e.g., Sokoban.
Finding the “good” actions in many critical states is very
hard to do, as it effectively entails search or already know-
ing what the solution is. In contrast, with a bit of practice
it is often easy to avoid clearly “bad” actions (like, blocking
an exit) based on simple features of the state. A plausible
hypothesis therefore is that it may be easier to learn a rep-
resentation that is able to reliably identify some of the bad
actions in a state, compared to learning to reliably select a
good action.1

Indeed, in the literature on search, pruning rules – con-
ditions under which the search discards an applicable ac-
tion – play a prominent role. Temporal logic pruning rules
are highly successful in hand-tailored planning with TLPlan
(Bacchus and Kabanza 2000) and TALPlanner (Kvarnström
and Magnusson 2003). Pruning rules derived as a side effect
of computing a heuristic function, commonly referred to as
helpful actions or preferred operators, are of paramount im-
portance to the performance of domain-independent heuris-
tic search planners like FF (Hoffmann and Nebel 2001), Fast
Downward (Helmert 2006), and LAMA (Richter and West-
phal 2010). In fact, it has been found that such pruning typ-
ically is more important to performance than the differences
between many of the heuristic functions that have been de-
veloped (Richter and Helmert 2009).

Despite the prominence of pruning from a search perspec-
tive, hardly any research has been done on learning to char-
acterize bad actions (presumably due to the traditional focus
on learning stand-alone knowledge as opposed to helping

1Note the “some” here: learning to reliably identify all bad ac-
tions is equivalent to learning to identify all good actions. Our
focus is on learning a subset of the bad actions. From a machine
learning perspective, this corresponds to the precision-recall trade-
off. We are willing to sacrifice recall (the percentage of bad actions
that are pruned), in favor of precision (the percentage of pruned
actions that are bad). This makes sense as it avoids removing solu-
tions from the search space.



a search algorithm). To the best of our knowledge, there
are exactly two such prior works. Considering SAT-based
planning, Huang et al. (Huang, Selman, and Kautz 2000)
learn simple datalog-style conjunctive pruning rules, con-
veniently expressed in the form of additional clauses. They
find this method to be very effective empirically, with speed-
ups of up to two orders of magnitude on a collection of
mostly transport-type domains (although, from today’s per-
spective, it should be mentioned that the original planner, but
not the one using the pruning rules, is time-step optimal).
More recently, de la Rosa and McIlraith (de la Rosa and
McIlraith 2011) tackled the long-standing question of how
to automatically derive the control knowledge for TLPlan
and TALPlanner. Accordingly, their pruning rules are for-
mulated in linear temporal logic (LTL); they introduce tech-
niques to automatically generate derived predicates to ex-
pand the feature space for these rules. Experiments in three
domains show that these rules provide for performance com-
petitive with that of hand-written ones.

Against this background, our work is easy to describe:
Like de la Rosa and McIlraith, we hook onto the search
literature in attempting to learn a prominent form of prun-
ing; while de la Rosa and McIlraith considered TLPlan, we
consider action pruning (à la preferred operators) in heuris-
tic search planning. The idea is to let that powerful search
framework do the job of finding the “good” actions, reducing
our job to helping out with quickly discarding the bad ones.
Like Huang et al., we concentrate on simple datalog-style
conjunctive pruning rules, the motivation being to determine
first how far such a simple framework carries. (More com-
plex frameworks, and in particular the application of de la
Rosa and McIlraith’s rules in heuristic search planning, are
left open as future topics.) We also diverge from prior work
in the generation of training data, which we derive compre-
hensively from all optimal states as opposed to just the states
visited by one (or a subset of) solutions.

As it turns out, our simple approach is quite promising.
Experimenting with the IPC’11 learning track benchmarks,
we obtain dramatic speed-ups over standard search configu-
rations in Fast Downward, on several domains. The speed-
ups are counter-balanced by equally dramatic losses on other
domains, but a straightforward portfolio approach suffices to
combine the complementary strengths of the different con-
figurations involved.

We next introduce our notations. We then detail our fea-
tures for learning, the generation of training data, our for-
mulation of pruning rules and how they are being learned,
as well as their usage during the search. We present our ex-
periments and conclude.

Preliminaries
Our approach requires that states be represented as sets of in-
stantiated first-order atoms (so we can learn first-order con-
junctive pruning conditions), that actions are instantiated ac-
tion schemas (so the pruning conditions can be interpreted
as rules disallowing particular schema instantiations in a
given state), and that the first-order predicates and the action
schemas are shared across the entire planning domain (so
the rules can be transferred across instances of the domain).

Apart from this, we don’t need to make any assumptions, in
particular as to how exactly action schemas are represented
and how their semantics is defined.

Our assumptions are obviously satisfied by sequential
planning in all variants of deterministic non-metric non-
temporal PDDL. Our pruning rules are designed for use dur-
ing a forward search. In our concrete implementation, we
build on FF (Hoffmann and Nebel 2001) and Fast Down-
ward (FD) (Helmert 2006). In what follows, we introduce
minimal notation as will be needed to describe our tech-
niques and their use in forward search.

We presume a fixed planning domainD, associated with a
set P of first-order predicates, each p ∈ P with arity arityp;
we identify p with a string (its “name”). D is furthermore
associated with a set A of action schemas, each of which
has the form a[X] where a is the schema’s name and X is
a tuple of variables; we will sometimes identify X with the
set of variables it contains.

A first-order atom has the form p[X] where p ∈ P and
X is an arityp-tuple of variables; like for action schemas,
we will sometimes identify X with the set of variables it
contains. A first-order literal l[X] is either a first-order atom
p[X] (a positive literal), or a negated first-order atom ¬p[X]
(a negative literal).

An instance Π of the domainD comes with a setO of ob-
jects. A ground atom then has the form p[o1, . . . , ok] where
p ∈ P , oi ∈ O, and k = arityp. Ground literals are de-
fined in the obvious manner. A ground action has the form
a[o1, . . . , ok] where a[X] ∈ A, oi ∈ O, and k = |X|; we
will often denote ground actions simply with “a”. A state s
is a set of ground atoms.

Each domain instance Π is furthermore associated with a
state I called the initial state, and with a set G of ground
atoms called the goal. A state s is a goal state if G ⊆ s.

If s is a state and a is a ground action, then we assume
that there is some criterion stating whether a is applicable
to s, and what the resulting state of applying a to s is. A
solution (or plan) for a domain instance is a sequence of
ground actions that is iteratively applicable to I , and whose
iterated application results in a goal state. The solution is
optimal if its length is minimal among all solutions. (For
simplicity, we do not consider more general action costs,
although our approach is applicable to these in principle.)

Features
A basic decision is which features to use as input for the
learning algorithm. Many previous works on learning con-
trol knowledge for states (e.g., (Yoon, Fern, and Givan 2008;
Xu, Fern, and Yoon 2010; de la Rosa et al. 2011; de la Rosa
and McIlraith 2011; Virseda, Borrajo, and Alcázar 2013))
used features different from the state itself, or in addition to
the state itself. We did not do that for now, as the simpler
approach already led to good results. However, of course,
whether an action is “good” or “bad” often depends on the
goal. As the goal is not reflected in the states during a for-
ward search, we need to augment the states with that infor-
mation.

Given a domain instance Π and a predicate p, denote by
Goal(p) some new predicate unique to p (in our implemen-



tation, Goal(p) prefixes p’s name with the string “Goal -”),
and with the same arity as p. The augmented predicates are
obtained as P ∪{Goal(p) | p ∈ P}. Given a state s in Π, the
augmented state is obtained as s ∪ {Goal(p)[o1, . . . , ok] |
p[o1, . . . , ok] ∈ G}whereG is the instance’s goal. In words,
we make goal-indicator copies of the predicates, and intro-
duce the respective ground atoms into the states. We assume
from now on that this operation has been performed, with-
out explicitly using the word “augmented”. The input to
the learning algorithm are (augmented) states, the learned
rules employ (augmented) predicates, and the rule usage is
based on evaluating these (augmented) predicates against
(augmented) states during the search.

For example, in a transportation domain with pred-
icate at[x, y], we introduce the augmented predicate
Goal -at[x, y]. If at[o1, c2] ∈ G is a goal atom, we augment
all states with Goal -at[o1, c2]. In our experiments, the ma-
jority of the learned rules (≥ 70% in 5 of 9 domains) contain
at least one augmented predicate in the rule condition.

Generating the Training Data
The pruning rules we wish to learn are supposed to repre-
sent, given a state s, what are the “bad action choices”, i.e.,
which applicable ground actions should not be expanded by
the search. But when is an action “bad” in a state? How
should we design the training data?

Almost all prior approaches to learning control knowl-
edge (e.g., (Khardon 1999; Martin and Geffner 2000;
Yoon, Fern, and Givan 2002; Fern, Yoon, and Givan 2006;
Yoon, Fern, and Givan 2008; Xu, Fern, and Yoon 2010))
answer that question by choosing a set of training problem
instances, generating a single plan for each, and extracting
the training data from that plan. In case of learning which
actions should be applied in which kinds of states, in par-
ticular, it is basically assumed that the choices made by the
plan – the action a applied in any state the plan s visits –
are “good”, and every other action a′ applicable to these
states s is “bad”. Intuitively, the “good” part is justified as
the training plan works for its instance, but the “bad” part
ignores the fact that other plans might have worked just as
well, resulting in noisy training data. Some prior approaches
partly counter-act this by removing unnecessary ordering
constraints from the plan, thus effectively considering a sub-
set of equally good plans. However, those approaches are
incomplete and can still mislabel “good” actions as “bad”.
Herein, we employ a more radical approach based on gener-
ating all optimal plans.

We assume any planning tool that parses domainD and an
instance Π, that provides the machinery to run forward state
space search, and that provides an admissible heuristic func-
tion h. To generate the training data, we use A∗ with small
modifications. Precisely, our base algorithm is the standard
one for admissible (but potentially inconsistent) heuristics:
best-first search on g + h where g is path length; maintain-
ing a pointer to the parent node in each search node; dupli-
cate pruning against all generated states, updating the parent
pointer (and re-opening the node if it was closed already)
if the new path is cheaper. We modify two aspects of this

algorithm, namely (a) the termination condition and (b) the
maintenance of parent pointers.

For (a), instead of terminating when the first solution is
found, we stop the search only when the best node in the
open list has g(s) + h(s) > g∗ where g∗ is the length of the
optimal solution (which we found beforehand). For (b), in-
stead of maintaining just one pointer to the best parent found
so far, we maintain a list of pointers to all such parents.
Thanks to (a), as g(s) +h(s) is a lower bound on the cost of
any solution through s, and as all other open nodes have at
least value g + h, upon termination we must have generated
all optimal solutions. Thanks to (b), at that time we can find
the set S∗ of all states on optimal plans very easily: Simply
start at the goal states and backchain over all parent pointers,
collecting all states along the way until reaching the initial
state. The training data then is:
• Good examples E+: Every pair (s, a) of state s ∈ S∗

and ground action a applicable to s where the outcome
state s′ of applying a to s is a member of S∗.

• Bad examples E−: Every pair (s, a) of state s ∈ S∗ and
ground action a applicable to s where the outcome state
s′ of applying a to s is not a member of S∗.

Given several training instances, E+, respectively E−, are
obtained simply as the union of E+, respectively E−, over
all those instances.

To our knowledge, the only prior work taking a similar
direction is that of de la Rosa et al. (de la Rosa et al. 2011).
They generate all optimal plans using a depth-first branch
and bound search with no duplicate pruning. A subset of
these plans is then selected according to a ranking criterion,
and the training data is generated from that subset. The latter
step, i.e. the training data read off the solutions, is similar to
ours, corresponding basically to a subset of S∗ (we did not
investigate yet whether such subset selection could be ben-
eficial for our approach as well). The search step employed
by de la Rosa et al. is unnecessarily ineffective as the same
training data could be generated using our A∗-based method,
which does include duplicate pruning (a crucial advantage
for search performance in many planning domains).

We will refer to the above as the
• conservative training data (i.e.based on all optimal

plans), contrasted with what we call
• greedy training data.
The latter is oriented closely at the bulk of previous ap-
proaches: For the greedy data we take S∗ to be the states
along a single optimal plan only, otherwise applying the
same definition ofE+ andE−. In other words, in the greedy
training data, (s, a) is “good” if the optimal plan used ap-
plies a to s, and is “bad” if the optimal plan passed through
s but applied an action a′ 6= a.

Note that above all actions in each state of S∗ are included
in either E+ or E−. We refer to this as the
• all-operators training data, contrasted with what we call
• preferred-operators training data.
In the latter, E+ and E− are defined as above, but are
restricted to the subset of state/action pairs (s, a) where



s ∈ S∗, and ground action a is applicable to s and is a
helpful action for s (according to the relaxed plan heuristic
hFF (Hoffmann and Nebel 2001)). Knowledge learned using
this modified training data will be used only within searches
that already employ this kind of action pruning: The idea
is to focus the rule learning on those aspects missed by this
native pruning rule.

Similarly to de la Rosa et al. (de la Rosa et al. 2011), in our
implementation the training data generation is approximate
in the sense that we use the relaxed plan heuristic hFF as our
heuristic h. hFF is not in general admissible, but in practice
it typically does not over-estimate (hFF is usually close to
h+ (Hoffmann 2005)). Hence this configuration is viable in
terms of runtime and scalability(strong admissible heuristics
like LM-cut (Helmert and Domshlak 2009) are much slower
than hFF), and in terms of the typical quality of the training
data generated.

There is an apparent mismatch between the distribution of
states used to create the training data (only states on optimal
plans) and the distribution of states that will be encountered
during search (both optimal and sub-optimal states). Why
then should we expect the rules to generalize properly when
used in the context of search?

In general, there is no reason for that expectation, beyond
the intuition that bad actions on optimal states will typically
be bad also on sub-optimal ones sharing the relevant state
features. It would certainly be worthwhile to try training
on intelligently selected suboptimal states, similar in spirit
to recent work on learning from imitation (Ross and Bag-
nell 2010). Note though that, as long as the pruning on the
optimal states retains the optimal plans (which is what we
are trying to achieve when learning from conservative data),
even arbitrary pruning decisions at suboptimal states do not
impact the availability of optimal plans in the search space.

Learning the Pruning Rules
Our objective is to learn some representation R, in a form
that generalizes across instances of the same domain D, so
thatR covers a large fraction of bad examples inE− without
covering any of the good examples E+. We want to use
R for pruning during search, where on any search state s,
an applicable ground action a will not be expanded in case
(s, a) is covered by R. It remains to define what kind of
representation will underlie R, what it means to “cover”
a state/action pair (s, a), and how R will be learned. We
consider these in turn.

As previously advertized, we choose to represent R in the
form of a set of pruning rules. Each rule r[Y ] ∈ R takes the
form r[Y ] =

¬a[X]⇐ l1[X1] ∧ · · · ∧ ln[Xn]

where a[X] is an action schema from the domain D, li[Xi]
are first-order literals, and Y = X ∪

⋃
iXi is the set of

all variables occuring in the rule. In other words, we asso-
ciate each action schema with conjunctive conditions identi-
fying circumstances under which the schema is to be consid-
ered “bad” and should be pruned. As usual, we will some-
times refer to ¬a[X] as the rule’s head and to the condition
l1[X1] ∧ · · · ∧ ln[Xn] as its body.

We choose this simple representation for precisely that
virtue: simplicity. Our approach is (relatively) simple to
implement and use, and as we shall see can yield excellent
results.

Given a domain instance with object set O, and a pruning
rule r[Y ] ∈ R, a grounding of r[Y ] takes the form r =

¬a[o1, . . . , ok]⇐ l1[o11, . . . , o
k1
1 ] ∧ · · · ∧ ln[o1n, . . . , o

kn
n ]

where oj = oj
′

i′ whenever X and Xi′ share the same vari-
able at position j respectively j′, and oji = oj

′

i′ whenever Xi

and Xi′ share the same variable at position j respectively
j′. We refer to such r as a ground pruning rule. In other
words, ground pruning rules are obtained by substituting the
variables of pruning rules with the objects of the domain in-
stance under consideration.

Assume now a state s and a ground action a applicable to
s. A ground pruning rule r = [¬a′ ⇐ l1 ∧ · · · ∧ ln] covers
(s, a) if a′ = a and s |= l1 ∧ · · · ∧ ln. A pruning rule r[Y ]
covers (s, a) if there exists a grounding of r[Y ] that covers
(s, a). A set R of pruning rules covers (s, a) if one of its
member rules does.

With these definitions in hand, our learning task – learn a
set of pruning rules R which covers as many bad examples
in E− as possible without covering any of the good exam-
ples E+ – is a typical inductive logic programming (ILP)
(Muggleton 1991)problem: We need to learn a set of logic
programming rules that explains the observations as given
by our training data examples. It is thus viable to use off-the-
shelf tool support. We chose the well-known Aleph toolbox
(Srinivasan 1999). (Exploring application-specific ILP algo-
rithms for our setting is an open topic.)

In a nutshell, in our context, Aleph proceeds as follows:
1. If E− = ∅, stop. Else, select an example (s, a) ∈ E−.
2. Construct the “bottom clause”, i.e., the most specific con-

junction of literals that covers (s, a) and is within the lan-
guage restrictions imposed. (See below for the restric-
tions we applied.)

3. Search for a subset of the bottom clause yielding a rule
r[Y ] which covers (s, a), does not cover any example
fromE+, and has maximal score (covers many examples
from E−).

4. Add r[Y ] to the rule set, and remove all examples from
E− covered by it. Goto 1.

Note that our form of ILP is simple in that there is no recur-
sion. The rule heads (the action schemas) are from a fixed
and known set separate from the predicates to be used in the
rule bodies. Aleph offers support for this simply by separate
lists of potential rule heads respectively potential body lit-
erals. These lists also allow experimentation with different
language variants for the rule bodies:
• Positive vs. mixed conditions: We optionally restrict

the rule conditions to contain only positive literals, re-
ferring to the respective variant as “positive” respectively
“mixed”. The intuition is that negative condition literals
sometimes allow more concise representations of situa-
tions, but their presence also has the potential to unneces-
sarily blow up the search space for learning.



• With vs. without inequality constraints: As specified
above, equal variables in a rule will always be instantiated
with the same object. But, per default, different variables
also may be instantiated with the same object. Aleph al-
lows “x 6= y” body literals to prevent this from happen-
ing. Similarly to the above, such inequality constraints
may sometimes help, but may also increase the difficulty
of Aleph’s search for good rules.

As the two options can be independently switched on or off,
we have a total of four condition language variants. We will
refer to these by P, M, P6=, and M 6= in the obvious manner.

We restrict negative condition literals, including literals
of the form x 6= y, to use bound variables only: In any
rule r[Y ] learned, whenever variable x occurs in a negative
condition literal, then x must also occur in either a posi-
tive condition literal or in the rule’s head.2 Intuitively, this
prevents negative literals from having excessive coverage by
instantiating an unbound variable with all values that do not
occur in a state (e.g., “¬at[x, y]” collects all but one city y
for every object x). Note that, in our context, head variables
are considered to be bound as their instantiation will come
from the ground action a whose “bad” or “good” nature we
will be checking.

Aleph furthermore allows various forms of fine-grained
control over its search algorithm. We used the default setting
for all except two parameters. First, the rule length bound re-
stricts the search space to conditions with at most L literals.
We empirically found this parameter to be of paramount im-
portance for the runtime performance of learning. Further-
more, we found that L = 6 was an almost universally good
“magic” setting of this parameter in our context: L > 6
rarely ever lead to better-performing rules, i.e., to rules with
more pruning power than those learned for L = 6; and
L < 6 very frequently lead to much worse-performing rules.
We thus fixed L = 6, and use this setting throughout the
experiments reported. Second, minimum coverage restricts
the search space to rules that cover at least C examples
from E−. We did not run extensive experiments examining
this parameter, and fixed it to C = 2 to allow for a max-
imally fine-grained representation of the training examples
(refraining only from inserting a rule for the sake of a single
state/action pair).

Using the Pruning Rules
Given a domain instance Π, a state s during forward search
on Π, and an action a applicable to s, we need to test whether
R covers (s, a). If the answer is “no”, proceed as usual; if
the answer is “yes”, prune a, i.e., do not generate the result-
ing state.

The issue here is computational efficiency: We have to
pose the question “does R cover (s, a)?” not only for ev-
ery state s during a combinatorial search, but even for ev-
ery action a applicable to s. So it is of paramount impor-

2We implemented this restriction via the “input/output” tags
Aleph allows in the lists of potential rule heads and body literals.
We did not use these tags for any other purpose than the one de-
scribed, so we omit a description of their more general syntax and
semantics.

tance for that test to be fast. Indeed, we must avoid the infa-
mous utility problem (Minton 1990), identified in early work
on learning for planning, where the overhead of evaluating
the learned knowledge would often dominate the potential
gains.

Unfortunately, the problem underlying the test is NP-
complete: For rule heads with no variables, and rule bod-
ies with only positive literals, we are facing the well-known
problem of evaluating a Boolean conjunctive query (the rule
body) against a database (the state) (Chandra and Merlin
1977). More precisely, the problem is NP-complete when
considering arbitrary-size rule bodies (“combined complex-
ity” in database theory). When fixing the rule body size,
as we do in our work (remember that L = 6), the problem
becomes polynomial-time solvable (“data complexity”), i.e.,
exponential in the fixed bound. For our bound 6, this is of
course still way too costly with a naı̈ve solution enumerating
all rule groundings. We employ backtracking in the space of
partial groundings, using unification to generate only partial
groundings that match the state and ground action in ques-
tion. In particular, a key advantage in practice is that, typi-
cally, many of the rule variables occur in the head and will
thus be fixed by the ground action a already, substantially
narrowing down the search space.

For the sake of clarity, let us fill in a few details. Say
that s is a state, a[o1, . . . , ok] is a ground action, and
¬a[x1, . . . , xk] ⇐ l1[X1] ∧ · · · ∧ ln[Xn] is a pruning rule
for the respective action schema. We view the positive re-
spectively negative body literals as sets of atoms, denoted
LP respectively LN . With α := {(x1, o1), . . . , (xk, ok)},
we set LP := α(LP ) and LN := α(LN ), i.e., we apply
the partial assignment dictated by the ground action to every
atom. We then call the following recursive procedure:

if LP 6= ∅ then
select l ∈ LP

for all q ∈ s unifiable with l via partial assignment β do
if recursive call on β(LP \ {l}) and β(LN ) succeeds then

succeed
endif

endfor
fail

else /* LP = ∅ */
if LN ∩ s = ∅ then succeed else fail endif

endif

The algorithm iteratively processes the atoms in LP .
When we reach LN , i.e., when all positive body literals have
already been processed, all variables must have been instan-
tiated because negative literals use bound variables only (cf.
previous section). So the negative part of the condition is
now a set of ground atoms and can be tested simply in terms
of its intersection with the state s.

We use two simple heuristics to improve runtime. Within
each rule condition, we order predicates with higher arity
up front so that many variables will be instantiated quickly.
Across rules, we dynamically adapt the order of evaluation.
For each rule r we maintain its “success count”, i.e., the
number of times r fired (pruned out an action). Whenever r
fires, we compare its success count with that of the preceding
rule r′; if the count for r is higher, r and r′ get switched.



This simple operation takes constant time but can be quite
effective.

Experiments
We use the benchmark domains from the learning track of
IPC’11. All experiments were run on a cluster of Intel
E5-2660 machines running at 2.20 GHz. We limited run-
time for training data generation to 15 minutes (per task),
and for rule learning to 30 minutes (per domain, config-
uration, and action schema). To obtain the training data,
we manually played with the generator parameters to find
maximally large instances for which the learning process
was feasible within these limits. We produced 8–20 train-
ing instances per domain and training data variant (i.e., con-
servative vs. greedy). Handling sufficiently large training
instances turned out to be a challenge in Gripper, Rovers,
Satellite and TPP. For example, in Gripper the biggest train-
ing instances contain 3 grippers, 3 rooms and 3 objects; for
Rovers, our training instances either have a single rover, or
only few waypoints/objectives. We ran all four condition
language variants – P, M, P6=, and M 6= – on the same train-
ing data. We show data only for the language variants with
inequality constraints, i.e., for P 6= and M6=), as these gener-
ally performed better.

all-operators preferred-operators
Conservative Greedy Conservative Greedy
P 6= M 6= P6= M6= P6= M 6= P 6= M6=

# L # L # L # L # L # L # L # L
Barman 14 2.7 5 2.4 17 2.1 17 1.8 7 2.9 5 2.4 8 2.1 8 1.5
Blocksworld 29 4.4 0 — 61 3.8 23 2.7 28 4.3 0 — 46 3.7 21 2.7
Depots 2 4.5 1 4 16 3.3 10 2.8 4 4.8 2 4 12 3.4 9 3.1
Gripper 27 4.9 1 4 26 4.1 23 3.2 20 4.8 9 4 17 4.2 11 3.4
Parking 92 3.4 51 2.8 39 2.6 31 2.2 71 3.3 48 2.8 20 2.6 18 2.1
Rover 30 2.2 18 1.8 45 1.8 36 1.6 3 2 3 2 14 1.7 16 1.7
Satellite 27 3.2 26 3 25 2.6 22 2.2 12 3.4 12 3 9 3 9 2.6
Spanner 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
TPP 13 2.5 10 2.4 18 2.6 21 2.6 6 2.8 5 2.8 11 2.7 12 2.8

Table 1: Statistics regarding the rule sets learned. “#”: num-
ber of rules; “L”: average rule length (number of rule body
literals).

Table 1 shows statistics about the learned rule sets. One
clear observation is that fewer rules tend to be learned when
using preferred-operators training data. This makes sense
simply as that training data is smaller. A look at rule length
shows that rules tend to be short except in a few cases. A
notable extreme behavior occurs in Spanner, where we learn
a single three-literal pruning rule, essentially instructing the
planner to not leave the room without taking along all the
spanners. As it turns out, this is enough to render the bench-
mark trivial for heuristic search planners. We get back to
this below.

We implemented parsers for our pruning rules, and usage
during search, in FF (Hoffmann and Nebel 2001) and Fast
Downward (FD) (Helmert 2006). We report data only for
FD; that for FF is qualitatively similar. To evaluate the ef-
fect of our rules when using/not using the native pruning,
as “base planners” we run FD with hFF in single-queue lazy

greedy best-first search (FD1), respectively in the same con-
figuration but with a second open list for states resulting
from preferred operators (FD2). To evaluate the effect of our
rules on a representation of the state of the art in runtime, we
run (the FD implementation of) the first search iteration of
LAMA (Richter and Westphal 2010), which also is a dual-
queue configuration where one open list does, and one does
not, use the native pruning. As we noticed that, sometimes,
FD’s boosting (giving a higher preference to the preferred-
operators queue), is detrimental to performance, we also ex-
perimented with configurations not using such boosting.

In both dual-queue configurations, we apply our learned
pruning rules only to the preferred-operators queue, keep-
ing the other “complete” queue intact. The preferred-
operators training data is used in these cases. For FD1,
where we apply the rules to a single queue not using pre-
ferred operators, we use the all-operators training data.

For the experiments on test instances, we used runtime
(memory) limits of 30 minutes (4 GB). We used the original
test instances from IPC’11 for all domains except Gripper
and Depots, where LAMA was unable to solve more than
a single instance (with or without our rules). We generated
smaller test instances using the generators provided, using
about half as many crates than the IPC’11 test instances in
Depots, and cutting all size parameters by about half in Grip-
per.

Table 2 gives a summary of the results. Considering
the top parts of the tables (FD-default with boosting where
applicable), for 4 out of 9 domains with FD1, for 4 do-
mains with FD2, and for 4 domains with LAMA, the best
coverage is obtained by one of our rule-pruning configura-
tions. Many of these improvements are dramatic: 2 domains
(FD1: Barman and Spanner), 3 domains (FD2: Barman,
Blocksworld, and Parking), respectively 1 domain (LAMA:
Barman). When switching the boosting off in FD2 and
LAMA, a further dramatic improvement occurs in Satel-
lite (note also that, overall, the baselines suffer a lot more
from the lack of boosting than those configurations using our
pruning rules). Altogether, our pruning rules help in differ-
ent ways for different base planners, and can yield dramatic
improvements in 5 out of the 9 IPC’11 domains.

The Achilles heel lies in the word “can” here: While there
are many great results, they are spread out across the dif-
ferent configurations. We did not find a single configura-
tion that combines these advantages. Furthermore, on the
two domains where our pruning techniques are detrimental
– Rovers and TPP – we lose dramatically, so that, for the de-
fault (boosted) configurations of FD2 and LAMA, in overall
coverage we end up doing substantially worse.

In other words, our pruning techniques (a) have high vari-
ance and are sensitive to small configuration details, and (b)
often are highly complementary to standard heuristic search
planning techniques. Canonical remedies for this are auto-
tuning, learning a configuration per-domain, and/or port-
folios, employing combinations of configurations. Indeed,
from that perspective, both (a) and (b) could be good news,
especially as other satisficing heuristic search planning tech-
niques have a tendency to be strong in similar domains.

A comprehensive investigation of auto-tuning and port-



FD1 (hFF) FD2 (dual queue hFF+ preferred operators)
base pl. Cons P6= Cons M6= Greedy P 6= Greedy M6= base planner Cons P6= Cons M 6= Greedy P6= Greedy M6=

C C ¬S C ¬S C ¬S C ¬S C T E C T E RT C T E RT C T E RT C T E RT
Barman (30) 0 27 0 0 0 0 0 0 0 14 609.6 271972 13 12.9 28.9 63% 23 17.1 39.2 57% 27 1.0 1.4 47% 21 1.6 2.3 45%
Blocksworld (30) 0 0 0 0 0 0 18 1 0 19 37.4 19916 18 0.6 1.0 54% 19 1.2 1.0 0% 1 0.0 0.0 85% 27 3.6 3.4 17%
Depots (30) 13 13 0 13 0 13 12 13 11 18 48.2 111266 18 0.7 1.1 33% 18 0.8 1.0 20% 23 1.6 2.1 18% 21 3.2 3.5 18%
Gripper (30) 13 0 0 15 0 0 23 0 20 29 3.9 2956 19 0.0 0.1 95% 26 0.0 0.1 90% 19 0.0 0.3 96% 17 0.0 0.2 84%
Parking (30) 1 3 0 4 0 0 30 0 30 7 642.5 16961 8 0.5 0.5 6% 6 0.8 0.8 5% 25 35.5 15.2 2% 14 15.3 11.8 1%
Rover (30) 0 0 29 0 3 0 1 0 0 30 41.9 22682 11 0.0 0.1 91% 12 0.0 0.1 91% 3 0.0 0.1 94% 13 0.0 0.1 83%
Satellite (30) 0 0 0 0 0 0 0 0 1 3 752.3 51741 0 — — — 0 — — — 2 0.5 0.7 54% 0 — — —
Spanner (30) 0 30 0 30 0 30 0 30 0 0 — — 0 — — — 0 — — — 0 — — — 0 — — —
TPP (30) 0 0 0 0 0 0 0 0 0 29 232.5 13057 0 — — — 0 — — — 0 — — — 0 — — —∑

(270) 27 73 29 62 3 43 84 44 62 149 87 104 100 113

no FD preferred operators boosting
Satellite (30) 2 1009,0 68253 0 — — — 12 1,1 11,1 92% 0 — — — 16 3,4 23,2 84%∑

(270) 53 50 65 80 72

LAMA (first iteration) AutoTune Portfolios
base planner Cons P6= Cons M6= Greedy P 6= Greedy M6= Seq-Uniform Seq-Hand

C T E C T E RT C T E RT C T E RT C T E RT C C C
Barman (30) 7 648.1 151749 30 23.8 51.1 53% 30 5.0 9.7 44% 22 0.8 1.3 38% 21 0.8 1.3 36% 23 30 30
Blocksworld (30) 27 63.5 13093 24 0.7 1.0 45% 27 1.3 1.0 0% 6 0.3 0.6 55% 30 14.2 13.5 19% 27 27 28
Depots (30) 23 43.2 37299 22 0.9 1.2 35% 25 0.9 1.0 25% 26 7.0 9.9 22% 25 15.3 17.3 22% 23 24 25
Gripper (30) 29 6.4 3122 9 0.0 0.0 85% 16 0.0 0.0 87% 21 0.0 0.4 93% 24 0.0 0.2 76% 29 28 29
Parking (30) 26 699.3 3669 10 0.4 0.2 7% 16 1.4 1.2 7% 29 10.2 5.5 2% 28 11.3 6.1 2% 28 30 30
Rover (30) 29 211.2 28899 9 0.1 0.2 78% 10 0.1 0.2 80% 0 — — — 7 0.1 0.1 65% 30 29 29
Satellite (30) 4 986.7 34739 0 — — — 0 — — — 0 — — — 0 — — — 3 13 16
Spanner (30) 0 — — 0 — — — 0 — — — 0 — — — 0 — — — 30 30 30
TPP (30) 20 360.5 13262 0 — — — 0 — — — 0 — — — 0 — — — 29 18 18∑

(270) 165 104 124 104 135 222 229 235

no FD preferred operators boosting
Satellite (30) 3 819,7 32301 0 — — — 22 4,1 26,4 85% 1 0,4 0,8 73% 23 4,2 14,0 78%∑

(270) 84 80 106 95 125

Table 2: Performance overview. “C”: coverage; “¬S”: all solutions pruned out (search space exhausted); “T” search time
and “E” number of expanded states (median for base planner, median ratio “base-planner/rules-planner” for planners using our
rules); “RT”: median percentage of total time spent evaluating rules. For each base planner, best coverage results are highlighted
in boldface. By default, FD’s preferred operators queue in FD2 and LAMA is boosted; we show partial results switching that
boosting off. For explanation of the “AutoTune” and “Portfolios” data, see text.

folios is beyond the scope of this paper, but to give a
first impression we report preliminary data in Table 2 (bot-
tom right), based on the configuration space {FD1, FD2,
LAMA} × {P, M, P6=, M 6=} × {boost, no-boost}. For “Au-
toTune”, we created medium-size training data (in between
training data and test data size) for each domain, and se-
lected the configuration minimizing summed-up search time
on that data. For “Portfolios”, we created sequential portfo-
lios of four configurations, namely FD1 Cons P6=, FD2 base
planner (boosted), LAMA Cons P6= (boosted), and LAMA
Greedy M6= not boosted. For “Seq-Uniform” each of these
gets 1/4 of the runtime (i.e., 450 seconds); for “Seq-Hand”,
we played with the runtime assignments a bit, ending up
with 30, 490, 590, and 690 seconds respectively. Despite
the comparatively little effort invested, these auto-tuned and
portfolio planners perform vastly better than any of the com-
ponents, including LAMA.

Regarding rule content and its effect on search, the most
striking, and easiest to analyze, example is Spanner. Failing
to take a sufficient number of spanners to tighten all nuts is
the major source of search with delete relaxation heuristics.
Our single learned rule contains sufficient knowledge to get

rid of that, enabling FD1 to solve every instance in a few
seconds. This does not work for FD2 and LAMA because
their preferred operators prune actions taking spanners (the
relaxed plan makes do with a single one), so that the com-
bined pruning (preferred operators and our rule) removes
the plan. We made an attempt to remedy this by pruning
with our rules on one queue and with preferred operators on
the other, but this did not work either (presumably because,
making initial progress on the heuristic value, the preferred
operators queue gets boosted). The simpler and more suc-
cessful option is to use a portfolio, cf. above.

Regarding conservative vs. greedy training data, consider
FD1. As that search does not employ a complete “back-up”
search queue, if our pruning is too strict then no solution
can be found. The “¬S” columns vividly illustrate the risk
incurred. Note that, in Parking, while the greedy rules prune
out all solutions on FD1 (the same happens when training
them on the preferred-operators training data), they yield
dramatic improvements for FD2, and significant improve-
ments for LAMA. It is not clear to us what causes this.

Regarding the overhead for rule evaluation, the “RT”
columns for LAMA show that this can be critical in Grip-



per, Rovers, and Satellite. Comparing this to Table 1 (right
half), we do see that Gripper tends to have long rules, which
complies with our observation. On the other hand, for ex-
ample, Parking has more and longer rules than Rovers, but
its evaluation overhead is much smaller. Further research is
needed to better understand these phenomena.

For TPP, where none of the configurations using our rules
can solve anything and so Table 1 does not provide any in-
dication what the problem is, observations on smaller ex-
amples suggest that solutions otherwise found quickly are
pruned: the FD1 search space became larger when switch-
ing on the rule usage.

Conclusion
We realized a straightforward idea – using off-the-shelf ILP
for learning conjunctive pruning rules acting like preferred
operators in heuristic search planning – that hadn’t been
tried yet. The results are quite good, with substantial to dra-
matic improvements across several domains, yielding high
potential for use in portfolios. Together with the simplicity
of the approach, this strongly suggests that further research
on the matter may be worthwhile. The most immediate open
lines in our view are to (a) systematically explore the design
of complementary configurations and portfolios thereof, as
well as (b) understanding the behavior of the technique in
more detail.
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